These are ICP-MS analysis of the root and shoot samples of the IAA shoot application for LA1511 performed on the plate. LA1511 treated on plate with or without salt. at d5 the seedlings were transferred to +/- salt, while their shoot that are exposed to outside of plates being sprayed +/- IAA for 5 days. after 10 days at salt, seedlings were harvested for ICPMS.
getwd()
## [1] "C:/Users/Julkowska Lab/Desktop/R codes by Maryam/20230526_RSA_and _ICP-MS_for_LA1511_IAA_100mM_Salt_shoot_application_d9_only"
list.files(pattern = ".csv")
## [1] "d9-IAA-shoot-spray-root-corrected.csv"
## [2] "Eric06142023NaK-analyzed.csv"
ICP <- read.csv("Eric06142023NaK-analyzed.csv")
ICP
ICP$All.condition<-paste(ICP$Condition,ICP$Condition2, sep="+")
ICP
ICP$All.ID<-paste(ICP$Accession,ICP$All.condition, ICP$Tissue, sep="_")
ICP
library(ggplot2)
library(ggpubr)
library(multcompView)
aov(Na.con.mg.mg.dry.weight ~ All.ID, data = ICP)
## Call:
## aov(formula = Na.con.mg.mg.dry.weight ~ All.ID, data = ICP)
##
## Terms:
## All.ID Residuals
## Sum of Squares 13162.706 369.429
## Deg. of Freedom 11 24
##
## Residual standard error: 3.923376
## Estimated effects may be unbalanced
Output <- TukeyHSD(aov(Na.con.mg.mg.dry.weight ~ All.ID, data = ICP))
Output
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Na.con.mg.mg.dry.weight ~ All.ID, data = ICP)
##
## $All.ID
## diff lwr upr p adj
## LA_C+IAA_SH-LA_C+IAA_RO 1.457746203 -10.092610 13.0081027 0.9999980
## LA_C+MOCK_RO-LA_C+IAA_RO 0.142860576 -11.407496 11.6932171 1.0000000
## LA_C+MOCK_SH-LA_C+IAA_RO 1.455133676 -10.095223 13.0054902 0.9999980
## LA_C+NOIAA_RO-LA_C+IAA_RO 0.095887811 -11.454469 11.6462443 1.0000000
## LA_C+NOIAA_SH-LA_C+IAA_RO 1.211150999 -10.339206 12.7615075 0.9999997
## LA_S+IAA_RO-LA_C+IAA_RO 42.070721851 30.520365 53.6210784 0.0000000
## LA_S+IAA_SH-LA_C+IAA_RO 35.391659367 23.841303 46.9420159 0.0000000
## LA_S+MOCK_RO-LA_C+IAA_RO 43.391200897 31.840844 54.9415574 0.0000000
## LA_S+MOCK_SH-LA_C+IAA_RO 30.666900991 19.116544 42.2172575 0.0000001
## LA_S+NOIAA_RO-LA_C+IAA_RO 45.556738744 34.006382 57.1070953 0.0000000
## LA_S+NOIAA_SH-LA_C+IAA_RO 31.085944637 19.535588 42.6363011 0.0000001
## LA_C+MOCK_RO-LA_C+IAA_SH -1.314885627 -12.865242 10.2354709 0.9999993
## LA_C+MOCK_SH-LA_C+IAA_SH -0.002612527 -11.552969 11.5477440 1.0000000
## LA_C+NOIAA_RO-LA_C+IAA_SH -1.361858392 -12.912215 10.1884981 0.9999990
## LA_C+NOIAA_SH-LA_C+IAA_SH -0.246595203 -11.796952 11.3037613 1.0000000
## LA_S+IAA_RO-LA_C+IAA_SH 40.612975648 29.062619 52.1633322 0.0000000
## LA_S+IAA_SH-LA_C+IAA_SH 33.933913165 22.383557 45.4842697 0.0000000
## LA_S+MOCK_RO-LA_C+IAA_SH 41.933454695 30.383098 53.4838112 0.0000000
## LA_S+MOCK_SH-LA_C+IAA_SH 29.209154788 17.658798 40.7595113 0.0000002
## LA_S+NOIAA_RO-LA_C+IAA_SH 44.098992541 32.548636 55.6493491 0.0000000
## LA_S+NOIAA_SH-LA_C+IAA_SH 29.628198435 18.077842 41.1785549 0.0000001
## LA_C+MOCK_SH-LA_C+MOCK_RO 1.312273100 -10.238083 12.8626296 0.9999993
## LA_C+NOIAA_RO-LA_C+MOCK_RO -0.046972765 -11.597329 11.5033837 1.0000000
## LA_C+NOIAA_SH-LA_C+MOCK_RO 1.068290423 -10.482066 12.6186469 0.9999999
## LA_S+IAA_RO-LA_C+MOCK_RO 41.927861275 30.377505 53.4782178 0.0000000
## LA_S+IAA_SH-LA_C+MOCK_RO 35.248798791 23.698442 46.7991553 0.0000000
## LA_S+MOCK_RO-LA_C+MOCK_RO 43.248340321 31.697984 54.7986968 0.0000000
## LA_S+MOCK_SH-LA_C+MOCK_RO 30.524040415 18.973684 42.0743969 0.0000001
## LA_S+NOIAA_RO-LA_C+MOCK_RO 45.413878168 33.863522 56.9642347 0.0000000
## LA_S+NOIAA_SH-LA_C+MOCK_RO 30.943084061 19.392728 42.4934406 0.0000001
## LA_C+NOIAA_RO-LA_C+MOCK_SH -1.359245865 -12.909602 10.1911106 0.9999990
## LA_C+NOIAA_SH-LA_C+MOCK_SH -0.243982677 -11.794339 11.3063738 1.0000000
## LA_S+IAA_RO-LA_C+MOCK_SH 40.615588175 29.065232 52.1659447 0.0000000
## LA_S+IAA_SH-LA_C+MOCK_SH 33.936525691 22.386169 45.4868822 0.0000000
## LA_S+MOCK_RO-LA_C+MOCK_SH 41.936067221 30.385711 53.4864237 0.0000000
## LA_S+MOCK_SH-LA_C+MOCK_SH 29.211767315 17.661411 40.7621238 0.0000002
## LA_S+NOIAA_RO-LA_C+MOCK_SH 44.101605068 32.551249 55.6519616 0.0000000
## LA_S+NOIAA_SH-LA_C+MOCK_SH 29.630810961 18.080454 41.1811675 0.0000001
## LA_C+NOIAA_SH-LA_C+NOIAA_RO 1.115263189 -10.435093 12.6656197 0.9999999
## LA_S+IAA_RO-LA_C+NOIAA_RO 41.974834040 30.424478 53.5251906 0.0000000
## LA_S+IAA_SH-LA_C+NOIAA_RO 35.295771557 23.745415 46.8461281 0.0000000
## LA_S+MOCK_RO-LA_C+NOIAA_RO 43.295313087 31.744957 54.8456696 0.0000000
## LA_S+MOCK_SH-LA_C+NOIAA_RO 30.571013180 19.020657 42.1213697 0.0000001
## LA_S+NOIAA_RO-LA_C+NOIAA_RO 45.460850933 33.910494 57.0112074 0.0000000
## LA_S+NOIAA_SH-LA_C+NOIAA_RO 30.990056827 19.439700 42.5404133 0.0000001
## LA_S+IAA_RO-LA_C+NOIAA_SH 40.859570851 29.309214 52.4099274 0.0000000
## LA_S+IAA_SH-LA_C+NOIAA_SH 34.180508368 22.630152 45.7308649 0.0000000
## LA_S+MOCK_RO-LA_C+NOIAA_SH 42.180049898 30.629693 53.7304064 0.0000000
## LA_S+MOCK_SH-LA_C+NOIAA_SH 29.455749991 17.905393 41.0061065 0.0000001
## LA_S+NOIAA_RO-LA_C+NOIAA_SH 44.345587745 32.795231 55.8959443 0.0000000
## LA_S+NOIAA_SH-LA_C+NOIAA_SH 29.874793638 18.324437 41.4251502 0.0000001
## LA_S+IAA_SH-LA_S+IAA_RO -6.679062483 -18.229419 4.8712940 0.6368276
## LA_S+MOCK_RO-LA_S+IAA_RO 1.320479047 -10.229877 12.8708356 0.9999993
## LA_S+MOCK_SH-LA_S+IAA_RO -11.403820860 -22.954177 0.1465357 0.0551546
## LA_S+NOIAA_RO-LA_S+IAA_RO 3.486016893 -8.064340 15.0363734 0.9924041
## LA_S+NOIAA_SH-LA_S+IAA_RO -10.984777213 -22.535134 0.5655793 0.0726695
## LA_S+MOCK_RO-LA_S+IAA_SH 7.999541530 -3.550815 19.5498980 0.3864810
## LA_S+MOCK_SH-LA_S+IAA_SH -4.724758377 -16.275115 6.8255981 0.9337081
## LA_S+NOIAA_RO-LA_S+IAA_SH 10.165079377 -1.385277 21.7154359 0.1217195
## LA_S+NOIAA_SH-LA_S+IAA_SH -4.305714730 -15.856071 7.2446418 0.9637115
## LA_S+MOCK_SH-LA_S+MOCK_RO -12.724299907 -24.274656 -1.1739434 0.0221936
## LA_S+NOIAA_RO-LA_S+MOCK_RO 2.165537847 -9.384819 13.7158944 0.9998919
## LA_S+NOIAA_SH-LA_S+MOCK_RO -12.305256260 -23.855613 -0.7548997 0.0298014
## LA_S+NOIAA_RO-LA_S+MOCK_SH 14.889837753 3.339481 26.4401943 0.0045692
## LA_S+NOIAA_SH-LA_S+MOCK_SH 0.419043647 -11.131313 11.9694002 1.0000000
## LA_S+NOIAA_SH-LA_S+NOIAA_RO -14.470794107 -26.021151 -2.9204376 0.0062378
P7 = Output$All.ID[,'p adj']
stat.test<- multcompLetters(P7)
stat.test
## LA_C+IAA_SH LA_C+MOCK_RO LA_C+MOCK_SH LA_C+NOIAA_RO LA_C+NOIAA_SH
## "a" "a" "a" "a" "a"
## LA_S+IAA_RO LA_S+IAA_SH LA_S+MOCK_RO LA_S+MOCK_SH LA_S+NOIAA_RO
## "bc" "bc" "b" "c" "b"
## LA_S+NOIAA_SH LA_C+IAA_RO
## "c" "a"
test <- as.data.frame(stat.test$Letters)
test$group1 <- rownames(test)
test$group2 <- rownames(test)
colnames(test)[1] <- "Tukey"
test
ICP$All.condition<- factor(ICP$All.condition, levels=c("C+NOIAA", "C+MOCK", "C+IAA","S+NOIAA", "S+MOCK", "S+IAA"))
Na_content <- ggplot(data = ICP, mapping = aes(x = All.ID, y = Na.con.mg.mg.dry.weight, colour = All.condition))
Na_content <- Na_content + geom_boxplot(alpha=0.2) + geom_jitter(width=0.1,alpha=0.2)
Na_content <- Na_content + stat_summary(fun=mean, geom="point", shape=95, size=6, color="black", fill="black")
Na_content <- Na_content + scale_color_manual(values = c("blue","blueviolet","cyan", "red", "deeppink", "magenta"))
Na_content <- Na_content + ylab("Na content, mg/mg dry weight") + xlab("")
Na_content <- Na_content + theme(axis.text.x = element_text(angle=90, hjust=0.9, vjust=0.5))
Na_content <- Na_content + stat_pvalue_manual(test, label = "Tukey", y.position = 120) + rremove("legend")
Na_content
pdf("Na.accumulation.Iaa.shoot.spray.ICPMS.pdf", height = 5, width = 10)
plot(Na_content)
dev.off()
## png
## 2
Na_content <- ggplot(data = ICP, mapping = aes(x = All.condition, y = Na.con.mg.mg.dry.weight, colour = All.condition))
Na_content <- Na_content + geom_boxplot(alpha=0.2) + geom_jitter(width=0.1,alpha=0.2)
Na_content <- Na_content + facet_grid(~Tissue)
Na_content <- Na_content + stat_summary(fun=mean, geom="point", shape=95, size=6, color="black", fill="black")
Na_content <- Na_content + scale_color_manual(values = c("blue","blueviolet","cyan", "red", "deeppink", "magenta"))
Na_content <- Na_content + ylab("Na content, mg/mg dry weight") + xlab("")
Na_content <- Na_content + theme(axis.text.x = element_text(angle=90, hjust=0.9, vjust=0.5))
Na_content <- Na_content + rremove("legend")
Na_content
aov(K.con..mg.mg.dry.weight ~ All.ID, data = ICP)
## Call:
## aov(formula = K.con..mg.mg.dry.weight ~ All.ID, data = ICP)
##
## Terms:
## All.ID Residuals
## Sum of Squares 4309.607 724.785
## Deg. of Freedom 11 24
##
## Residual standard error: 5.495394
## Estimated effects may be unbalanced
Output <- TukeyHSD(aov(K.con..mg.mg.dry.weight ~ All.ID, data = ICP))
Output
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = K.con..mg.mg.dry.weight ~ All.ID, data = ICP)
##
## $All.ID
## diff lwr upr p adj
## LA_C+IAA_SH-LA_C+IAA_RO -24.50743740 -40.6857900 -8.3290848 0.0006441
## LA_C+MOCK_RO-LA_C+IAA_RO -8.66903058 -24.8473832 7.5093221 0.7299026
## LA_C+MOCK_SH-LA_C+IAA_RO -27.52174932 -43.7001020 -11.3433967 0.0001284
## LA_C+NOIAA_RO-LA_C+IAA_RO -7.54831162 -23.7266643 8.6300410 0.8593822
## LA_C+NOIAA_SH-LA_C+IAA_RO -23.08795983 -39.2663125 -6.9096072 0.0013824
## LA_S+IAA_RO-LA_C+IAA_RO -17.08791459 -33.2662672 -0.9095620 0.0320725
## LA_S+IAA_SH-LA_C+IAA_RO -33.44049072 -49.6188434 -17.2621381 0.0000060
## LA_S+MOCK_RO-LA_C+IAA_RO -15.40994170 -31.5882943 0.7684109 0.0718724
## LA_S+MOCK_SH-LA_C+IAA_RO -34.48489472 -50.6632474 -18.3065421 0.0000036
## LA_S+NOIAA_RO-LA_C+IAA_RO -11.73943951 -27.9177921 4.4389131 0.3238674
## LA_S+NOIAA_SH-LA_C+IAA_RO -33.38786333 -49.5662160 -17.2095107 0.0000062
## LA_C+MOCK_RO-LA_C+IAA_SH 15.83840681 -0.3399458 32.0167594 0.0587959
## LA_C+MOCK_SH-LA_C+IAA_SH -3.01431192 -19.1926646 13.1640407 0.9998983
## LA_C+NOIAA_RO-LA_C+IAA_SH 16.95912578 0.7807731 33.1374784 0.0341826
## LA_C+NOIAA_SH-LA_C+IAA_SH 1.41947757 -14.7588751 17.5978302 1.0000000
## LA_S+IAA_RO-LA_C+IAA_SH 7.41952281 -8.7588298 23.5978754 0.8716477
## LA_S+IAA_SH-LA_C+IAA_SH -8.93305332 -25.1114060 7.2452993 0.6948573
## LA_S+MOCK_RO-LA_C+IAA_SH 9.09749570 -7.0808569 25.2758483 0.6724855
## LA_S+MOCK_SH-LA_C+IAA_SH -9.97745732 -26.1558100 6.2008953 0.5496100
## LA_S+NOIAA_RO-LA_C+IAA_SH 12.76799789 -3.4103547 28.9463505 0.2225935
## LA_S+NOIAA_SH-LA_C+IAA_SH -8.88042593 -25.0587786 7.2979267 0.7019367
## LA_C+MOCK_SH-LA_C+MOCK_RO -18.85271874 -35.0310714 -2.6743661 0.0130948
## LA_C+NOIAA_RO-LA_C+MOCK_RO 1.12071897 -15.0576337 17.2990716 1.0000000
## LA_C+NOIAA_SH-LA_C+MOCK_RO -14.41892924 -30.5972819 1.7594234 0.1124779
## LA_S+IAA_RO-LA_C+MOCK_RO -8.41888400 -24.5972366 7.7594686 0.7618308
## LA_S+IAA_SH-LA_C+MOCK_RO -24.77146014 -40.9498128 -8.5931075 0.0005588
## LA_S+MOCK_RO-LA_C+MOCK_RO -6.74091111 -22.9192637 9.4374415 0.9258021
## LA_S+MOCK_SH-LA_C+MOCK_RO -25.81586414 -41.9942168 -9.6375115 0.0003190
## LA_S+NOIAA_RO-LA_C+MOCK_RO -3.07040893 -19.2487616 13.1079437 0.9998784
## LA_S+NOIAA_SH-LA_C+MOCK_RO -24.71883275 -40.8971854 -8.5404801 0.0005749
## LA_C+NOIAA_RO-LA_C+MOCK_SH 19.97343770 3.7950851 36.1517903 0.0072906
## LA_C+NOIAA_SH-LA_C+MOCK_SH 4.43378949 -11.7445631 20.6121421 0.9965576
## LA_S+IAA_RO-LA_C+MOCK_SH 10.43383473 -5.7445179 26.6121874 0.4866167
## LA_S+IAA_SH-LA_C+MOCK_SH -5.91874140 -22.0970940 10.2596112 0.9680895
## LA_S+MOCK_RO-LA_C+MOCK_SH 12.11180762 -4.0665450 28.2901603 0.2841899
## LA_S+MOCK_SH-LA_C+MOCK_SH -6.96314540 -23.1414980 9.2152072 0.9100366
## LA_S+NOIAA_RO-LA_C+MOCK_SH 15.78230981 -0.3960428 31.9606624 0.0603758
## LA_S+NOIAA_SH-LA_C+MOCK_SH -5.86611401 -22.0444666 10.3122386 0.9700054
## LA_C+NOIAA_SH-LA_C+NOIAA_RO -15.53964821 -31.7180008 0.6387044 0.0676618
## LA_S+IAA_RO-LA_C+NOIAA_RO -9.53960297 -25.7179556 6.6387497 0.6110368
## LA_S+IAA_SH-LA_C+NOIAA_RO -25.89217910 -42.0705317 -9.7138265 0.0003062
## LA_S+MOCK_RO-LA_C+NOIAA_RO -7.86163008 -24.0399827 8.3167226 0.8270583
## LA_S+MOCK_SH-LA_C+NOIAA_RO -26.93658310 -43.1149357 -10.7582305 0.0001753
## LA_S+NOIAA_RO-LA_C+NOIAA_RO -4.19112789 -20.3694805 11.9872247 0.9978718
## LA_S+NOIAA_SH-LA_C+NOIAA_RO -25.83955171 -42.0179043 -9.6611991 0.0003150
## LA_S+IAA_RO-LA_C+NOIAA_SH 6.00004524 -10.1783074 22.1783979 0.9649573
## LA_S+IAA_SH-LA_C+NOIAA_SH -10.35253089 -26.5308835 5.8258217 0.4976946
## LA_S+MOCK_RO-LA_C+NOIAA_SH 7.67801813 -8.5003345 23.8563708 0.8464180
## LA_S+MOCK_SH-LA_C+NOIAA_SH -11.39693489 -27.5752875 4.7814177 0.3632513
## LA_S+NOIAA_RO-LA_C+NOIAA_SH 11.34852032 -4.8298323 27.5268730 0.3690306
## LA_S+NOIAA_SH-LA_C+NOIAA_SH -10.29990350 -26.4782561 5.8784491 0.5049043
## LA_S+IAA_SH-LA_S+IAA_RO -16.35257613 -32.5309288 -0.1742235 0.0459752
## LA_S+MOCK_RO-LA_S+IAA_RO 1.67797289 -14.5003797 17.8563255 0.9999997
## LA_S+MOCK_SH-LA_S+IAA_RO -17.39698013 -33.5753328 -1.2186275 0.0274965
## LA_S+NOIAA_RO-LA_S+IAA_RO 5.34847508 -10.8298776 21.5268277 0.9846245
## LA_S+NOIAA_SH-LA_S+IAA_RO -16.29994874 -32.4783014 -0.1215961 0.0471584
## LA_S+MOCK_RO-LA_S+IAA_SH 18.03054902 1.8521964 34.2089017 0.0199717
## LA_S+MOCK_SH-LA_S+IAA_SH -1.04440400 -17.2227566 15.1339486 1.0000000
## LA_S+NOIAA_RO-LA_S+IAA_SH 21.70105121 5.5226986 37.8794038 0.0029105
## LA_S+NOIAA_SH-LA_S+IAA_SH 0.05262739 -16.1257252 16.2309800 1.0000000
## LA_S+MOCK_SH-LA_S+MOCK_RO -19.07495302 -35.2533057 -2.8966004 0.0116689
## LA_S+NOIAA_RO-LA_S+MOCK_RO 3.67050219 -12.5078504 19.8488548 0.9993473
## LA_S+NOIAA_SH-LA_S+MOCK_RO -17.97792163 -34.1562743 -1.7995690 0.0205133
## LA_S+NOIAA_RO-LA_S+MOCK_SH 22.74545521 6.5671026 38.9238078 0.0016620
## LA_S+NOIAA_SH-LA_S+MOCK_SH 1.09703139 -15.0813212 17.2753840 1.0000000
## LA_S+NOIAA_SH-LA_S+NOIAA_RO -21.64842382 -37.8267765 -5.4700712 0.0029936
P8 = Output$All.ID[,'p adj']
stat.test<- multcompLetters(P8)
stat.test
## LA_C+IAA_SH LA_C+MOCK_RO LA_C+MOCK_SH LA_C+NOIAA_RO LA_C+NOIAA_SH
## "abc" "ade" "bc" "de" "abcd"
## LA_S+IAA_RO LA_S+IAA_SH LA_S+MOCK_RO LA_S+MOCK_SH LA_S+NOIAA_RO
## "abd" "c" "abde" "c" "abde"
## LA_S+NOIAA_SH LA_C+IAA_RO
## "c" "e"
test <- as.data.frame(stat.test$Letters)
test$group1 <- rownames(test)
test$group2 <- rownames(test)
colnames(test)[1] <- "Tukey"
test
ICP$All.condition<- factor(ICP$All.condition, levels=c("C+NOIAA", "C+MOCK", "C+IAA","S+NOIAA", "S+MOCK", "S+IAA"))
K_content <- ggplot(data = ICP, mapping = aes(x = All.ID, y = K.con..mg.mg.dry.weight, colour = All.condition))
K_content <- K_content + geom_boxplot(alpha=0.2) + geom_jitter(width=0.1,alpha=0.2)
K_content <- K_content + stat_summary(fun=mean, geom="point", shape=95, size=6, color="black", fill="black")
K_content <- K_content + scale_color_manual(values = c("blue","blueviolet","cyan", "red", "deeppink", "magenta"))
K_content <- K_content + ylab("Na content, mg/mg dry weight") + xlab("")
K_content <- K_content + theme(axis.text.x = element_text(angle=90, hjust=0.9, vjust=0.5))
K_content <- K_content + stat_pvalue_manual(test, label = "Tukey", y.position = 120) + rremove("legend")
K_content
pdf("K.accumulation.Iaa.shoot.spray.ICPMS.pdf", height = 5, width = 10)
plot(K_content)
dev.off()
## png
## 2
K_content <- ggplot(data = ICP, mapping = aes(x = All.condition, y = K.con..mg.mg.dry.weight, colour = All.condition))
K_content <- K_content + geom_boxplot(alpha=0.2) + geom_jitter(width=0.1,alpha=0.2)
K_content <- K_content + facet_grid(~Tissue)
K_content <- K_content + stat_summary(fun=mean, geom="point", shape=95, size=6, color="black", fill="black")
K_content <- K_content + scale_color_manual(values = c("blue","blueviolet","cyan", "red", "deeppink", "magenta"))
K_content <- K_content + ylab("K content, mg/mg dry weight") + xlab("")
K_content <- K_content + theme(axis.text.x = element_text(angle=90, hjust=0.9, vjust=0.5))
K_content <- K_content + rremove("legend")
K_content
aov(Na.K.ratio ~ All.ID, data = ICP)
## Call:
## aov(formula = Na.K.ratio ~ All.ID, data = ICP)
##
## Terms:
## All.ID Residuals
## Sum of Squares 27.924935 3.188312
## Deg. of Freedom 11 24
##
## Residual standard error: 0.3644809
## Estimated effects may be unbalanced
Output <- TukeyHSD(aov(Na.K.ratio ~ All.ID, data = ICP))
Output
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Na.K.ratio ~ All.ID, data = ICP)
##
## $All.ID
## diff lwr upr p adj
## LA_C+IAA_SH-LA_C+IAA_RO 0.074945216 -0.99808075 1.147971185 1.0000000
## LA_C+MOCK_RO-LA_C+IAA_RO 0.007359543 -1.06566643 1.080385513 1.0000000
## LA_C+MOCK_SH-LA_C+IAA_RO 0.086552165 -0.98647380 1.159578134 1.0000000
## LA_C+NOIAA_RO-LA_C+IAA_RO 0.006086102 -1.06693987 1.079112072 1.0000000
## LA_C+NOIAA_SH-LA_C+IAA_RO 0.066031971 -1.00699400 1.139057941 1.0000000
## LA_S+IAA_RO-LA_C+IAA_RO 1.288407937 0.21538197 2.361433907 0.0097188
## LA_S+IAA_SH-LA_C+IAA_RO 2.329173693 1.25614772 3.402199662 0.0000026
## LA_S+MOCK_RO-LA_C+IAA_RO 1.262170552 0.18914458 2.335196522 0.0119438
## LA_S+MOCK_SH-LA_C+IAA_RO 2.080482684 1.00745671 3.153508653 0.0000172
## LA_S+NOIAA_RO-LA_C+IAA_RO 1.196934675 0.12390871 2.269960644 0.0198096
## LA_S+NOIAA_SH-LA_C+IAA_RO 1.937404461 0.86437849 3.010430430 0.0000527
## LA_C+MOCK_RO-LA_C+IAA_SH -0.067585672 -1.14061164 1.005440297 1.0000000
## LA_C+MOCK_SH-LA_C+IAA_SH 0.011606949 -1.06141902 1.084632919 1.0000000
## LA_C+NOIAA_RO-LA_C+IAA_SH -0.068859113 -1.14188508 1.004166856 1.0000000
## LA_C+NOIAA_SH-LA_C+IAA_SH -0.008913244 -1.08193921 1.064112725 1.0000000
## LA_S+IAA_RO-LA_C+IAA_SH 1.213462722 0.14043675 2.286488691 0.0174435
## LA_S+IAA_SH-LA_C+IAA_SH 2.254228477 1.18120251 3.327254447 0.0000046
## LA_S+MOCK_RO-LA_C+IAA_SH 1.187225337 0.11419937 2.260251306 0.0213391
## LA_S+MOCK_SH-LA_C+IAA_SH 2.005537468 0.93251150 3.078563437 0.0000308
## LA_S+NOIAA_RO-LA_C+IAA_SH 1.121989459 0.04896349 2.195015428 0.0349076
## LA_S+NOIAA_SH-LA_C+IAA_SH 1.862459245 0.78943328 2.935485214 0.0000955
## LA_C+MOCK_SH-LA_C+MOCK_RO 0.079192622 -0.99383335 1.152218591 1.0000000
## LA_C+NOIAA_RO-LA_C+MOCK_RO -0.001273441 -1.07429941 1.071752528 1.0000000
## LA_C+NOIAA_SH-LA_C+MOCK_RO 0.058672428 -1.01435354 1.131698397 1.0000000
## LA_S+IAA_RO-LA_C+MOCK_RO 1.281048394 0.20802242 2.354074363 0.0102987
## LA_S+IAA_SH-LA_C+MOCK_RO 2.321814150 1.24878818 3.394840119 0.0000028
## LA_S+MOCK_RO-LA_C+MOCK_RO 1.254811009 0.18178504 2.327836978 0.0126516
## LA_S+MOCK_SH-LA_C+MOCK_RO 2.073123140 1.00009717 3.146149110 0.0000182
## LA_S+NOIAA_RO-LA_C+MOCK_RO 1.189575131 0.11654916 2.262601101 0.0209589
## LA_S+NOIAA_SH-LA_C+MOCK_RO 1.930044917 0.85701895 3.003070887 0.0000558
## LA_C+NOIAA_RO-LA_C+MOCK_SH -0.080466063 -1.15349203 0.992559907 1.0000000
## LA_C+NOIAA_SH-LA_C+MOCK_SH -0.020520194 -1.09354616 1.052505776 1.0000000
## LA_S+IAA_RO-LA_C+MOCK_SH 1.201855772 0.12882980 2.274881742 0.0190748
## LA_S+IAA_SH-LA_C+MOCK_SH 2.242621528 1.16959556 3.315647497 0.0000050
## LA_S+MOCK_RO-LA_C+MOCK_SH 1.175618387 0.10259242 2.248644357 0.0233149
## LA_S+MOCK_SH-LA_C+MOCK_SH 1.993930519 0.92090455 3.066956488 0.0000338
## LA_S+NOIAA_RO-LA_C+MOCK_SH 1.110382510 0.03735654 2.183408479 0.0380438
## LA_S+NOIAA_SH-LA_C+MOCK_SH 1.850852296 0.77782633 2.923878265 0.0001048
## LA_C+NOIAA_SH-LA_C+NOIAA_RO 0.059945869 -1.01308010 1.132971838 1.0000000
## LA_S+IAA_RO-LA_C+NOIAA_RO 1.282321835 0.20929587 2.355347804 0.0101961
## LA_S+IAA_SH-LA_C+NOIAA_RO 2.323087591 1.25006162 3.396113560 0.0000027
## LA_S+MOCK_RO-LA_C+NOIAA_RO 1.256084450 0.18305848 2.329110419 0.0125263
## LA_S+MOCK_SH-LA_C+NOIAA_RO 2.074396581 1.00137061 3.147422551 0.0000180
## LA_S+NOIAA_RO-LA_C+NOIAA_RO 1.190848572 0.11782260 2.263874542 0.0207556
## LA_S+NOIAA_SH-LA_C+NOIAA_RO 1.931318358 0.85829239 3.004344328 0.0000553
## LA_S+IAA_RO-LA_C+NOIAA_SH 1.222375966 0.14935000 2.295401935 0.0162823
## LA_S+IAA_SH-LA_C+NOIAA_SH 2.263141722 1.19011575 3.336167691 0.0000043
## LA_S+MOCK_RO-LA_C+NOIAA_SH 1.196138581 0.12311261 2.269164550 0.0199309
## LA_S+MOCK_SH-LA_C+NOIAA_SH 2.014450712 0.94142474 3.087476682 0.0000287
## LA_S+NOIAA_RO-LA_C+NOIAA_SH 1.130902703 0.05787673 2.203928673 0.0326649
## LA_S+NOIAA_SH-LA_C+NOIAA_SH 1.871372489 0.79834652 2.944398459 0.0000889
## LA_S+IAA_SH-LA_S+IAA_RO 1.040765756 -0.03226021 2.113791725 0.0630015
## LA_S+MOCK_RO-LA_S+IAA_RO -0.026237385 -1.09926335 1.046788584 1.0000000
## LA_S+MOCK_SH-LA_S+IAA_RO 0.792074746 -0.28095122 1.865100716 0.3018282
## LA_S+NOIAA_RO-LA_S+IAA_RO -0.091473263 -1.16449923 0.981552707 1.0000000
## LA_S+NOIAA_SH-LA_S+IAA_RO 0.648996523 -0.42402945 1.722022493 0.5765604
## LA_S+MOCK_RO-LA_S+IAA_SH -1.067003141 -2.14002911 0.006022829 0.0522236
## LA_S+MOCK_SH-LA_S+IAA_SH -0.248691009 -1.32171698 0.824334960 0.9992074
## LA_S+NOIAA_RO-LA_S+IAA_SH -1.132239018 -2.20526499 -0.059213049 0.0323405
## LA_S+NOIAA_SH-LA_S+IAA_SH -0.391769232 -1.46479520 0.681256737 0.9685308
## LA_S+MOCK_SH-LA_S+MOCK_RO 0.818312131 -0.25471384 1.891338101 0.2617531
## LA_S+NOIAA_RO-LA_S+MOCK_RO -0.065235878 -1.13826185 1.007790092 1.0000000
## LA_S+NOIAA_SH-LA_S+MOCK_RO 0.675233908 -0.39779206 1.748259878 0.5213333
## LA_S+NOIAA_RO-LA_S+MOCK_SH -0.883548009 -1.95657398 0.189477960 0.1788509
## LA_S+NOIAA_SH-LA_S+MOCK_SH -0.143078223 -1.21610419 0.929947746 0.9999965
## LA_S+NOIAA_SH-LA_S+NOIAA_RO 0.740469786 -0.33255618 1.813495755 0.3914757
P9 = Output$All.ID[,'p adj']
stat.test<- multcompLetters(P9)
stat.test
## LA_C+IAA_SH LA_C+MOCK_RO LA_C+MOCK_SH LA_C+NOIAA_RO LA_C+NOIAA_SH
## "a" "a" "a" "a" "a"
## LA_S+IAA_RO LA_S+IAA_SH LA_S+MOCK_RO LA_S+MOCK_SH LA_S+NOIAA_RO
## "bc" "b" "bc" "bc" "c"
## LA_S+NOIAA_SH LA_C+IAA_RO
## "bc" "a"
test <- as.data.frame(stat.test$Letters)
test$group1 <- rownames(test)
test$group2 <- rownames(test)
colnames(test)[1] <- "Tukey"
test
ICP$All.condition<- factor(ICP$All.condition, levels=c("C+NOIAA", "C+MOCK", "C+IAA","S+NOIAA", "S+MOCK", "S+IAA"))
NaK_ratio <- ggplot(data = ICP, mapping = aes(x = All.ID, y = Na.K.ratio, colour = All.condition))
NaK_ratio <- NaK_ratio + geom_boxplot(alpha=0.2) + geom_jitter(width=0.1,alpha=0.2)
NaK_ratio <- NaK_ratio + stat_summary(fun=mean, geom="point", shape=95, size=6, color="black", fill="black")
NaK_ratio <- NaK_ratio + scale_color_manual(values = c("blue","blueviolet","cyan", "red", "deeppink", "magenta"))
NaK_ratio <- NaK_ratio + ylab("Na/K ratio") + xlab("")
NaK_ratio <- NaK_ratio + theme(axis.text.x = element_text(angle=90, hjust=0.9, vjust=0.5))
NaK_ratio <- NaK_ratio + stat_pvalue_manual(test, label = "Tukey", y.position = 120) + rremove("legend")
NaK_ratio
pdf("Na.K.ratio.Iaa.shoot.spray.ICPMS.pdf", height = 5, width = 10)
plot(NaK_ratio)
dev.off()
## png
## 2
NaK_ratio <- ggplot(data = ICP, mapping = aes(x = All.condition, y = Na.K.ratio, colour = All.condition))
NaK_ratio <- NaK_ratio + geom_boxplot(alpha=0.2) + geom_jitter(width=0.1,alpha=0.2)
NaK_ratio <- NaK_ratio + facet_grid(~Tissue)
NaK_ratio <- NaK_ratio + stat_summary(fun=mean, geom="point", shape=95, size=6, color="black", fill="black")
NaK_ratio <- NaK_ratio + scale_color_manual(values = c("blue","blueviolet","cyan", "red", "deeppink", "magenta"))
NaK_ratio <- NaK_ratio + ylab("Na/K ratio") + xlab("")
NaK_ratio <- NaK_ratio + theme(axis.text.x = element_text(angle=90, hjust=0.9, vjust=0.5))
NaK_ratio <- NaK_ratio + rremove("legend")
NaK_ratio
aov(DW.mg ~ All.ID, data = ICP)
## Call:
## aov(formula = DW.mg ~ All.ID, data = ICP)
##
## Terms:
## All.ID Residuals
## Sum of Squares 4363.842 491.540
## Deg. of Freedom 11 24
##
## Residual standard error: 4.525575
## Estimated effects may be unbalanced
Output <- TukeyHSD(aov(DW.mg ~ All.ID, data = ICP))
Output
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = DW.mg ~ All.ID, data = ICP)
##
## $All.ID
## diff lwr upr p adj
## LA_C+IAA_SH-LA_C+IAA_RO 23.2000000 9.876778 36.5232216 0.0000910
## LA_C+MOCK_RO-LA_C+IAA_RO 3.3333333 -9.989888 16.6565549 0.9984298
## LA_C+MOCK_SH-LA_C+IAA_RO 25.5666667 12.243445 38.8898882 0.0000203
## LA_C+NOIAA_RO-LA_C+IAA_RO -2.9666667 -16.289888 10.3565549 0.9994503
## LA_C+NOIAA_SH-LA_C+IAA_RO 9.1000000 -4.223222 22.4232216 0.4057350
## LA_S+IAA_RO-LA_C+IAA_RO -8.4000000 -21.723222 4.9232216 0.5186528
## LA_S+IAA_SH-LA_C+IAA_RO 0.2666667 -13.056555 13.5898882 1.0000000
## LA_S+MOCK_RO-LA_C+IAA_RO -8.6333333 -21.956555 4.6898882 0.4798975
## LA_S+MOCK_SH-LA_C+IAA_RO -2.5000000 -15.823222 10.8232216 0.9998911
## LA_S+NOIAA_RO-LA_C+IAA_RO -8.5333333 -21.856555 4.7898882 0.4963999
## LA_S+NOIAA_SH-LA_C+IAA_RO -1.9000000 -15.223222 11.4232216 0.9999929
## LA_C+MOCK_RO-LA_C+IAA_SH -19.8666667 -33.189888 -6.5434451 0.0007916
## LA_C+MOCK_SH-LA_C+IAA_SH 2.3666667 -10.956555 15.6898882 0.9999361
## LA_C+NOIAA_RO-LA_C+IAA_SH -26.1666667 -39.489888 -12.8434451 0.0000140
## LA_C+NOIAA_SH-LA_C+IAA_SH -14.1000000 -27.423222 -0.7767784 0.0315412
## LA_S+IAA_RO-LA_C+IAA_SH -31.6000000 -44.923222 -18.2767784 0.0000005
## LA_S+IAA_SH-LA_C+IAA_SH -22.9333333 -36.256555 -9.6101118 0.0001080
## LA_S+MOCK_RO-LA_C+IAA_SH -31.8333333 -45.156555 -18.5101118 0.0000005
## LA_S+MOCK_SH-LA_C+IAA_SH -25.7000000 -39.023222 -12.3767784 0.0000187
## LA_S+NOIAA_RO-LA_C+IAA_SH -31.7333333 -45.056555 -18.4101118 0.0000005
## LA_S+NOIAA_SH-LA_C+IAA_SH -25.1000000 -38.423222 -11.7767784 0.0000272
## LA_C+MOCK_SH-LA_C+MOCK_RO 22.2333333 8.910112 35.5565549 0.0001697
## LA_C+NOIAA_RO-LA_C+MOCK_RO -6.3000000 -19.623222 7.0232216 0.8492620
## LA_C+NOIAA_SH-LA_C+MOCK_RO 5.7666667 -7.556555 19.0898882 0.9070482
## LA_S+IAA_RO-LA_C+MOCK_RO -11.7333333 -25.056555 1.5898882 0.1212064
## LA_S+IAA_SH-LA_C+MOCK_RO -3.0666667 -16.389888 10.2565549 0.9992555
## LA_S+MOCK_RO-LA_C+MOCK_RO -11.9666667 -25.289888 1.3565549 0.1070549
## LA_S+MOCK_SH-LA_C+MOCK_RO -5.8333333 -19.156555 7.4898882 0.9007029
## LA_S+NOIAA_RO-LA_C+MOCK_RO -11.8666667 -25.189888 1.4565549 0.1129364
## LA_S+NOIAA_SH-LA_C+MOCK_RO -5.2333333 -18.556555 8.0898882 0.9486903
## LA_C+NOIAA_RO-LA_C+MOCK_SH -28.5333333 -41.856555 -15.2101118 0.0000033
## LA_C+NOIAA_SH-LA_C+MOCK_SH -16.4666667 -29.789888 -3.1434451 0.0072067
## LA_S+IAA_RO-LA_C+MOCK_SH -33.9666667 -47.289888 -20.6434451 0.0000001
## LA_S+IAA_SH-LA_C+MOCK_SH -25.3000000 -38.623222 -11.9767784 0.0000240
## LA_S+MOCK_RO-LA_C+MOCK_SH -34.2000000 -47.523222 -20.8767784 0.0000001
## LA_S+MOCK_SH-LA_C+MOCK_SH -28.0666667 -41.389888 -14.7434451 0.0000044
## LA_S+NOIAA_RO-LA_C+MOCK_SH -34.1000000 -47.423222 -20.7767784 0.0000001
## LA_S+NOIAA_SH-LA_C+MOCK_SH -27.4666667 -40.789888 -14.1434451 0.0000063
## LA_C+NOIAA_SH-LA_C+NOIAA_RO 12.0666667 -1.256555 25.3898882 0.1014390
## LA_S+IAA_RO-LA_C+NOIAA_RO -5.4333333 -18.756555 7.8898882 0.9349502
## LA_S+IAA_SH-LA_C+NOIAA_RO 3.2333333 -10.089888 16.5565549 0.9988009
## LA_S+MOCK_RO-LA_C+NOIAA_RO -5.6666667 -18.989888 7.6565549 0.9160868
## LA_S+MOCK_SH-LA_C+NOIAA_RO 0.4666667 -12.856555 13.7898882 1.0000000
## LA_S+NOIAA_RO-LA_C+NOIAA_RO -5.5666667 -18.889888 7.7565549 0.9245509
## LA_S+NOIAA_SH-LA_C+NOIAA_RO 1.0666667 -12.256555 14.3898882 1.0000000
## LA_S+IAA_RO-LA_C+NOIAA_SH -17.5000000 -30.823222 -4.1767784 0.0037035
## LA_S+IAA_SH-LA_C+NOIAA_SH -8.8333333 -22.156555 4.4898882 0.4474810
## LA_S+MOCK_RO-LA_C+NOIAA_SH -17.7333333 -31.056555 -4.4101118 0.0031833
## LA_S+MOCK_SH-LA_C+NOIAA_SH -11.6000000 -24.923222 1.7232216 0.1299840
## LA_S+NOIAA_RO-LA_C+NOIAA_SH -17.6333333 -30.956555 -4.3101118 0.0033968
## LA_S+NOIAA_SH-LA_C+NOIAA_SH -11.0000000 -24.323222 2.3232216 0.1762767
## LA_S+IAA_SH-LA_S+IAA_RO 8.6666667 -4.656555 21.9898882 0.4744374
## LA_S+MOCK_RO-LA_S+IAA_RO -0.2333333 -13.556555 13.0898882 1.0000000
## LA_S+MOCK_SH-LA_S+IAA_RO 5.9000000 -7.423222 19.2232216 0.8941026
## LA_S+NOIAA_RO-LA_S+IAA_RO -0.1333333 -13.456555 13.1898882 1.0000000
## LA_S+NOIAA_SH-LA_S+IAA_RO 6.5000000 -6.823222 19.8232216 0.8236443
## LA_S+MOCK_RO-LA_S+IAA_SH -8.9000000 -22.223222 4.4232216 0.4368744
## LA_S+MOCK_SH-LA_S+IAA_SH -2.7666667 -16.089888 10.5565549 0.9997131
## LA_S+NOIAA_RO-LA_S+IAA_SH -8.8000000 -22.123222 4.5232216 0.4528236
## LA_S+NOIAA_SH-LA_S+IAA_SH -2.1666667 -15.489888 11.1565549 0.9999734
## LA_S+MOCK_SH-LA_S+MOCK_RO 6.1333333 -7.189888 19.4565549 0.8690177
## LA_S+NOIAA_RO-LA_S+MOCK_RO 0.1000000 -13.223222 13.4232216 1.0000000
## LA_S+NOIAA_SH-LA_S+MOCK_RO 6.7333333 -6.589888 20.0565549 0.7913345
## LA_S+NOIAA_RO-LA_S+MOCK_SH -6.0333333 -19.356555 7.2898882 0.8801428
## LA_S+NOIAA_SH-LA_S+MOCK_SH 0.6000000 -12.723222 13.9232216 1.0000000
## LA_S+NOIAA_SH-LA_S+NOIAA_RO 6.6333333 -6.689888 19.9565549 0.8054831
P6 = Output$All.ID[,'p adj']
stat.test<- multcompLetters(P6)
stat.test
## LA_C+IAA_SH LA_C+MOCK_RO LA_C+MOCK_SH LA_C+NOIAA_RO LA_C+NOIAA_SH
## "a" "bc" "a" "bc" "b"
## LA_S+IAA_RO LA_S+IAA_SH LA_S+MOCK_RO LA_S+MOCK_SH LA_S+NOIAA_RO
## "c" "bc" "c" "bc" "c"
## LA_S+NOIAA_SH LA_C+IAA_RO
## "bc" "bc"
test <- as.data.frame(stat.test$Letters)
test$group1 <- rownames(test)
test$group2 <- rownames(test)
colnames(test)[1] <- "Tukey"
test
ICP$All.condition<- factor(ICP$All.condition, levels=c("C+NOIAA", "C+MOCK", "C+IAA","S+NOIAA", "S+MOCK", "S+IAA"))
DW_IAA <- ggplot(data = ICP, mapping = aes(x = All.ID, y = DW.mg, colour = All.condition))
DW_IAA <- DW_IAA + geom_boxplot(alpha=0.2) + geom_jitter(width=0.1,alpha=0.2)
DW_IAA <- DW_IAA + stat_summary(fun=mean, geom="point", shape=95, size=6, color="black", fill="black")
DW_IAA <- DW_IAA + scale_color_manual(values = c("blue","blueviolet","cyan", "red", "deeppink", "magenta"))
DW_IAA <- DW_IAA + ylab("Dry weight, mg") + xlab("")
DW_IAA <- DW_IAA + theme(axis.text.x = element_text(angle=90, hjust=0.9, vjust=0.5))
DW_IAA <- DW_IAA + stat_pvalue_manual(test, label = "Tukey", y.position = 120) + rremove("legend")
DW_IAA
pdf("DW.Iaa.shoot.spray.pdf", height = 5, width = 10)
plot(DW_IAA)
dev.off()
## png
## 2
DW_IAA <- ggplot(data = ICP, mapping = aes(x = All.condition, y = DW.mg, colour = All.condition))
DW_IAA <- NaK_ratio + geom_boxplot(alpha=0.2) + geom_jitter(width=0.1,alpha=0.2)
DW_IAA <- DW_IAA + facet_grid(~Tissue)
DW_IAA <- DW_IAA + stat_summary(fun=mean, geom="point", shape=95, size=6, color="black", fill="black")
DW_IAA <- DW_IAA + scale_color_manual(values = c("blue","blueviolet","cyan", "red", "deeppink", "magenta"))
## Scale for colour is already present.
## Adding another scale for colour, which will replace the existing scale.
DW_IAA <- DW_IAA + ylab("Dry weight, mg") + xlab("")
DW_IAA <- DW_IAA + theme(axis.text.x = element_text(angle=90, hjust=0.9, vjust=0.5))
DW_IAA <- DW_IAA + rremove("legend")
DW_IAA