Load the mtcars dataset from a CSV file

#importing the dataset
df <- read.csv("mtcars-3.csv")

Data Understanding:

Displaying the First Few Rows using head() function

head(df)

Use summary() function to get some details of this dataset.

summary(df)
    model                mpg             cyl             disp      
 Length:32          Min.   :10.40   Min.   :4.000   Min.   : 71.1  
 Class :character   1st Qu.:15.43   1st Qu.:4.000   1st Qu.:120.8  
 Mode  :character   Median :19.20   Median :6.000   Median :196.3  
                    Mean   :20.09   Mean   :6.188   Mean   :230.7  
                    3rd Qu.:22.80   3rd Qu.:8.000   3rd Qu.:326.0  
                    Max.   :33.90   Max.   :8.000   Max.   :472.0  
       hp             drat             wt             qsec      
 Min.   : 52.0   Min.   :2.760   Min.   :1.513   Min.   :14.50  
 1st Qu.: 96.5   1st Qu.:3.080   1st Qu.:2.581   1st Qu.:16.89  
 Median :123.0   Median :3.695   Median :3.325   Median :17.71  
 Mean   :146.7   Mean   :3.597   Mean   :3.217   Mean   :17.85  
 3rd Qu.:180.0   3rd Qu.:3.920   3rd Qu.:3.610   3rd Qu.:18.90  
 Max.   :335.0   Max.   :4.930   Max.   :5.424   Max.   :22.90  
       vs               am              gear            carb      
 Min.   :0.0000   Min.   :0.0000   Min.   :3.000   Min.   :1.000  
 1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:3.000   1st Qu.:2.000  
 Median :0.0000   Median :0.0000   Median :4.000   Median :2.000  
 Mean   :0.4375   Mean   :0.4062   Mean   :3.688   Mean   :2.812  
 3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:4.000   3rd Qu.:4.000  
 Max.   :1.0000   Max.   :1.0000   Max.   :5.000   Max.   :8.000  

Change the datatype/class of variable ‘am’ from integer to boolean/logical

boolean = as.logical(df$am)
class(boolean)
[1] "logical"

Data Visualization

Scatterplot:

Here, explore how “mpg” (miles per gallon) and “hp” (horsepower) relate to each other. The x-axis could represent “hp,” and the y-axis could represent “mpg.” Scatter plots are useful for identifying patterns or correlations between variables. Also mention your interpretation of the plot using a markdown block.

plot(df$hp, df$mpg, main = "Scatterplot Relating MPG and HP",
     xlab= "Horsepower (HP)", ylab= "Miles per Gallon (MPG)"
     )

The scatterplot shows a negative correlation between hp and mpg, it shows that as hp increases, mpg decreases. The higher the horsepower, the less miles per gallon the car uses.

Bar Chart:

please create a bar chart to display the count or distribution of cars with different numbers of cylinders (e.g., 4 cylinders, 6 cylinders, 8 cylinders). Each bar in the chart represents a category, and the height of the bar corresponds to the count of cars in that category.

df$cyl <- as.factor(df$cyl)
barplot(table(df$cyl),
        main ="distribution of cars with different numbers of cylinders",
        xlab= "number of cylinders",
        ylab="count"
        )

Histogram:

Create a histogram to visualize the distribution of a numeric variable “mpg” (miles per gallon)

hist (df$mpg, xlab= "MPG", main= "MPG Histogram")

LS0tCnRpdGxlOiAiSU5GU0NJMDMxMCBIVzEuIEFteSBaaGFuZyIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQojIExvYWQgdGhlIG10Y2FycyBkYXRhc2V0IGZyb20gYSBDU1YgZmlsZQpgYGB7cn0KI2ltcG9ydGluZyB0aGUgZGF0YXNldApkZiA8LSByZWFkLmNzdigibXRjYXJzLTMuY3N2IikKYGBgCgojIERhdGEgVW5kZXJzdGFuZGluZzoKIyMjIERpc3BsYXlpbmcgdGhlIEZpcnN0IEZldyBSb3dzIHVzaW5nIGhlYWQoKSBmdW5jdGlvbgpgYGB7cn0KaGVhZChkZikKYGBgCiMjIyBQcmludCB0aGUgZGltZW5zaW9uIG9mIHRoZSBkYXRhc2V0CmBgYHtyfQpkaW0oZGYpCmBgYAoKIyMjIFByaW50IHRoZSBkYXRhIHN0cnVjdHVyZSBvZiB2YXJpYWJsZSBkZiAoY2xhc3MgZnVuY3Rpb24pCmBgYHtyfQpjbGFzcyhkZikKYGBgCgojIyMgUHJpbnQgZGF0YSB0eXBlcyBvZiBjb2x1bW4gbW9kZWwsIG1wZywgaHAgYW5kIGFtCmBgYHtyfQojbW9kZWwKY2xhc3MoZGYkbW9kZWwpCgojbXBnCmNsYXNzKGRmJG1wZykKCiNocApjbGFzcyhkZiRocCkKCiNhbQpjbGFzcyhkZiRhbSkKYGBgCgojIyMgVXNlIHN1bW1hcnkoKSBmdW5jdGlvbiB0byBnZXQgc29tZSBkZXRhaWxzIG9mIHRoaXMgZGF0YXNldC4KYGBge3J9CnN1bW1hcnkoZGYpCmBgYAoKIyMjIENoYW5nZSB0aGUgZGF0YXR5cGUvY2xhc3Mgb2YgdmFyaWFibGUg4oCYYW3igJkgZnJvbSBpbnRlZ2VyIHRvIGJvb2xlYW4vbG9naWNhbApgYGB7cn0KYm9vbGVhbiA9IGFzLmxvZ2ljYWwoZGYkYW0pCmNsYXNzKGJvb2xlYW4pCmBgYAojIERhdGEgVmlzdWFsaXphdGlvbgojIyBTY2F0dGVycGxvdDoKIyMjIEhlcmUsIGV4cGxvcmUgaG93ICJtcGciIChtaWxlcyBwZXIgZ2FsbG9uKSBhbmQgImhwIiAoaG9yc2Vwb3dlcikgcmVsYXRlIHRvIGVhY2ggb3RoZXIuIFRoZSB4LWF4aXMgY291bGQgcmVwcmVzZW50ICJocCwiIGFuZCB0aGUgeS1heGlzIGNvdWxkIHJlcHJlc2VudCAibXBnLiIgU2NhdHRlciBwbG90cyBhcmUgdXNlZnVsIGZvciBpZGVudGlmeWluZyBwYXR0ZXJucyBvciBjb3JyZWxhdGlvbnMgYmV0d2VlbiB2YXJpYWJsZXMuIEFsc28gbWVudGlvbiB5b3VyIGludGVycHJldGF0aW9uIG9mIHRoZSBwbG90IHVzaW5nIGEgbWFya2Rvd24gYmxvY2suCmBgYHtyfQpwbG90KGRmJGhwLCBkZiRtcGcsIG1haW4gPSAiU2NhdHRlcnBsb3QgUmVsYXRpbmcgTVBHIGFuZCBIUCIsCiAgICAgeGxhYj0gIkhvcnNlcG93ZXIgKEhQKSIsIHlsYWI9ICJNaWxlcyBwZXIgR2FsbG9uIChNUEcpIgogICAgICkKYGBgCmBgYApUaGUgc2NhdHRlcnBsb3Qgc2hvd3MgYSBuZWdhdGl2ZSBjb3JyZWxhdGlvbiBiZXR3ZWVuIGhwIGFuZCBtcGcsIGl0IHNob3dzIHRoYXQgYXMgaHAgaW5jcmVhc2VzLCBtcGcgZGVjcmVhc2VzLiBUaGUgaGlnaGVyIHRoZSBob3JzZXBvd2VyLCB0aGUgbGVzcyBtaWxlcyBwZXIgZ2FsbG9uIHRoZSBjYXIgdXNlcy4KYGBgCgojIyBCYXIgQ2hhcnQ6CiMjIyBwbGVhc2UgY3JlYXRlIGEgYmFyIGNoYXJ0IHRvIGRpc3BsYXkgdGhlIGNvdW50IG9yIGRpc3RyaWJ1dGlvbiBvZiBjYXJzIHdpdGggZGlmZmVyZW50IG51bWJlcnMgb2YgY3lsaW5kZXJzIChlLmcuLCA0IGN5bGluZGVycywgNiBjeWxpbmRlcnMsIDggY3lsaW5kZXJzKS4gRWFjaCBiYXIgaW4gdGhlIGNoYXJ0IHJlcHJlc2VudHMgYSBjYXRlZ29yeSwgYW5kIHRoZSBoZWlnaHQgb2YgdGhlIGJhciBjb3JyZXNwb25kcyB0byB0aGUgY291bnQgb2YgY2FycyBpbiB0aGF0IGNhdGVnb3J5LgpgYGB7cn0KZGYkY3lsIDwtIGFzLmZhY3RvcihkZiRjeWwpCmJhcnBsb3QodGFibGUoZGYkY3lsKSwKICAgICAgICBtYWluID0iZGlzdHJpYnV0aW9uIG9mIGNhcnMgd2l0aCBkaWZmZXJlbnQgbnVtYmVycyBvZiBjeWxpbmRlcnMiLAogICAgICAgIHhsYWI9ICJudW1iZXIgb2YgY3lsaW5kZXJzIiwKICAgICAgICB5bGFiPSJjb3VudCIKICAgICAgICApCmBgYAoKIyMgSGlzdG9ncmFtOgojIyMgQ3JlYXRlIGEgaGlzdG9ncmFtIHRvIHZpc3VhbGl6ZSB0aGUgZGlzdHJpYnV0aW9uIG9mIGEgbnVtZXJpYyB2YXJpYWJsZSAibXBnIiAobWlsZXMgcGVyIGdhbGxvbikKYGBge3J9Cmhpc3QgKGRmJG1wZywgeGxhYj0gIk1QRyIsIG1haW49ICJNUEcgSGlzdG9ncmFtIikKYGBgCg==