import matplotlib.pyplot as plt
x = [1,2,3,4]
y = [11,23,44,66] # step 1
fig = plt.figure() # step 2
ax = fig.add_subplot(111) # step3
# fig,ax = plt.subplots()
ax.plot(x,y,color = "red") # step 3,4
ax.scatter([2,4,6],[6,11,17],color="blue",marker='^')
ax.set_xlim(1,7)
# plt.savefig("p.png")
## (1, 7)
plt.show()
import numpy as np
x = np.linspace(0,10,100)
y = np.cos(x)
z = np.sin(x) # 1 D
data = 2 * np.random.random((10,10))
data2 = 3 * np.random.random((10,10))
Y,X = np.mgrid[-3:3:100,-3:3:100j]
U = -1 - X**2 +Y
V = 1 + X - Y**2
from matplotlib.cbook import get_sample_data
img = np.load(get_sample_data('axes_grid/bivariate_normal.npy'))
import matplotlib.pyplot as plt
fig = plt.figure()
fig1 = plt.figure()
All plotting is done with respect to an Axes. In most cases, a subplot will fit your needs. A subplot is an axes on a grid system
fig.add_axes()
ax1 = fig.add_subplot(111) # row col num
ax2 = fig.add_subplot(222)
fig3,axes = plt.subplots(nrows=2,ncols=2)
fig4,axes1 = plt.subplots(ncols=3)
line = ax.plot(x,y)
# plt.show()
ax.scatter(x,y)
axes[0,0].bar([1,2,3],[4,5,6])
axes[1,0].barh([0.5,1,2.5],[0,1,2])
axes[1,1].axhline(0.45)
axes[0,1].axvline(0.65)
ax.fill(x,y,color='blue')
ax.fill_between(x,y,color='yellow')
fig, ax = plt.subplots()
im = ax.imshow(img,cmap='gist_earth', interpolation='nearest',vmin=-2,vmax=2)
axes[0,1].arrow(0,0,0.5,0.5)
axes[1,1].quiver(y,z)
axes[0,1].streamplot(X,Y,U,V)
ax1.hist(y)
ax3.boxplot(y)
ax3.violinplot(z)
plt.plot(x, x, x, x**2, x, x**3)
ax.plot(x, y, alpha = 0.4)
ax.plot(x, y, c='k')
其他参数还包括:
ax.text(1,2,"text")
plt.savefig("p.png")
plt.show()
plt.cla() # clear an axis
plt.clf() # clear the entire figure
plt.close()