Load the mtcars dataset from a CSV file
#importing the dataset
df <- read.csv("mtcars-3.csv")
Data Understanding:
Displaying the First Few Rows using head() function
head(df)
Print the dimension of the dataset
dim(df)
[1] 32 12
Print the data structure of variable df (class function)
class(df)
[1] "data.frame"
Print data types of column model, mpg, hp and am
#model
class(df$model)
[1] "character"
#mpg
class(df$mpg)
[1] "numeric"
#hp
class(df$hp)
[1] "integer"
#am
class(df$am)
[1] "integer"
Use summary() function to get some details of this dataset.
summary(df)
model mpg cyl disp
Length:32 Min. :10.40 Min. :4.000 Min. : 71.1
Class :character 1st Qu.:15.43 1st Qu.:4.000 1st Qu.:120.8
Mode :character Median :19.20 Median :6.000 Median :196.3
Mean :20.09 Mean :6.188 Mean :230.7
3rd Qu.:22.80 3rd Qu.:8.000 3rd Qu.:326.0
Max. :33.90 Max. :8.000 Max. :472.0
hp drat wt qsec
Min. : 52.0 Min. :2.760 Min. :1.513 Min. :14.50
1st Qu.: 96.5 1st Qu.:3.080 1st Qu.:2.581 1st Qu.:16.89
Median :123.0 Median :3.695 Median :3.325 Median :17.71
Mean :146.7 Mean :3.597 Mean :3.217 Mean :17.85
3rd Qu.:180.0 3rd Qu.:3.920 3rd Qu.:3.610 3rd Qu.:18.90
Max. :335.0 Max. :4.930 Max. :5.424 Max. :22.90
vs am gear carb
Min. :0.0000 Min. :0.0000 Min. :3.000 Min. :1.000
1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:3.000 1st Qu.:2.000
Median :0.0000 Median :0.0000 Median :4.000 Median :2.000
Mean :0.4375 Mean :0.4062 Mean :3.688 Mean :2.812
3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:4.000 3rd Qu.:4.000
Max. :1.0000 Max. :1.0000 Max. :5.000 Max. :8.000
Change the datatype/class of variable ‘am’ from integer to
boolean/logical
boolean = as.logical(df$am)
class(boolean)
[1] "logical"
Data Visualization
Scatterplot:
Here, explore how “mpg” (miles per gallon) and “hp” (horsepower)
relate to each other. The x-axis could represent “hp,” and the y-axis
could represent “mpg.” Scatter plots are useful for identifying patterns
or correlations between variables. Also mention your interpretation of
the plot using a markdown block.
plot(df$hp, df$mpg, main = "Scatterplot Relating MPG and HP",
xlab= "Horsepower (HP)", ylab= "Miles per Gallon (MPG)"
)

The scatterplot shows a negative correlation between hp and mpg, it shows that as hp increases, mpg decreases. The higher the horsepower, the less miles per gallon the car uses.
Bar Chart:
please create a bar chart to display the count or distribution of
cars with different numbers of cylinders (e.g., 4 cylinders, 6
cylinders, 8 cylinders). Each bar in the chart represents a category,
and the height of the bar corresponds to the count of cars in that
category.
df$cyl <- as.factor(df$cyl)
barplot(table(df$cyl),
main ="distribution of cars with different numbers of cylinders",
xlab= "number of cylinders",
ylab="count"
)

Histogram:
Create a histogram to visualize the distribution of a numeric
variable “mpg” (miles per gallon)
hist (df$mpg, xlab= "MPG", main= "MPG Histogram")

LS0tCnRpdGxlOiAiSU5GU0NJMDMxMCBIVzEuIEFteSBaaGFuZyIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQojIExvYWQgdGhlIG10Y2FycyBkYXRhc2V0IGZyb20gYSBDU1YgZmlsZQpgYGB7cn0KI2ltcG9ydGluZyB0aGUgZGF0YXNldApkZiA8LSByZWFkLmNzdigibXRjYXJzLTMuY3N2IikKYGBgCgojIERhdGEgVW5kZXJzdGFuZGluZzoKIyMjIERpc3BsYXlpbmcgdGhlIEZpcnN0IEZldyBSb3dzIHVzaW5nIGhlYWQoKSBmdW5jdGlvbgpgYGB7cn0KaGVhZChkZikKYGBgCiMjIyBQcmludCB0aGUgZGltZW5zaW9uIG9mIHRoZSBkYXRhc2V0CmBgYHtyfQpkaW0oZGYpCmBgYAoKIyMjIFByaW50IHRoZSBkYXRhIHN0cnVjdHVyZSBvZiB2YXJpYWJsZSBkZiAoY2xhc3MgZnVuY3Rpb24pCmBgYHtyfQpjbGFzcyhkZikKYGBgCgojIyMgUHJpbnQgZGF0YSB0eXBlcyBvZiBjb2x1bW4gbW9kZWwsIG1wZywgaHAgYW5kIGFtCmBgYHtyfQojbW9kZWwKY2xhc3MoZGYkbW9kZWwpCgojbXBnCmNsYXNzKGRmJG1wZykKCiNocApjbGFzcyhkZiRocCkKCiNhbQpjbGFzcyhkZiRhbSkKYGBgCgojIyMgVXNlIHN1bW1hcnkoKSBmdW5jdGlvbiB0byBnZXQgc29tZSBkZXRhaWxzIG9mIHRoaXMgZGF0YXNldC4KYGBge3J9CnN1bW1hcnkoZGYpCmBgYAoKIyMjIENoYW5nZSB0aGUgZGF0YXR5cGUvY2xhc3Mgb2YgdmFyaWFibGUg4oCYYW3igJkgZnJvbSBpbnRlZ2VyIHRvIGJvb2xlYW4vbG9naWNhbApgYGB7cn0KYm9vbGVhbiA9IGFzLmxvZ2ljYWwoZGYkYW0pCmNsYXNzKGJvb2xlYW4pCmBgYAojIERhdGEgVmlzdWFsaXphdGlvbgojIyBTY2F0dGVycGxvdDoKIyMjIEhlcmUsIGV4cGxvcmUgaG93ICJtcGciIChtaWxlcyBwZXIgZ2FsbG9uKSBhbmQgImhwIiAoaG9yc2Vwb3dlcikgcmVsYXRlIHRvIGVhY2ggb3RoZXIuIFRoZSB4LWF4aXMgY291bGQgcmVwcmVzZW50ICJocCwiIGFuZCB0aGUgeS1heGlzIGNvdWxkIHJlcHJlc2VudCAibXBnLiIgU2NhdHRlciBwbG90cyBhcmUgdXNlZnVsIGZvciBpZGVudGlmeWluZyBwYXR0ZXJucyBvciBjb3JyZWxhdGlvbnMgYmV0d2VlbiB2YXJpYWJsZXMuIEFsc28gbWVudGlvbiB5b3VyIGludGVycHJldGF0aW9uIG9mIHRoZSBwbG90IHVzaW5nIGEgbWFya2Rvd24gYmxvY2suCmBgYHtyfQpwbG90KGRmJGhwLCBkZiRtcGcsIG1haW4gPSAiU2NhdHRlcnBsb3QgUmVsYXRpbmcgTVBHIGFuZCBIUCIsCiAgICAgeGxhYj0gIkhvcnNlcG93ZXIgKEhQKSIsIHlsYWI9ICJNaWxlcyBwZXIgR2FsbG9uIChNUEcpIgogICAgICkKYGBgCmBgYApUaGUgc2NhdHRlcnBsb3Qgc2hvd3MgYSBuZWdhdGl2ZSBjb3JyZWxhdGlvbiBiZXR3ZWVuIGhwIGFuZCBtcGcsIGl0IHNob3dzIHRoYXQgYXMgaHAgaW5jcmVhc2VzLCBtcGcgZGVjcmVhc2VzLiBUaGUgaGlnaGVyIHRoZSBob3JzZXBvd2VyLCB0aGUgbGVzcyBtaWxlcyBwZXIgZ2FsbG9uIHRoZSBjYXIgdXNlcy4KYGBgCgojIyBCYXIgQ2hhcnQ6CiMjIyBwbGVhc2UgY3JlYXRlIGEgYmFyIGNoYXJ0IHRvIGRpc3BsYXkgdGhlIGNvdW50IG9yIGRpc3RyaWJ1dGlvbiBvZiBjYXJzIHdpdGggZGlmZmVyZW50IG51bWJlcnMgb2YgY3lsaW5kZXJzIChlLmcuLCA0IGN5bGluZGVycywgNiBjeWxpbmRlcnMsIDggY3lsaW5kZXJzKS4gRWFjaCBiYXIgaW4gdGhlIGNoYXJ0IHJlcHJlc2VudHMgYSBjYXRlZ29yeSwgYW5kIHRoZSBoZWlnaHQgb2YgdGhlIGJhciBjb3JyZXNwb25kcyB0byB0aGUgY291bnQgb2YgY2FycyBpbiB0aGF0IGNhdGVnb3J5LgpgYGB7cn0KZGYkY3lsIDwtIGFzLmZhY3RvcihkZiRjeWwpCmJhcnBsb3QodGFibGUoZGYkY3lsKSwKICAgICAgICBtYWluID0iZGlzdHJpYnV0aW9uIG9mIGNhcnMgd2l0aCBkaWZmZXJlbnQgbnVtYmVycyBvZiBjeWxpbmRlcnMiLAogICAgICAgIHhsYWI9ICJudW1iZXIgb2YgY3lsaW5kZXJzIiwKICAgICAgICB5bGFiPSJjb3VudCIKICAgICAgICApCmBgYAoKIyMgSGlzdG9ncmFtOgojIyMgQ3JlYXRlIGEgaGlzdG9ncmFtIHRvIHZpc3VhbGl6ZSB0aGUgZGlzdHJpYnV0aW9uIG9mIGEgbnVtZXJpYyB2YXJpYWJsZSAibXBnIiAobWlsZXMgcGVyIGdhbGxvbikKYGBge3J9Cmhpc3QgKGRmJG1wZywgeGxhYj0gIk1QRyIsIG1haW49ICJNUEcgSGlzdG9ncmFtIikKYGBgCg==