Part 1

Data Types in classes :

Logical : Logical has two values TRUE, FALSE and NA.

Integer : Integer has only whole numbers 1,2,3,4,5…

Numeric : Numeric has integer, double ( floating numbers).

Character : It contains string and arbitrary combinations of items( “Data types”).

Other Data Structures :

Vector : Vector is a most common data structure. It has two different types which is Atomic and list vectors.

Atomic vector : A vector can be a vector of characters, logical, integers or numeric.

List vector : List vector can be number and strings.

Factor : Factors are special vectors that represent categorical data. Factors can only contain pre-defined values.It contains ordered and unordered functions.

Matrix : Matrix is two dimensional rectangular data set.

Data Frame : Data frames are tabular data objects. It is larger than the matrix in size.

A = c("Ganesh", "KumaR", "Tom", "Jerry")
class(A)
## [1] "character"
data()
typeof(data())
## [1] "list"

Pick up a vector with 7 elements :

vector = c(2, 3, 4, 5, 6, 7, 8)

Apply sd() function :

R_StandardDeviation_InBuilt = sd(vector)
print(R_StandardDeviation_InBuilt)
## [1] 2.160247

Calculate the standard deviation with hand :

sqrt(sum((vector-mean(vector))^2/(length(vector)-1)))
## [1] 2.160247

Part 3 :

sd
## function (x, na.rm = FALSE) 
## sqrt(var(if (is.vector(x) || is.factor(x)) x else as.double(x), 
##     na.rm = na.rm))
## <bytecode: 0x000001d664bdaf00>
## <environment: namespace:stats>

This is the standard deviation function. The codes are calculating the standard deviation.

My function for add three elements to vector.

add = function(x){
y = x + 3
return(y)
}
add(vector)
## [1]  5  6  7  8  9 10 11

Part 4 :

library(ggplot2)
library(psych)
## 
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
data()
plot = USArrests
print(plot)
##                Murder Assault UrbanPop Rape
## Alabama          13.2     236       58 21.2
## Alaska           10.0     263       48 44.5
## Arizona           8.1     294       80 31.0
## Arkansas          8.8     190       50 19.5
## California        9.0     276       91 40.6
## Colorado          7.9     204       78 38.7
## Connecticut       3.3     110       77 11.1
## Delaware          5.9     238       72 15.8
## Florida          15.4     335       80 31.9
## Georgia          17.4     211       60 25.8
## Hawaii            5.3      46       83 20.2
## Idaho             2.6     120       54 14.2
## Illinois         10.4     249       83 24.0
## Indiana           7.2     113       65 21.0
## Iowa              2.2      56       57 11.3
## Kansas            6.0     115       66 18.0
## Kentucky          9.7     109       52 16.3
## Louisiana        15.4     249       66 22.2
## Maine             2.1      83       51  7.8
## Maryland         11.3     300       67 27.8
## Massachusetts     4.4     149       85 16.3
## Michigan         12.1     255       74 35.1
## Minnesota         2.7      72       66 14.9
## Mississippi      16.1     259       44 17.1
## Missouri          9.0     178       70 28.2
## Montana           6.0     109       53 16.4
## Nebraska          4.3     102       62 16.5
## Nevada           12.2     252       81 46.0
## New Hampshire     2.1      57       56  9.5
## New Jersey        7.4     159       89 18.8
## New Mexico       11.4     285       70 32.1
## New York         11.1     254       86 26.1
## North Carolina   13.0     337       45 16.1
## North Dakota      0.8      45       44  7.3
## Ohio              7.3     120       75 21.4
## Oklahoma          6.6     151       68 20.0
## Oregon            4.9     159       67 29.3
## Pennsylvania      6.3     106       72 14.9
## Rhode Island      3.4     174       87  8.3
## South Carolina   14.4     279       48 22.5
## South Dakota      3.8      86       45 12.8
## Tennessee        13.2     188       59 26.9
## Texas            12.7     201       80 25.5
## Utah              3.2     120       80 22.9
## Vermont           2.2      48       32 11.2
## Virginia          8.5     156       63 20.7
## Washington        4.0     145       73 26.2
## West Virginia     5.7      81       39  9.3
## Wisconsin         2.6      53       66 10.8
## Wyoming           6.8     161       60 15.6
p <- ggplot(USArrests, aes(x=Rape)) + 
  geom_density()
print(p)

Based on the plot it is a positive skewness. It is a right hand side skewness.

library(moments)
skewness(USArrests$Rape)
## [1] 0.7769613

We get above 0.77 in the skewness and it is moderate skewness.