##Problema 2: La simulación ayuda a entender y validar las propiedades de los estimadores estadísticos como son insesgadez, eficiencia y la consistencia principalmente. El siguiente problema permite evidenciar las principales características de un grupo de estimadores propuestos para la estimación de un parámetro asociado a un modelo de probabilidad.

Sean X1, X2, X3 y X4, una muestra aleatoria de tamaño n=4 cuya población la conforma una distribución exponencial con parámetro θ desconocido. Determine las características de cada uno de los siguientes estimadores propuestos:

Para n = 4

library(ggplot2)
x=matrix(data=rexp(1000*4,rate=1), nrow=1000, byrow=TRUE)
x4=x[1:4,]
estimador1 <- function(x4) {
  estimador_1 <-((x4[1]+x4[2])/6) + ((x4[3]+x4[4]) / 3)
}
estimador2 <- function(x4) {
  estimador_2 <-((x4[1]+(2*(x4[2]))+(3*x4[3])+(4*x4[4]))/5)
}
estimador3 <- function(x4) {
  estimador_3 <-((x4[1]+x4[2]+x4[3]+x4[4])/4)
}
estimador4 <- function(x4) {
  estimador_4 <-((min(x4[1],x4[2],x4[3],x4[4]))+(max(x4[1],x4[2],x4[3],x4[4]))/2)
}

for (i in 1:4){
  est1 <- apply(x4, 1, estimador1)
  est2<-apply(x4, 1, estimador2)
  est3<-apply(x4, 1, estimador3)
  est4<-apply(x4, 1, estimador4)
  results<-data.frame(Estimador1 =est1, Estimador2= est2, Estimador3 = est3, Estimador4 = est4)
}
print(results)
##   Estimador1 Estimador2 Estimador3 Estimador4
## 1  0.8358688   1.435377  1.1810765  1.4528578
## 2  0.4575049   1.056582  0.5774945  0.9809568
## 3  1.0280816   2.001385  0.8777600  1.3757767
## 4  0.6720405   1.488660  0.5717307  0.9034168
boxplot(results, las=1, main="Comparación estimadores con n=4", col = c("green","yellow","purple","blue"), names = c("Estimador1","Estimador2","Estimador3","Estimador4")) 
abline(h=1,  col="red") 

apply (results,2,mean)
## Estimador1 Estimador2 Estimador3 Estimador4 
##  0.7483740  1.4955010  0.8020154  1.1782520
apply(results,2,var)
## Estimador1 Estimador2 Estimador3 Estimador4 
## 0.05877444 0.15074317 0.08428842 0.07629471

Para un tamaño de muesta n=4 se observa que los mejores resultados se obtienen con el Estimador3, el cual se puede clasificar como Insesgado y Eficiente, ya que su promedio esta muy cercano a 1 y es aquel que presenta una varianza menor.

Para n = 20

x=matrix(data=rexp(1000*4,rate=1), nrow=1000, byrow=TRUE)
x20=x[1:20,]
estimador1 <- function(x20) {
  estimador_1 <-((x20[1]+x20[2])/6) + ((x20[3]+x20[4]) / 3)
}
estimador2 <- function(x20) {
  estimador_2 <-((x20[1]+(2*(x20[2]))+(3*x20[3])+(4*x20[4]))/5)
}
estimador3 <- function(x20) {
  estimador_3 <-((x20[1]+x20[2]+x20[3]+x20[4])/4)
}
estimador4 <- function(x20) {
  estimador_4 <-((min(x20[1],x20[2],x20[3],x20[4]))+(max(x20[1],x20[2],x20[3],x20[4]))/2)
}

for (i in 1:20){
  est1 <- apply(x20, 1, estimador1)
  est2<-apply(x20, 1, estimador2)
  est3<-apply(x20, 1, estimador3)
  est4<-apply(x20, 1, estimador4)
  results<-data.frame(Estimador1 =est1, Estimador2= est2, Estimador3 = est3, Estimador4 = est4)
}
print(results)
##    Estimador1 Estimador2 Estimador3 Estimador4
## 1   0.3144820  0.4776233  0.3662071  0.4878373
## 2   1.0497190  2.0337272  0.7945533  1.2275275
## 3   0.9121836  2.1764247  1.0940164  1.6536061
## 4   0.4113500  0.9626884  0.3386010  0.5683635
## 5   0.6346116  1.1323313  0.5842231  0.7347657
## 6   1.3914783  2.5962675  1.3699762  1.5519164
## 7   0.5091126  1.0357837  0.5182833  0.7701761
## 8   0.8567091  1.7270627  0.6994127  0.8417500
## 9   0.4954180  0.9024035  0.4950120  0.5145023
## 10  0.6517771  1.3154303  0.7144420  0.9955676
## 11  0.5507506  1.1652168  0.5614000  0.7335180
## 12  0.4362850  0.8895316  0.3832983  0.4058798
## 13  0.7072252  1.3278782  0.7229802  0.7723205
## 14  0.5023634  0.8263715  0.6777993  0.9725421
## 15  0.5990601  1.1269918  0.5238592  0.8310507
## 16  0.4615221  0.9672866  0.4473662  0.6554688
## 17  0.4672863  0.9561658  0.4780778  0.5448841
## 18  0.8349214  1.8997068  0.7315449  1.1673901
## 19  0.8566794  1.9097793  1.0563777  1.6780592
## 20  0.8005351  1.4436302  0.7793155  0.8409604
boxplot(results, las=1, main="Comparación estimadores con n=20", col = c("green","yellow","purple","blue"), names = c("Estimador1","Estimador2","Estimador3","Estimador4") )
                                                                         abline(h=1,  col="red") 

apply (results,2,mean)
## Estimador1 Estimador2 Estimador3 Estimador4 
##  0.6721735  1.3436151  0.6668373  0.8974043
apply(results,2,var)
## Estimador1 Estimador2 Estimador3 Estimador4 
## 0.06717811 0.29474536 0.06950864 0.14471898

Para un tamaño de muesta n=20, se observa que al igual que n=4 los mejores resultados se obtienen con el Estimador3, el cual se puede clasificar como Insesgado y Eficiente, ya que su promedio esta muy cercano a 1 y es aquel que presenta una varianza menor, sin embargo el Estimador 1 también se podría considerar Insesgado y eficiente ya que sus resultados se asemejan al Estimador3.

Para n = 50

x=matrix(data=rexp(1000*4,rate=1), nrow=1000, byrow=TRUE)
x50=x[1:50,]
estimador1 <- function(x50) {
  estimador_1 <-((x50[1]+x50[2])/6) + ((x50[3]+x50[4]) / 3)
}
estimador2 <- function(x50) {
  estimador_2 <-((x50[1]+(2*(x50[2]))+(3*x50[3])+(4*x50[4]))/5)
}
estimador3 <- function(x50) {
  estimador_3 <-((x50[1]+x50[2]+x50[3]+x50[4])/4)
}
estimador4 <- function(x50) {
  estimador_4 <-((min(x50[1],x50[2],x50[3],x50[4]))+(max(x50[1],x50[2],x50[3],x50[4]))/2)
}

for (i in 1:50){
  est1 <- apply(x50, 1, estimador1)
  est2<-apply(x50, 1, estimador2)
  est3<-apply(x50, 1, estimador3)
  est4<-apply(x50, 1, estimador4)
  results<-data.frame(Estimador1 =est1, Estimador2= est2, Estimador3 = est3, Estimador4 = est4)
}
print(results)
##    Estimador1 Estimador2 Estimador3 Estimador4
## 1   1.2040444  2.6448736  1.5411978  2.5087168
## 2   0.6952865  1.3520079  0.7974517  0.9718685
## 3   1.6568301  3.1339299  1.4448016  2.3278432
## 4   0.9547693  1.7014743  0.9735241  1.1748739
## 5   0.6920920  1.2001455  0.9076258  1.1170014
## 6   0.5436446  0.9367233  0.6224738  0.9931343
## 7   1.2039438  2.3930718  1.1524551  1.3698217
## 8   0.9216144  1.5010117  1.0942756  1.7048625
## 9   1.0672315  1.8917470  1.0241696  0.9137222
## 10  0.2044268  0.4109066  0.2420384  0.2824693
## 11  0.7490221  1.6805408  0.7393804  0.8574975
## 12  0.7620690  1.4208355  0.6492787  1.0910041
## 13  0.9899453  2.0823797  0.8062803  0.9637034
## 14  1.9652464  2.7371904  2.5540920  4.3385673
## 15  0.3008742  0.6585133  0.3932600  0.6060225
## 16  1.6628028  3.3595816  1.7368979  2.1769690
## 17  1.7708570  3.8259214  1.6482811  2.2227968
## 18  1.3351350  2.3419904  1.3161199  1.2718105
## 19  2.1409803  3.8342328  2.1533996  2.4066361
## 20  1.1277044  2.1974654  1.0162089  1.5972321
## 21  0.6327989  1.1189232  0.7024646  0.5362699
## 22  2.0388747  4.7136001  1.7640747  2.6546647
## 23  0.2220054  0.4783826  0.2638868  0.3902858
## 24  0.5462555  1.0309693  0.6404935  0.6030817
## 25  0.8421529  1.7525860  0.9145885  1.0034911
## 26  0.2490365  0.4235465  0.3175043  0.3292475
## 27  0.5038910  0.9636045  0.4222978  0.6928009
## 28  1.8162928  3.8996478  1.7398802  2.3224611
## 29  2.3572431  5.1743861  1.8920563  2.6443933
## 30  0.6157283  1.2209800  0.5854359  0.6430468
## 31  0.5593336  0.9036942  0.6844947  0.8682046
## 32  0.6330934  1.0913860  0.7883299  1.1491619
## 33  0.7538313  1.7392322  0.6115209  1.0958504
## 34  1.6117797  2.7621403  1.7925485  2.6912652
## 35  0.2182162  0.4709470  0.2985838  0.4817611
## 36  0.6033827  1.3288778  0.5974801  0.6030410
## 37  1.5174900  2.3735668  1.9600463  3.4172914
## 38  0.4226964  0.9456487  0.5633494  1.0087513
## 39  0.2418489  0.4736271  0.2866656  0.3172673
## 40  0.9239138  1.6127781  1.0446873  1.4883294
## 41  0.1320983  0.2779391  0.1115048  0.1289443
## 42  1.4547974  2.8586221  1.7802546  1.6575805
## 43  1.7160704  3.4993866  1.4894431  1.7303344
## 44  0.9658266  1.5835905  1.0731506  1.4670658
## 45  0.1989048  0.4183864  0.1830203  0.1864062
## 46  1.3785331  2.8109770  1.2134253  1.2276807
## 47  0.1881727  0.4043453  0.1901688  0.2015835
## 48  0.8355569  1.4910919  0.8916713  1.2562161
## 49  0.2510311  0.5299453  0.2381616  0.2244149
## 50  1.3382067  2.1232115  1.8277739  2.6182606
boxplot(results, las=1, main="Comparación estimadores con n=50", col = c("green","yellow","purple","blue"), names = c("Estimador1","Estimador2","Estimador3","Estimador4"))
                                                                         abline(h=1,  col="red") 

apply (results,2,mean)
## Estimador1 Estimador2 Estimador3 Estimador4 
##  0.9543517  1.8356113  0.9936435  1.3307141
apply(results,2,var)
## Estimador1 Estimador2 Estimador3 Estimador4 
##  0.3532016  1.4250597  0.3642768  0.8461778

Para un tamaño de muesta n=100, se observa nuevamente el Estimador3, este estimador se puede clasificar como INSESGADO, pues su promedio está más cercano a 1 pero no EFICIENTE, ya que el estimador que tiene la menor varianza es el Estimador1.

Para n = 100

x=matrix(data=rexp(1000*4,rate=1), nrow=1000, byrow=TRUE)
x100=x[1:100,]
estimador1 <- function(x100) {
  estimador_1 <-((x100[1]+x100[2])/6) + ((x100[3]+x100[4]) / 3)
}
estimador2 <- function(x100) {
  estimador_2 <-((x100[1]+(2*(x100[2]))+(3*x100[3])+(4*x100[4]))/5)
}
estimador3 <- function(x100) {
  estimador_3 <-((x100[1]+x100[2]+x100[3]+x100[4])/4)
}
estimador4 <- function(x100) {
  estimador_4 <-((min(x100[1],x100[2],x100[3],x100[4]))+(max(x100[1],x100[2],x100[3],x100[4]))/2)
}

for (i in 1:100){
  est1 <- apply(x100, 1, estimador1)
  est2<-apply(x100, 1, estimador2)
  est3<-apply(x100, 1, estimador3)
  est4<-apply(x100, 1, estimador4)
  results<-data.frame(Estimador1 =est1, Estimador2= est2, Estimador3 = est3, Estimador4 = est4)
}
print(results)
##     Estimador1 Estimador2 Estimador3 Estimador4
## 1    2.4714781  5.1193302  1.8688367  2.0582037
## 2    1.9494210  4.0732047  1.8427680  2.7101190
## 3    0.6936926  1.4818785  0.6738514  0.8950918
## 4    1.5237723  2.9747825  1.6878254  1.8663891
## 5    1.9807196  3.6369734  1.9436372  2.5580906
## 6    1.4232661  3.1945682  1.5918630  2.3279928
## 7    0.9207497  1.4545220  1.1867728  2.0201746
## 8    0.7406991  1.1700029  0.9330351  1.5580150
## 9    0.5859289  1.3246596  0.7443704  1.2558331
## 10   1.0824664  2.2422148  1.2743440  1.9285527
## 11   1.1643971  2.2440051  1.1128829  0.9878090
## 12   0.5074954  1.0894568  0.4412314  0.5964765
## 13   1.2330113  2.1158202  1.5844459  2.1306207
## 14   0.2357644  0.4083538  0.2916402  0.4079789
## 15   1.8677379  3.9228516  1.6650641  1.6154017
## 16   1.2645842  2.2905735  1.2667744  1.5625767
## 17   0.9180714  1.8693203  0.9017557  1.0311925
## 18   1.2656161  2.5720757  1.1474325  1.3712699
## 19   0.8410968  1.8082210  0.9415320  1.4446939
## 20   2.0375655  4.4110535  1.9485191  1.8891532
## 21   1.0555010  2.3224304  0.9283656  1.4807604
## 22   0.4018171  0.8683366  0.3911653  0.4441699
## 23   0.3517765  0.7498227  0.4268435  0.6883811
## 24   1.2303161  2.4659445  1.0431296  1.2198016
## 25   0.6095073  1.3330107  0.5552991  0.5174558
## 26   1.4325334  2.6504436  1.2431030  1.9478511
## 27   1.4777223  2.6375586  1.9409938  1.7820859
## 28   1.2433282  2.6967254  1.0122400  1.4078641
## 29   1.7758918  3.7618280  1.4651257  1.9125729
## 30   2.6324456  4.8561490  2.2039520  3.8370635
## 31   1.6211008  3.4414219  1.5178984  1.7818349
## 32   0.7884072  1.6494183  0.8240039  1.2191698
## 33   0.4548402  0.9305902  0.5615484  0.8222033
## 34   0.8026510  1.4497111  0.8001225  0.9540642
## 35   1.4961944  2.6898696  1.3884632  1.9234752
## 36   1.8713380  4.1245611  1.7125159  2.5853440
## 37   1.3112414  2.1319524  1.5673667  2.4283222
## 38   0.9145069  1.7710226  1.0184034  1.2780500
## 39   0.9012174  1.7541214  0.8399738  1.2989855
## 40   0.5624547  1.1019431  0.5888780  0.8584305
## 41   1.0627120  1.8951727  0.9285764  1.3868132
## 42   2.3487667  5.5093683  2.0044353  3.1936360
## 43   0.4594172  0.9621778  0.4406757  0.6608358
## 44   2.8457765  6.3758801  2.9339245  3.6512412
## 45   0.5986026  1.3466426  0.5252045  0.5700601
## 46   0.7232509  1.3620498  0.8488706  1.1102109
## 47   0.3357636  0.5503030  0.4462659  0.6702942
## 48   1.2194502  2.1799000  1.6275063  1.9555139
## 49   1.6155132  3.5084253  1.5871182  1.6366798
## 50   1.5071150  2.7428387  1.7255607  2.4043251
## 51   0.7238889  1.4659785  0.7621513  0.9098236
## 52   1.5077607  3.3902170  1.5179158  1.4973140
## 53   1.5140320  2.9722690  1.4690350  1.7957605
## 54   0.4057281  0.8380211  0.4479043  0.6060309
## 55   0.8085260  1.7328672  0.7593557  0.8406861
## 56   1.2235508  2.5217116  1.2489075  1.5504771
## 57   0.5235910  1.0936214  0.4125207  0.4314627
## 58   1.0400550  2.3113452  0.8872745  1.3227571
## 59   1.5188705  3.1719861  1.4935354  1.8910682
## 60   0.8270477  1.5394063  0.7511041  1.0842136
## 61   1.5659021  3.1717924  1.2925856  1.6569219
## 62   0.7018133  1.6605327  0.9940079  1.8772056
## 63   0.5471456  1.2279669  0.6077641  0.8259277
## 64   0.1978453  0.3460265  0.2429315  0.3510618
## 65   1.0934079  2.2422216  0.9395418  1.0591475
## 66   1.5023918  3.1542088  1.3812255  2.0672243
## 67   1.5522947  2.8082653  1.2402828  2.2632356
## 68   0.5784840  1.0550336  0.5061475  0.7731667
## 69   2.3136243  4.5958624  2.5278046  2.9065149
## 70   0.8776675  1.4521017  1.0226647  1.5552878
## 71   0.6504724  1.4281425  0.6649097  0.8370323
## 72   1.8666863  3.5690150  1.5968598  2.5979956
## 73   0.3296019  0.5530865  0.3744415  0.5377077
## 74   1.2057956  2.2950261  1.2757906  1.3884323
## 75   1.4994279  3.5215582  1.6083651  1.9424394
## 76   0.7191433  1.3914194  0.7835066  0.9659389
## 77   1.9550954  4.5736800  1.6402818  2.7171445
## 78   1.5275436  2.7198831  1.3039012  1.9964232
## 79   0.7756627  1.4616050  0.8345385  1.1215818
## 80   1.5289954  2.3946764  1.9235684  2.4868926
## 81   2.0290760  3.3541404  2.0108804  2.1091693
## 82   1.3229966  3.0447824  1.1542026  1.5819328
## 83   0.4404022  0.9477266  0.5513603  0.8954589
## 84   0.4903075  0.9091525  0.5428080  0.6854534
## 85   0.6035119  1.2581621  0.7196532  0.6454102
## 86   1.0810299  1.9450024  1.2125286  1.3419666
## 87   0.6177416  1.3025971  0.5808914  0.7026693
## 88   0.4175015  0.6780209  0.4549001  0.5960717
## 89   0.8621639  1.9606441  0.7312521  1.1487573
## 90   0.6634052  1.3805202  0.9426191  1.3614188
## 91   1.2428109  2.5276403  1.2539032  1.6358245
## 92   0.7063637  1.2981933  0.9537642  1.0415905
## 93   0.9124812  1.8781665  0.8703274  0.8726287
## 94   0.8866613  1.6867142  1.0682839  1.2747603
## 95   1.5215309  3.2598646  2.0230931  3.2227860
## 96   1.0875430  2.5625741  1.2648747  1.7087558
## 97   1.0831163  2.0859884  1.1263770  1.0126274
## 98   1.9017628  4.1883040  1.6619484  2.2217191
## 99   1.1913803  2.7765006  0.9883130  1.6907023
## 100  0.6152760  1.3655367  0.5161768  0.8612618
boxplot(results, las=1, main="Comparación estimadores con n=100", col = c("green","yellow","purple","blue"), names = c("Estimador1","Estimador2","Estimador3","Estimador4"))
                                                                        abline(h=1,  col="red") 

apply (results,2,mean)
## Estimador1 Estimador2 Estimador3 Estimador4 
##   1.131178   2.282932   1.132851   1.503110
apply(results,2,var)
## Estimador1 Estimador2 Estimador3 Estimador4 
##  0.3252261  1.4621414  0.2869945  0.5483490

Para un tamaño de muesta n=100, se observa que los mejores resultados se obtienen con el Estimador3. El Estimador3 se puede clasificar como INSESGADO, pues su promedio está más cercano a 1 y es EFICIENTE, ya que es el estimador que tiene la menor varianza.

Para n=1000

x=matrix(data=rexp(1000*4,rate=1), nrow=1000, byrow=TRUE)
x1000=x[1:1000,]
estimador1 <- function(x1000) {
  estimador_1 <-((x1000[1]+x1000[2])/6) + ((x1000[3]+x1000[4]) / 3)
}
estimador2 <- function(x1000) {
  estimador_2 <-((x1000[1]+(2*(x1000[2]))+(3*x1000[3])+(4*x1000[4]))/5)
}
estimador3 <- function(x1000) {
  estimador_3 <-((x1000[1]+x1000[2]+x1000[3]+x1000[4])/4)
}
estimador4 <- function(x1000) {
  estimador_4 <-((min(x1000[1],x1000[2],x1000[3],x1000[4]))+(max(x1000[1],x1000[2],x1000[3],x1000[4]))/2)
}

for (i in 1:1000){
  est1 <- apply(x1000, 1, estimador1)
  est2<-apply(x1000, 1, estimador2)
  est3<-apply(x1000, 1, estimador3)
  est4<-apply(x1000, 1, estimador4)
  results<-data.frame(Estimador1 =est1, Estimador2= est2, Estimador3 = est3, Estimador4 = est4)
}
print(results)
##      Estimador1 Estimador2 Estimador3 Estimador4
## 1     1.4631812  3.1681642  1.7779328  2.5428753
## 2     2.2965257  5.0086135  2.1196047  2.6650204
## 3     0.6233609  1.2877744  0.5303775  0.6126586
## 4     1.5838075  3.6661366  1.5034331  1.7102862
## 5     0.6781607  1.3876453  0.5168281  0.6131542
## 6     2.5257717  4.9028696  2.1101311  2.7121458
## 7     1.1501336  2.1866962  1.3850669  1.7449443
## 8     2.1822611  4.8511592  2.2514906  2.2871224
## 9     1.2464982  2.4537330  1.6593329  1.6005754
## 10    0.7763501  1.8052376  0.6163473  1.1542111
## 11    0.9148419  2.1658800  1.0904913  1.5468830
## 12    0.6273433  1.3280037  0.6012411  0.7395947
## 13    0.9034476  1.7658079  0.9058136  1.0362008
## 14    1.2922098  2.3546696  1.5803731  2.0554893
## 15    1.7660294  3.5445064  1.7775438  2.0758961
## 16    0.9686354  1.9494861  0.8389695  0.9662298
## 17    0.3919468  0.7546404  0.3961693  0.4269493
## 18    0.9083641  1.5265088  1.2036106  1.5936139
## 19    0.4840261  0.8594340  0.7198084  0.7561854
## 20    1.6445924  3.8587874  1.3309696  2.1459601
## 21    1.8374730  4.0238073  1.5224620  2.2976543
## 22    0.8406597  1.5194997  0.6452103  1.2386505
## 23    0.8516837  1.7643581  0.8890698  1.2183992
## 24    1.0964478  1.9700852  0.9555894  1.4830087
## 25    1.1940233  2.3923939  1.0305660  1.3954915
## 26    1.0678769  1.9912797  0.9651459  0.8812704
## 27    0.8554866  1.5045982  1.1676827  1.4568520
## 28    1.1035548  2.2795574  0.9524673  1.1864165
## 29    0.9104449  2.1402418  0.8053032  1.1583955
## 30    1.2193060  2.3200580  1.6554669  1.5470356
## 31    0.5887994  1.0269938  0.7257943  0.9545850
## 32    0.4445841  0.9981362  0.3990131  0.4617963
## 33    1.3827452  2.5465470  1.4844351  1.8881097
## 34    0.3336438  0.6657999  0.3678853  0.4360846
## 35    0.6146407  1.0574313  0.7499467  0.9875731
## 36    1.5849916  2.9143151  1.5633115  1.7907943
## 37    0.8700376  1.9688478  0.9476850  1.1195789
## 38    1.1474860  2.5713824  1.1408660  1.3339407
## 39    0.8034227  1.7455125  0.8395319  0.9796104
## 40    1.7557914  3.8328322  1.9213196  2.8117420
## 41    0.2896163  0.5186780  0.2584365  0.2965779
## 42    1.0498497  2.2737213  0.9221806  1.4948188
## 43    0.8463819  1.6387054  0.8570476  1.2117371
## 44    1.3269820  2.6101933  1.0887077  1.3725050
## 45    1.4068352  2.6782465  1.3163476  1.7546687
## 46    1.4871748  3.3581772  1.2513389  2.2062749
## 47    0.2558678  0.5682135  0.2076656  0.3246227
## 48    1.0183169  1.6657937  1.3442329  2.0508891
## 49    1.0326686  2.3041965  0.9205363  1.4574075
## 50    1.5632460  2.7456893  1.3829563  2.0143805
## 51    1.3823232  3.1718337  1.2195709  1.4339655
## 52    1.1923796  2.3775098  1.3652148  1.2403953
## 53    1.4967116  2.6126528  1.7468202  2.7986181
## 54    1.1816274  2.3074124  1.5001024  1.3533266
## 55    1.6548131  3.5037113  1.5903319  2.2099740
## 56    0.9170729  1.9170646  0.8988650  1.2059349
## 57    1.4075388  2.5987306  1.6489339  1.4131100
## 58    0.8097983  1.7267920  0.6442280  0.8064426
## 59    1.4087855  2.8222514  1.4890600  2.0574645
## 60    0.6842805  1.4368325  0.7881091  0.8952897
## 61    1.4484831  3.0495026  1.2316970  1.6413925
## 62    1.0544128  1.7019758  1.1310370  1.3749913
## 63    0.5934770  1.3603201  0.4731881  0.8290406
## 64    0.6106555  1.0460931  0.6675109  0.6567070
## 65    0.7930971  1.7611216  0.7512318  0.8099892
## 66    1.8032585  4.2087770  1.5104878  2.4962895
## 67    1.3481500  2.6911529  1.1418892  1.2151593
## 68    1.1608892  2.4094793  1.6634784  2.3410366
## 69    0.7807095  1.4418053  0.7022672  1.0540654
## 70    0.8373704  1.7972122  0.8901578  1.0600583
## 71    0.2831697  0.6621370  0.2249445  0.4176091
## 72    0.3648747  0.6219335  0.3506148  0.3440440
## 73    1.2559249  2.4343951  0.9489907  1.4570346
## 74    0.5346708  1.0167285  0.5487075  0.6350937
## 75    0.6932567  1.4711564  0.6973898  0.7720786
## 76    1.5970528  3.1340750  1.3969599  1.9819446
## 77    0.4704660  0.9283891  0.4324085  0.4410495
## 78    1.0083656  2.0510145  0.7876005  0.8539652
## 79    1.7695981  3.5106929  1.4947707  1.9296777
## 80    0.9646986  1.8199467  0.9682021  0.9899989
## 81    0.9436278  1.3876071  1.1092486  1.5813582
## 82    0.7455248  1.3740129  0.7796873  0.9019087
## 83    1.8286428  3.7408632  2.0388397  2.9684154
## 84    0.4394224  0.8260322  0.4479032  0.4315096
## 85    0.8743752  1.6217616  0.6946861  1.1779326
## 86    0.6511402  1.4202537  0.6659084  0.7431997
## 87    1.6351298  3.1154380  1.6061935  1.9315872
## 88    2.4292681  5.2185581  1.8622265  2.2060472
## 89    1.6667391  3.8022792  2.2153332  4.0525339
## 90    0.4910578  1.0941105  0.4678265  0.6073421
## 91    0.3600955  0.6450805  0.3985884  0.5712512
## 92    0.3477044  0.7051920  0.3863968  0.4966687
## 93    0.4475513  0.9221812  0.6614390  0.9512813
## 94    1.1411274  2.3338983  1.0734623  1.0459778
## 95    1.3505854  2.4154934  1.4463801  1.8075973
## 96    0.5291268  1.1206243  0.5025821  0.4482443
## 97    1.3216232  2.7232866  1.1692400  1.1798855
## 98    1.1163883  2.1767113  1.0585484  1.4393835
## 99    1.1005519  2.3675007  1.0829467  1.1979191
## 100   1.5532748  3.0545105  1.2360925  1.7298870
## 101   0.9765472  1.7850126  0.9814795  1.2440799
## 102   0.9709921  2.2343876  0.8960659  1.1354910
## 103   1.0731759  2.2355321  1.0647325  1.4171978
## 104   1.0232488  2.0781960  0.8486195  0.8098687
## 105   0.5588056  1.0182161  0.4793359  0.7702033
## 106   1.3151148  2.9379598  1.3435410  1.6299810
## 107   1.0840110  2.5282266  0.9049424  1.4743861
## 108   0.8353766  1.5749599  1.0663312  1.1916546
## 109   0.7186932  1.3534995  0.5500720  0.9308784
## 110   1.3887440  3.1106976  1.3853309  1.4279520
## 111   0.5671130  1.0737134  0.5931099  0.5990843
## 112   0.4584393  0.9472939  0.4760277  0.7099665
## 113   0.5791195  1.3620166  0.4963591  0.7384529
## 114   0.9472156  1.7389655  0.9873284  1.0611116
## 115   0.3143883  0.5775689  0.3746205  0.3174549
## 116   0.6301868  1.1742887  0.8239567  0.8675455
## 117   2.0217882  3.7799121  1.6928453  2.5465263
## 118   2.1723315  4.3133215  2.2301534  2.3445370
## 119   1.0468352  2.2813228  1.1884490  1.3918926
## 120   0.8062994  1.4374202  0.7342305  1.0448459
## 121   0.4331813  0.9263533  0.3813583  0.4816543
## 122   1.3354819  2.3696109  1.1659255  1.7580676
## 123   0.4434890  0.9703206  0.5542978  0.9197511
## 124   0.7817578  1.3773941  0.8883038  1.3359181
## 125   0.9112011  1.4647040  1.0961421  1.7430093
## 126   0.9423887  1.9078846  1.0488756  1.0468474
## 127   1.0532702  2.1925600  0.8463547  0.9002167
## 128   0.5603084  1.0735834  0.5238559  0.5099148
## 129   0.2076424  0.3810988  0.2536117  0.3182420
## 130   0.6726208  1.2634330  0.7370987  0.6275451
## 131   0.4416320  0.9611716  0.4093077  0.5581967
## 132   0.5954835  1.0669888  0.5351967  0.6473349
## 133   0.5854445  1.1949279  0.5483907  0.6887931
## 134   0.4817549  0.9113355  0.4868087  0.5776035
## 135   0.9218168  1.6379690  0.9628288  0.9013232
## 136   0.2126599  0.4014957  0.2511296  0.2733560
## 137   2.0536275  4.0856189  1.8105677  2.1319949
## 138   0.1189908  0.1855607  0.1580265  0.2535764
## 139   0.5756289  0.9659457  0.7044699  0.7239471
## 140   0.5908962  1.1726796  0.5609856  0.7887789
## 141   0.9435248  2.1373838  0.9749134  1.1858196
## 142   0.5944302  1.1935927  0.5588924  0.5969032
## 143   0.9736371  2.0214714  1.1317280  1.8024677
## 144   0.9489717  1.7445851  1.0497164  0.9232392
## 145   0.9080574  1.6973530  0.8521233  1.0402666
## 146   1.0184982  2.2821168  0.9537816  1.2359826
## 147   1.2619789  2.5818021  1.1543798  1.1951369
## 148   0.8083190  1.8123651  0.8832499  1.0550960
## 149   0.9550425  2.0818852  1.2248185  2.0952416
## 150   1.0830923  2.1672597  0.8611592  0.9257472
## 151   0.5014552  1.1279259  0.5260170  0.6216838
## 152   0.7870192  1.6983609  0.6384612  0.8489466
## 153   0.6723926  1.5920172  0.6304972  0.7822497
## 154   0.7431992  1.4409241  0.7389586  0.9026171
## 155   0.7088087  1.4567255  0.6297394  0.6499997
## 156   0.8306071  1.7929676  0.8263328  0.9416159
## 157   1.2409726  2.4525594  1.1628559  1.6116418
## 158   0.5597652  1.0534427  0.6868206  0.8474418
## 159   1.1516443  2.5120619  0.9537495  1.4521470
## 160   2.1840691  4.5627428  2.0678807  3.0220863
## 161   0.9506882  1.8234804  1.1807026  1.3061611
## 162   0.8325132  1.6156592  0.8015924  0.7726562
## 163   1.8989953  3.6630495  1.6769674  2.3418680
## 164   1.1131424  2.5547968  1.4271750  2.3902610
## 165   0.7198836  1.3968797  0.8158072  1.0788855
## 166   0.3017930  0.4986205  0.3514939  0.5571733
## 167   0.8028850  1.7651277  0.8464848  1.0431406
## 168   0.7822524  1.4359064  0.8416610  1.0294679
## 169   1.4900994  2.8863290  1.2781975  1.3259808
## 170   0.3109683  0.6086608  0.2451277  0.3053122
## 171   1.2877069  2.1515516  1.4488520  1.9188729
## 172   1.1160794  2.3407747  1.0002254  0.8744072
## 173   0.9838984  1.9660035  1.2556315  1.6106722
## 174   1.2159302  2.3153164  1.3329094  1.9278358
## 175   0.3623761  0.6632342  0.3656971  0.3921186
## 176   1.3935742  3.0962592  1.7888893  3.0784579
## 177   1.1643174  2.3298474  1.2000487  1.4336737
## 178   0.4592976  0.7890038  0.4943594  0.6268763
## 179   0.9533473  1.9289409  0.8654831  1.0352336
## 180   1.0263564  1.6703805  1.1976009  1.7667258
## 181   0.5051611  1.0479189  0.4795317  0.4151644
## 182   0.9142661  1.9792817  0.9059962  0.9685543
## 183   1.1352039  2.3758192  1.0064544  0.8933633
## 184   1.1610862  1.7788942  1.5162603  2.5793168
## 185   0.7451429  1.2219821  0.7593031  0.8116389
## 186   1.8518437  4.0438419  2.0477648  1.8766022
## 187   0.6768065  1.3081232  0.7495206  0.9683191
## 188   1.0435113  2.2053601  1.0438774  1.0922371
## 189   0.8084517  1.7184468  0.9290041  1.4791037
## 190   0.5684006  1.2492662  0.5718735  0.6541101
## 191   1.0945574  2.1875462  1.0452426  1.2537127
## 192   1.3135871  3.0464169  1.1971675  1.6223788
## 193   0.1756602  0.3328303  0.2093575  0.2603173
## 194   0.8168510  1.5542566  0.8188472  1.0811157
## 195   1.0742243  2.1497682  0.9811807  1.0053190
## 196   0.7489223  1.6484150  0.7493247  0.8263549
## 197   0.6131610  1.2126846  0.5833917  0.8051733
## 198   0.2009942  0.3973662  0.2350998  0.3047754
## 199   1.0007689  1.9254479  0.8954716  1.4436154
## 200   1.0960420  2.2374925  1.0432697  1.3475344
## 201   1.5870535  3.3608734  1.2892598  1.6270591
## 202   0.5262251  1.0800817  0.4793958  0.5586578
## 203   3.3875590  6.4085353  3.5913128  5.0919573
## 204   1.6532024  3.3328272  1.3719969  1.5933068
## 205   0.9315731  1.8221199  0.9581089  1.0824702
## 206   0.5759806  0.9750637  0.7324906  1.1031323
## 207   0.7501470  1.6573829  0.7639942  0.8193512
## 208   0.9303667  1.5731518  1.0062734  1.3890630
## 209   0.6001648  1.2441503  0.5765667  0.6183953
## 210   1.3035756  2.6088266  1.1215996  1.3408896
## 211   0.7336246  1.4928138  0.7571755  0.8949736
## 212   1.4754539  3.2911450  1.6456135  2.2963630
## 213   1.1313872  1.9894891  1.3899730  1.9912934
## 214   0.6402306  1.2442013  0.5178389  0.7487310
## 215   1.0198097  2.1859325  0.9688716  1.4021133
## 216   0.7501016  1.2441170  0.8605484  1.1798762
## 217   0.9802441  1.9183576  0.9267109  0.9789175
## 218   0.7183793  1.5205903  0.6972634  0.9696682
## 219   0.6392593  1.3495292  0.6350492  0.7522123
## 220   1.5630972  3.1879065  1.3645791  1.7853217
## 221   1.0227074  2.0548741  0.9196292  1.0019065
## 222   1.3208635  2.8360613  1.3031463  1.4563439
## 223   1.1893894  2.7635002  1.2196748  1.2937391
## 224   1.2492693  2.7445546  1.3281805  1.7982038
## 225   1.0202577  2.3080570  0.8775228  1.1102817
## 226   0.3990847  0.7056754  0.3855901  0.4473152
## 227   1.4838132  2.9054624  1.1796365  1.6521711
## 228   0.9857855  1.9569393  0.9963503  1.1964783
## 229   0.4654556  0.8956996  0.5128524  0.4773400
## 230   0.3566196  0.5378876  0.4852242  0.7963583
## 231   0.9506811  2.0324140  1.0328072  0.8635809
## 232   1.2512755  2.7343150  1.3247864  1.1078468
## 233   0.8811777  1.5605211  0.7514461  1.1517260
## 234   0.3177438  0.6979332  0.3173055  0.3852689
## 235   0.8254160  1.7455910  0.8150639  0.9744953
## 236   0.7196925  1.4039632  0.7024403  0.7809822
## 237   0.8671858  1.8096296  0.8758012  0.9350063
## 238   1.7737668  3.8798161  1.4264022  1.6326549
## 239   0.5247658  1.0885246  0.4932782  0.4411602
## 240   0.9863692  1.6605183  1.1514648  1.7250063
## 241   1.3410105  2.5654738  1.1100080  1.7882768
## 242   1.1662257  2.5606107  1.2125240  1.1172488
## 243   2.4755851  4.4512701  2.0387490  3.4249419
## 244   0.3792543  0.8200887  0.3975951  0.3905081
## 245   1.6005304  3.2972789  1.3262071  1.4211768
## 246   1.6409672  3.6078538  1.4401434  1.8265336
## 247   0.6738734  1.3559586  0.8135020  0.9984133
## 248   0.6545805  1.3240957  0.8481130  1.0040384
## 249   0.2995524  0.6056301  0.3533389  0.4480555
## 250   1.0693584  1.9629012  1.2496772  1.7254217
## 251   0.4353138  0.9212193  0.5326927  0.7796238
## 252   0.8490621  1.5249019  0.7266574  1.1013367
## 253   2.0509473  3.9396017  2.0551203  2.0823663
## 254   0.9401113  1.9067940  0.8766853  1.0659522
## 255   1.8434556  3.6325618  1.4816715  1.8376661
## 256   1.9491848  3.7492323  1.6839849  2.6447689
## 257   0.7368100  1.3996597  0.7915983  1.0372988
## 258   1.2534034  2.3587435  1.0390255  1.5494258
## 259   0.3783078  0.6948442  0.5060954  0.5761318
## 260   1.7932506  3.6750195  1.8605290  2.1246134
## 261   1.2859106  2.5875255  1.3590502  1.5397040
## 262   0.9161615  1.6021656  0.8303817  0.9260765
## 263   1.2455177  2.7966713  1.1116021  1.4240331
## 264   0.4663114  0.8223817  0.5029394  0.5151101
## 265   0.6815924  1.4624628  0.9351543  1.4656302
## 266   0.9852525  1.8012085  0.7930283  1.4409081
## 267   0.7457739  1.4891390  0.7129143  0.6863084
## 268   1.0629255  2.0866811  1.0867377  1.4738643
## 269   0.4940323  1.1383987  0.6462167  1.0141053
## 270   0.2308931  0.4978316  0.2769043  0.4555553
## 271   0.6745974  1.4406295  0.7305674  0.5666029
## 272   1.5410613  3.2808650  1.2945372  1.0793166
## 273   0.8017791  1.4808709  0.8465033  1.0809134
## 274   0.6538201  1.4568600  0.6691139  0.7785942
## 275   2.5679952  4.8849022  2.5640138  2.7976639
## 276   1.3850273  2.9504449  1.1731581  1.4556885
## 277   0.6873975  1.3894514  0.7664696  1.1022886
## 278   1.0741984  2.2713624  0.9874452  1.5508388
## 279   2.7657350  5.7234185  2.2926786  2.5651328
## 280   2.0621839  4.5332704  1.8044474  2.0828151
## 281   1.7769999  3.7483715  1.4795433  1.8827210
## 282   0.4523629  0.9798240  0.5089056  0.7007597
## 283   0.8571567  1.8162099  0.7616720  1.1319849
## 284   2.1046531  4.1816063  2.0355526  2.7768778
## 285   1.2951857  2.5919397  1.3662756  1.5996538
## 286   0.2832993  0.5944078  0.2788258  0.3344050
## 287   0.5198134  1.1234614  0.5819918  0.7039927
## 288   0.9627657  1.8362223  0.9464571  1.2490972
## 289   0.3883960  0.8390515  0.3396492  0.3371939
## 290   1.2338834  2.1215926  1.2851030  1.5900043
## 291   0.3229737  0.6149894  0.3525435  0.5205504
## 292   1.3121402  2.2504948  1.5393931  2.4177807
## 293   0.9668542  1.8558106  1.1341374  1.2753375
## 294   0.7693612  1.5266758  0.6217195  0.7099469
## 295   1.5097636  2.9272023  1.5116484  2.0516542
## 296   1.7107517  3.5366807  1.5332629  2.1211330
## 297   1.1352330  2.5628775  1.0172526  1.4305478
## 298   1.3293881  2.6115996  1.3715649  1.4876537
## 299   1.6565962  3.6938021  1.4196040  2.1514003
## 300   0.6437277  1.1500245  0.6221303  0.6982152
## 301   0.4148779  0.7301195  0.3479851  0.5543193
## 302   0.1904940  0.2443529  0.2731212  0.5186262
## 303   0.6659505  1.3530896  0.6428526  0.7299777
## 304   1.0217707  1.9783755  0.8332598  1.3059396
## 305   0.4864364  0.9192526  0.5822910  0.6743853
## 306   1.0634382  2.0855902  1.0102740  1.2710886
## 307   0.6675399  1.4313894  0.6105435  0.8339045
## 308   0.5216247  0.9762791  0.4421505  0.5395365
## 309   0.7159512  1.5350090  0.8413196  1.4413235
## 310   0.4675124  0.9851081  0.5564703  0.7803983
## 311   0.9105340  1.9858953  0.8076657  1.2151752
## 312   0.2463960  0.5342728  0.3143365  0.5005851
## 313   1.0015932  1.9715892  1.1567437  1.5695994
## 314   1.4711409  2.6516625  1.5447055  1.8883231
## 315   0.3481478  0.6964227  0.4290185  0.5367223
## 316   0.6282268  1.3551009  0.8490692  1.3197043
## 317   2.0798916  4.2995800  2.1980971  2.5985300
## 318   0.5176598  1.0436746  0.4227226  0.4127568
## 319   0.4189919  0.7876652  0.4313543  0.4756241
## 320   0.3860900  0.7159141  0.3111921  0.5491016
## 321   0.4773411  0.9008806  0.5031530  0.6209883
## 322   1.1126855  2.3402902  1.0538934  1.3009758
## 323   0.2675356  0.5546367  0.2652140  0.2871840
## 324   1.4190061  2.7638170  1.1999050  1.7838914
## 325   0.6081211  1.3548408  0.8493434  1.4881652
## 326   0.3508894  0.7945897  0.3818890  0.5337724
## 327   0.1423200  0.2677417  0.1618620  0.2161258
## 328   1.3116037  2.4215010  1.3750182  1.4893558
## 329   0.4574991  0.9602184  0.4319992  0.4129194
## 330   0.3266271  0.6522671  0.4211975  0.4425080
## 331   0.5484955  1.1022474  0.7291169  0.7595155
## 332   0.9888503  1.8179455  0.9912801  1.1765058
## 333   1.2506529  2.7081841  1.4398884  1.4782072
## 334   1.2975515  2.7077662  1.1592724  1.4015036
## 335   1.5809677  2.7049953  1.5042563  1.7882166
## 336   0.9510162  2.1064766  1.1988705  1.6904586
## 337   0.9574406  2.0006326  1.0219218  1.0391861
## 338   1.1126658  2.5180246  0.9963690  1.4961898
## 339   1.3205900  2.9175401  1.2283303  1.5675548
## 340   0.3903619  0.8771209  0.5018845  0.7602036
## 341   1.6543603  3.2179981  1.6893224  2.3877533
## 342   0.4580308  0.9233233  0.5422373  0.7454432
## 343   1.2803460  2.6448737  1.0495813  1.1092825
## 344   0.8733192  1.7930457  0.8347232  1.0909085
## 345   0.7450251  1.3823218  0.8134867  0.9765311
## 346   0.6516962  1.3232034  0.8195576  1.0975371
## 347   1.0911387  2.1163722  1.1014683  1.3582946
## 348   1.7110275  3.6276595  1.4185413  1.2572679
## 349   1.2887909  2.6755223  1.0967319  1.1184487
## 350   2.1846887  4.4040573  2.2532780  2.3755216
## 351   0.7084685  1.4807880  0.6257608  0.7086133
## 352   1.4455789  2.7754774  1.3693985  1.7288114
## 353   0.7391370  1.6172051  0.8216697  1.1467393
## 354   1.1642497  2.0493523  1.0798690  1.4442016
## 355   1.7507330  3.2818283  1.5624528  2.3280001
## 356   0.6892583  1.4454787  0.5786666  0.6577006
## 357   0.6499688  1.3802972  0.7735350  0.9168774
## 358   0.5850756  1.0304245  0.5653287  0.7006723
## 359   0.7209599  1.2198281  0.7986297  0.7851167
## 360   0.8412863  1.5289805  0.7714384  1.0948482
## 361   0.7047063  1.4955702  0.6135833  0.8317985
## 362   1.1103672  2.2119342  1.0526732  1.2808723
## 363   1.0734163  2.0555233  1.1172132  1.4205224
## 364   2.0509268  4.6787337  1.8445874  2.7307778
## 365   1.0828438  2.1597909  1.0884837  1.3819217
## 366   0.6897761  1.3968506  0.8806002  1.1601458
## 367   0.7074205  1.5753204  0.5873781  0.8771705
## 368   2.7069963  6.0916837  2.1993693  3.5121870
## 369   1.1781711  2.7892503  1.0513043  1.4682313
## 370   0.3190174  0.6690911  0.3877096  0.5651219
## 371   1.1031650  2.3267190  0.8613800  0.8072326
## 372   0.9177563  1.9934116  0.8697056  1.2113891
## 373   1.2857864  2.2328344  1.5472574  2.3634630
## 374   1.4076274  3.2061072  1.1000291  1.8279142
## 375   1.0645700  1.9875728  1.4911930  1.6136543
## 376   0.8245061  1.9123856  0.9663416  1.3918370
## 377   1.2504331  2.9269965  1.0924035  1.6071607
## 378   1.4721523  3.1694283  1.7557265  2.7188804
## 379   0.9071923  2.1324592  0.7743822  1.0826261
## 380   1.0986399  2.2673025  0.9487203  1.1796023
## 381   1.4010631  2.9396621  1.1562939  1.2662062
## 382   1.7516241  3.9876955  1.4304127  2.5508124
## 383   0.7706661  1.2047073  0.9635165  1.4923131
## 384   3.1360806  6.0679430  2.6158685  3.7792116
## 385   1.3294609  2.7415712  1.1186401  1.1486044
## 386   0.3378856  0.5112443  0.4460032  0.8067361
## 387   1.0446104  2.2124038  1.0285144  0.9802647
## 388   0.7885142  1.6611984  0.8747122  1.0802465
## 389   0.8441627  1.9150197  1.1533299  2.0746586
## 390   1.2452719  2.5514195  1.4247267  1.9969275
## 391   0.3197281  0.6580446  0.2696997  0.2824457
## 392   0.9384780  1.6561672  1.1053809  1.7280611
## 393   1.8883185  3.4233578  2.1218854  3.2145407
## 394   1.2852396  2.6435968  1.4773766  2.0696158
## 395   0.3404276  0.6940966  0.3815206  0.4661074
## 396   1.0202420  2.3003657  1.3064070  2.1775959
## 397   0.4700689  0.9924956  0.3846281  0.3475693
## 398   0.9457694  1.8778283  0.9423748  1.3087096
## 399   0.6434682  1.2579898  0.6541922  0.9408211
## 400   0.6683398  1.3309545  0.8351594  0.9930015
## 401   0.9469019  1.9027413  0.9088609  1.0121798
## 402   0.9852510  1.6986031  1.2606505  1.8490987
## 403   1.2064742  2.1998129  1.0340537  1.5990021
## 404   0.2977235  0.5633772  0.3007962  0.3330217
## 405   0.7453386  1.2049291  0.8972289  1.1712439
## 406   0.8321916  1.8823056  0.6366619  1.0029603
## 407   0.7184117  1.3799766  0.9441462  1.1042902
## 408   0.7388221  1.3288282  0.7191886  0.7673837
## 409   0.8691955  1.7967948  0.9733158  1.4076362
## 410   1.4433916  2.7925450  1.3632394  2.0774080
## 411   0.3469024  0.7348056  0.3241333  0.3911681
## 412   0.7794545  1.3949235  0.7639320  0.8671565
## 413   0.4964294  0.9090277  0.5603219  0.7076910
## 414   1.2067489  1.8587439  1.3893830  1.9471035
## 415   1.1977528  1.8282735  1.5609824  2.7166754
## 416   0.5939000  1.2041458  0.5373850  0.5907440
## 417   0.6804733  1.3605143  0.5413556  0.6952810
## 418   0.9931215  2.2773792  0.8865426  1.3171947
## 419   0.7698745  1.5060414  0.7805861  0.9732213
## 420   1.8860664  3.6209217  2.1786542  2.4246202
## 421   1.4017714  3.1800824  1.2186934  1.3486227
## 422   1.7090090  3.3224739  1.6660761  2.0289181
## 423   0.6851751  1.0773470  0.8681490  1.2504871
## 424   0.4330783  0.9144707  0.4651400  0.6593257
## 425   0.5634744  1.2158841  0.5318168  0.5008469
## 426   1.1026540  2.2380545  1.4018569  1.9239908
## 427   0.9347769  1.6938681  1.0241489  1.4759642
## 428   1.0129045  1.7606749  0.9893305  1.0750335
## 429   0.8514430  1.5260559  0.9099606  1.2474726
## 430   0.3742251  0.7138893  0.3233279  0.5400578
## 431   0.3448448  0.6861864  0.3795236  0.4393980
## 432   1.6320146  3.2648386  1.4971774  1.7261022
## 433   0.3662296  0.7709110  0.4525556  0.5172522
## 434   0.8634985  1.3078866  1.0695488  1.6444776
## 435   1.0603143  2.3592043  0.9689917  1.3489127
## 436   2.1844404  4.8784074  1.9734199  2.4062205
## 437   0.5713471  1.2474995  0.6840553  1.1086825
## 438   2.0257537  4.3847413  2.2274546  1.6625021
## 439   0.7503158  1.5712658  1.0593612  1.6056848
## 440   2.2041526  4.5038574  2.1318335  2.2997932
## 441   1.6649417  3.3882413  2.1622030  2.9393140
## 442   0.3687075  0.6674327  0.4294092  0.5033280
## 443   0.5419539  1.1883576  0.6221878  0.9377175
## 444   1.3895011  2.3617462  1.4995040  2.0424901
## 445   0.9495409  1.9875413  1.0156673  0.8224778
## 446   0.7596926  1.7014703  0.7066843  0.8814863
## 447   0.7359898  1.3233243  0.9143076  1.2368073
## 448   0.8209388  1.8546123  0.7237248  1.0595400
## 449   1.1723797  2.5214775  1.2374347  1.1626608
## 450   0.7327831  1.3312370  0.6111409  1.0176019
## 451   0.9805775  2.0045915  1.1363263  0.9156181
## 452   1.2277136  2.4982031  1.6382096  2.2854939
## 453   0.4247098  0.9472567  0.4382811  0.5632747
## 454   0.3172882  0.5692364  0.3241429  0.3673381
## 455   2.2583130  4.3170376  1.7961994  2.5691653
## 456   0.1411788  0.2617288  0.1733346  0.2159812
## 457   2.2222015  4.3523800  2.4787320  2.9598720
## 458   1.3534648  2.7776022  1.4333356  1.2142354
## 459   1.3111122  2.4552175  1.3295218  1.4797667
## 460   0.2691169  0.4187154  0.3649486  0.5047954
## 461   1.0129288  1.8064340  1.0783244  1.4239380
## 462   1.8341933  3.3556843  1.8858374  2.5550998
## 463   0.9567925  1.9188518  1.0827041  1.4157043
## 464   0.6204888  1.1514075  0.7075547  0.7891459
## 465   0.4475545  0.8304423  0.4729226  0.4654726
## 466   0.7737564  1.8435207  0.6195579  1.0869487
## 467   0.8784016  1.4876630  0.9306083  1.1883720
## 468   0.2863265  0.4915013  0.2826385  0.2825803
## 469   0.4026928  0.8548256  0.4498509  0.7160872
## 470   0.9238097  1.8994190  0.8855933  1.1507213
## 471   0.2199278  0.4492399  0.2836042  0.3950547
## 472   1.3400991  2.8734831  1.4823240  2.1297239
## 473   0.6656931  1.2418113  0.7583077  0.9353923
## 474   1.0008870  1.9453603  1.0387520  0.9672734
## 475   0.9768371  1.8224814  0.8843147  1.1085782
## 476   0.1488165  0.3009895  0.1810860  0.1673800
## 477   1.2457523  2.5835833  1.1695247  1.0989441
## 478   1.1720179  2.2456549  1.1616373  1.3316625
## 479   0.6138526  1.4403193  0.7525739  1.2039362
## 480   0.4952981  0.9460050  0.5259965  0.7680681
## 481   0.6324247  1.2243419  0.5917913  0.8394772
## 482   0.8007236  1.3464306  0.8055951  0.7915990
## 483   0.9889774  2.1529960  1.0948985  1.5063656
## 484   0.9750823  2.0455429  0.8790150  1.1951791
## 485   0.3787937  0.6496078  0.3409112  0.4682611
## 486   0.8612504  1.6376110  0.7111330  0.9728598
## 487   1.0076401  1.8948683  0.9066849  1.4050271
## 488   1.8753853  4.2521333  1.7552709  2.1961980
## 489   0.6474365  1.2329885  0.5945235  0.8673116
## 490   1.7158486  3.2312744  2.2131396  2.3060182
## 491   1.6482928  3.3318270  1.7009064  1.9488286
## 492   0.7573562  1.6297184  0.7195759  0.7503263
## 493   1.0709031  2.3276238  0.9097518  1.3784581
## 494   0.9190248  1.4013600  1.0509911  1.4914266
## 495   0.6561112  1.1881878  0.6222383  0.5292694
## 496   0.8429237  1.9738777  0.7098603  1.1205168
## 497   1.7008761  3.3327235  1.3762828  2.0723665
## 498   1.5272150  3.2571409  1.2170120  1.5143703
## 499   0.6823359  1.2111657  0.7875907  1.2615811
## 500   1.2159285  2.3599408  1.0339212  1.5250066
## 501   0.7951316  1.3859950  0.7337539  0.9434495
## 502   1.1000754  2.1491627  0.9420709  1.3501250
## 503   1.0200979  1.8865435  1.1310464  1.1779128
## 504   1.2564136  2.8349546  1.0412758  1.7088619
## 505   1.0001574  1.8851388  1.2485969  1.4184810
## 506   1.0760235  1.9046946  1.3538341  1.3436480
## 507   0.3447975  0.6528015  0.4372444  0.4838073
## 508   0.8580869  2.0425969  0.8796302  0.9133389
## 509   1.0479183  2.0419124  1.0906223  1.6155218
## 510   1.6713087  3.3448882  1.5973640  2.1826219
## 511   1.0179196  2.3468794  0.8074427  1.4072216
## 512   0.6443255  1.3771848  0.7714429  1.1935974
## 513   0.6280253  1.2373274  0.8874747  1.0553875
## 514   2.1002323  4.6604300  1.6738231  2.5310253
## 515   0.5210206  1.1558594  0.4999763  0.4804938
## 516   0.8269782  1.5058424  0.8045608  0.9136833
## 517   1.9965540  3.8285821  2.2203860  2.3677473
## 518   0.6097125  1.1364078  0.7066939  0.5961538
## 519   1.5117540  3.2649202  1.1484540  1.3796333
## 520   0.4641443  1.0336644  0.5546800  0.8357499
## 521   0.4892791  0.8899919  0.5898411  0.4979025
## 522   1.9493938  4.1435999  2.4617215  3.7368077
## 523   0.6598807  1.4318433  0.5722878  0.5559942
## 524   0.5007883  1.0407009  0.5743854  0.7427305
## 525   1.1435579  2.1890605  1.2673111  1.3488874
## 526   0.4878892  0.8618684  0.6177234  0.7851327
## 527   0.8150835  1.6147955  0.8138304  0.9365458
## 528   0.9013238  1.7343040  0.8295564  1.2337886
## 529   0.7732301  1.2530192  1.0512136  1.5777228
## 530   1.2603600  2.3341752  1.0398042  1.8723683
## 531   0.9439019  2.1602479  0.9289604  0.9935363
## 532   1.0591913  2.0052891  0.8592872  1.1851043
## 533   0.8209210  1.7807272  0.7816898  0.9726239
## 534   2.7886953  5.3175954  2.3540597  3.6969531
## 535   1.4501517  2.7636015  1.4391912  1.5957245
## 536   0.9483280  1.8329355  1.0344810  1.1982496
## 537   1.4289128  3.0755801  1.1833585  1.4957926
## 538   0.7851171  1.2832804  0.8249202  0.9731262
## 539   2.7662097  4.5909394  3.2248430  4.9695170
## 540   0.5996013  1.0413255  0.7857298  1.0963032
## 541   0.5854744  1.2673369  0.7426809  1.2086933
## 542   0.5024105  1.0587294  0.5179743  0.4870760
## 543   0.4915001  1.0067414  0.4024533  0.4332269
## 544   2.7518601  5.4239376  2.7332405  3.3624613
## 545   0.4834800  0.9120539  0.5669534  0.6390940
## 546   0.8149191  1.9246968  1.1364529  2.1279369
## 547   2.6753936  4.7531053  2.4648009  2.7074779
## 548   2.0703026  4.1606033  1.8687857  2.5697406
## 549   0.4224885  0.7372740  0.4145238  0.4238210
## 550   0.7691165  1.5857937  0.7096671  0.9526050
## 551   0.7522144  1.5660874  0.8711377  1.3634265
## 552   2.4686838  4.4498411  2.4102887  2.3971628
## 553   0.6640646  1.2152877  0.6396259  0.5944728
## 554   1.5152833  3.1190331  1.3992293  1.4858765
## 555   0.7357692  1.5364751  0.7561983  0.7538757
## 556   1.1623135  2.6316805  1.0587586  0.9948344
## 557   0.9309934  1.9430942  0.9663832  1.2766050
## 558   1.6001728  2.8635629  1.3996322  2.0203418
## 559   1.2509404  2.6247090  1.3345898  1.1944078
## 560   0.5311484  1.0361010  0.6275637  0.6647401
## 561   1.4352754  3.1059489  1.2865757  1.9453439
## 562   1.1202918  2.4771990  1.0209933  0.9669456
## 563   0.8117569  1.6622859  0.8949186  0.7412665
## 564   1.8494232  3.7769983  1.6733521  1.8245182
## 565   1.2507288  2.3581843  1.0714046  1.6313227
## 566   1.0447585  2.0348151  1.1988358  1.3736195
## 567   0.5995555  1.4040310  0.5351146  0.6421491
## 568   0.7919173  1.5640098  0.8345729  1.1620857
## 569   0.8157283  1.6658775  0.7509392  0.9598238
## 570   0.7859188  1.6165494  0.8531489  0.7841326
## 571   0.9905889  1.9592667  0.9470092  0.9820651
## 572   0.6597251  1.3373598  0.8074720  1.1166585
## 573   0.4371852  0.9074778  0.5439067  0.7555728
## 574   0.9048273  1.8143366  0.9584287  1.3110258
## 575   1.0094109  2.0340396  1.2005568  1.6879527
## 576   0.7964873  1.5773329  1.0160231  1.2850999
## 577   0.4522331  1.0135571  0.3932545  0.5564932
## 578   0.5820013  1.2481832  0.6226769  0.7074989
## 579   1.1928056  2.7359451  1.0085395  1.6618430
## 580   1.3462302  2.6950394  1.1743279  1.4708934
## 581   0.4981426  1.0058979  0.4452914  0.5216501
## 582   0.4471947  0.8867522  0.5487931  0.7443151
## 583   2.1192946  4.1256124  2.2539837  2.4155630
## 584   2.0989635  3.9447295  1.9402562  2.0011193
## 585   0.7571337  1.4954750  0.7568497  0.8704072
## 586   0.4007402  0.8275854  0.5027452  0.5223888
## 587   0.7444694  1.4186365  1.0205087  1.0833225
## 588   1.9781534  3.5284516  1.8559660  1.9463278
## 589   1.7388374  3.9105748  1.4770013  2.4890561
## 590   2.1212936  4.6093323  1.8753722  3.0092141
## 591   1.3243888  2.8047076  1.2124099  1.4330838
## 592   0.4864252  0.9513735  0.4356878  0.3457288
## 593   0.7990913  1.5614806  0.9168608  0.9071377
## 594   1.2581600  2.5366185  1.1286191  1.2691823
## 595   0.4649023  0.9838345  0.3636378  0.3750047
## 596   1.3138669  2.5038629  1.0907158  1.3576307
## 597   1.9613625  4.3441336  1.6914737  2.8497714
## 598   0.3910909  0.7037845  0.3326001  0.4519308
## 599   1.3687863  2.5458977  1.5099337  2.0284175
## 600   1.6269733  2.9546602  1.7125055  2.1195400
## 601   0.8200541  1.8006877  1.0225013  1.3541747
## 602   1.4871781  2.7062427  1.6021880  2.3498287
## 603   0.7885240  1.5386858  0.7151477  0.8906070
## 604   0.7557705  1.5035952  0.7757070  0.8635847
## 605   1.1540785  2.1744011  1.0371957  1.0227126
## 606   0.5796337  1.0307758  0.6106114  0.8028552
## 607   0.9548838  2.1848362  1.2220401  2.1282328
## 608   0.2191662  0.4722349  0.2328433  0.3153484
## 609   3.0093175  6.9769770  2.4949680  3.7430204
## 610   0.6653366  1.2645547  0.5824990  0.8533466
## 611   1.2854964  2.7079422  1.2111672  1.7658530
## 612   0.3346642  0.6934052  0.2938743  0.3963196
## 613   0.4491423  0.7669977  0.4862354  0.6714127
## 614   1.3142081  2.5535211  1.3037838  1.7435548
## 615   0.6421747  1.1451671  0.5855949  0.8346558
## 616   0.3085012  0.5467377  0.3706148  0.4952242
## 617   0.5930670  1.3618080  0.7187381  0.9644858
## 618   1.1649746  2.3227514  1.0362821  0.9107134
## 619   0.7463426  1.3515001  0.6982055  0.9360944
## 620   0.8588119  1.9681227  0.7257363  1.1567089
## 621   0.5496765  0.9442613  0.6486990  1.0558691
## 622   0.3444741  0.6201454  0.3109576  0.4606525
## 623   0.7710965  1.6503894  0.6727393  0.6897175
## 624   1.0565886  2.2079385  1.0179990  1.2238877
## 625   0.8631624  1.8699669  0.8512445  0.9566048
## 626   1.0563264  2.0839994  1.2080946  1.4075579
## 627   1.3221161  2.4102567  1.1739448  1.6750512
## 628   0.7509648  1.3384532  0.7763054  0.8026854
## 629   0.6800757  1.3019189  0.8982213  1.0173315
## 630   1.7156066  3.3948635  1.6374228  2.1936332
## 631   0.3832607  0.8116684  0.3093645  0.3638981
## 632   1.0946457  2.0874576  1.0005695  1.3348481
## 633   0.7114659  1.3516048  0.6019399  0.9941610
## 634   2.5658083  4.9485712  2.3212872  3.6190402
## 635   1.3920095  2.6068134  1.2787677  1.7888968
## 636   1.4959436  3.0177132  1.3434285  1.4706336
## 637   0.2641106  0.4612304  0.3685229  0.4495492
## 638   0.2993884  0.6852796  0.2565475  0.3564284
## 639   0.7426979  1.1945903  0.9377132  1.3504748
## 640   2.2747406  5.3321097  1.9193818  3.1443483
## 641   0.7225351  1.3939727  0.6708822  0.5285030
## 642   1.3225354  2.5129395  1.2177578  1.7882939
## 643   0.8759641  1.8944055  0.8947234  1.0054004
## 644   1.2330089  2.6737805  1.2671410  1.5103388
## 645   1.0878048  2.4747270  0.9078231  1.5030497
## 646   2.7230093  4.3976291  3.0571467  4.3581241
## 647   0.4724045  0.8152617  0.5048377  0.7056800
## 648   0.8924297  1.5403195  1.0423601  1.6245019
## 649   0.5432931  0.9932536  0.6096922  0.8631996
## 650   0.6593794  1.2590973  0.5562901  0.8679254
## 651   0.7779586  1.2983800  0.8392964  1.0965669
## 652   0.8529575  1.8706533  0.9899352  1.4651713
## 653   1.3224349  2.4488007  1.0409142  1.7805038
## 654   0.7109074  1.5102248  0.5666664  0.5871832
## 655   0.7609188  1.6230053  0.7352451  0.8823524
## 656   1.2725444  2.4416547  1.4235779  1.7070825
## 657   1.7508842  3.6838600  1.5753919  1.3007130
## 658   0.4644268  1.0504489  0.4740130  0.5687206
## 659   0.7448979  1.4945973  0.6594927  0.8157987
## 660   0.5681492  0.8700865  0.7183784  1.1028176
## 661   2.3322005  4.3829805  2.0636403  3.0239005
## 662   0.3992023  0.6960242  0.4952042  0.6294478
## 663   0.9287417  1.7761673  1.0334321  1.1551415
## 664   0.5154965  0.8234718  0.6876773  0.9430918
## 665   1.8406207  3.9567114  1.5842577  2.3611188
## 666   1.7388466  3.7793239  1.5840103  1.5808462
## 667   1.4412237  3.3323991  1.3681352  1.5806632
## 668   1.7317203  3.3716661  1.4529781  2.0618942
## 669   1.1088241  2.0541417  0.9293429  1.6320063
## 670   0.7094325  1.2910608  0.8163120  0.7003887
## 671   0.5951278  1.1026090  0.6819149  0.9951232
## 672   0.9317322  1.7642558  0.9162138  1.0374169
## 673   0.7967096  1.5422906  0.8622216  1.2445829
## 674   0.3462349  0.7612810  0.3088974  0.4893408
## 675   1.8160761  3.3707214  1.8079525  2.3754307
## 676   0.5222147  0.9382737  0.5083272  0.6193578
## 677   0.4208675  0.8492307  0.3702763  0.4775419
## 678   1.8475160  4.0783214  2.0404975  2.9651168
## 679   0.3783969  0.8276106  0.3648002  0.5033712
## 680   0.4674697  0.9279360  0.4710989  0.6448794
## 681   1.3610952  2.6063162  1.1424150  1.7458286
## 682   0.7602659  1.6036048  0.9387502  1.2367937
## 683   0.2915362  0.6014881  0.2401041  0.2428968
## 684   2.8660325  6.3475850  2.2698039  3.4275632
## 685   1.4881153  2.8591082  1.6312375  2.0316663
## 686   1.3295020  2.7469318  1.5397117  2.1922719
## 687   0.8952051  2.0098732  0.7800067  1.2412214
## 688   1.2803553  2.2002599  1.1554936  1.5614914
## 689   1.6993995  3.4807906  1.3392613  1.3733332
## 690   0.6711320  1.1362935  0.6590541  0.6846680
## 691   0.9171900  1.8440305  0.8973955  1.2768783
## 692   0.6259456  1.3973346  0.7578990  1.2656042
## 693   1.2452356  2.1498231  1.5406737  2.1451416
## 694   1.2651168  2.4440766  1.0743310  1.4472668
## 695   1.0162560  2.1499021  1.0750455  1.4408271
## 696   0.3040252  0.5480721  0.3504765  0.4260708
## 697   1.7163220  3.6844719  1.5651467  2.4276972
## 698   0.7947378  1.6265650  0.7540769  1.0101326
## 699   1.5006401  3.2011061  1.2130633  1.5445151
## 700   0.6338373  1.4465815  0.8215898  1.4755298
## 701   0.5294181  1.1524417  0.6050906  0.9471062
## 702   0.7378141  1.3314196  0.8573811  0.7105969
## 703   1.3215957  2.5139773  1.0439635  1.4389474
## 704   1.5397972  3.2516440  1.8373365  2.4197834
## 705   0.1886470  0.3891236  0.2384032  0.3226179
## 706   0.5642951  1.0768148  0.5346574  0.6097110
## 707   1.3319270  2.4526156  1.3171886  1.4674513
## 708   1.6056119  3.7826016  1.2397016  2.2933948
## 709   1.2866697  2.3363990  1.3315887  1.5333760
## 710   0.4129418  0.8545220  0.3292780  0.3554290
## 711   0.4966616  0.9006020  0.7205284  0.7452622
## 712   0.6982580  1.5378112  0.8090278  1.2267617
## 713   0.3966582  0.7391751  0.3466809  0.5741418
## 714   0.5940109  1.1453887  0.5656511  0.8520383
## 715   1.0426367  2.3435222  1.1403543  1.5448613
## 716   0.9444409  1.7307361  1.0308897  1.4811009
## 717   0.7468353  1.5008369  0.6109572  0.7859588
## 718   1.5007628  3.2954470  1.6623085  2.4079278
## 719   1.0151721  1.9164510  1.1779365  1.3289399
## 720   1.0904528  1.7854583  1.2213805  1.3293100
## 721   0.7768616  1.3101588  0.8713383  1.2403867
## 722   1.3830650  3.0300400  1.1525903  1.6542149
## 723   0.7665082  1.3656299  0.6388547  1.0306205
## 724   1.5663578  3.4591905  1.3686430  2.3236603
## 725   1.5839089  3.7185490  1.2398376  2.3238291
## 726   0.4594621  0.8672938  0.4731423  0.6632051
## 727   1.0426259  1.3837234  1.4970160  2.8499501
## 728   2.4949791  4.5273905  2.2075094  3.0794577
## 729   1.4245808  2.9994052  1.4205907  1.7116380
## 730   0.3715835  0.7214522  0.3490421  0.4493857
## 731   0.5282915  0.8553083  0.6649017  0.9135251
## 732   0.6834656  1.3783020  0.6568804  0.8873995
## 733   1.2626196  1.8837251  1.5596950  2.5713438
## 734   0.4464541  0.8716628  0.5422616  0.5277060
## 735   1.1710551  1.9635399  1.2262774  1.5044272
## 736   3.0206972  6.1924965  3.0465887  3.8502015
## 737   1.2221610  2.6673879  1.1015215  1.4707255
## 738   0.6739131  1.3615660  0.5845044  0.7498726
## 739   0.7368078  1.2852750  0.6918901  0.8791764
## 740   0.8710312  1.8537099  1.1914808  1.6490109
## 741   0.9845173  1.7158001  1.0330275  0.8930806
## 742   0.3729443  0.8213862  0.3751183  0.4082363
## 743   0.5471288  1.1783057  0.5915468  0.7831781
## 744   0.2930788  0.6150194  0.2788093  0.3703549
## 745   0.4511247  1.0460506  0.6274704  1.1741631
## 746   1.0867701  2.0949247  0.9545914  1.5175244
## 747   0.9117679  1.9273563  0.6934289  0.7044118
## 748   0.8170721  1.4665562  0.7517954  0.7119066
## 749   1.2178105  2.5935342  1.0176386  1.2403132
## 750   0.9891444  1.6886322  0.8684621  1.2359077
## 751   0.2842574  0.5869389  0.3254820  0.3699363
## 752   1.5682388  3.2508017  1.5081930  1.7167009
## 753   0.1154666  0.2093257  0.1511367  0.1819515
## 754   0.5389018  1.0528721  0.4294521  0.5061214
## 755   0.8029849  1.7408472  0.6690338  0.9538099
## 756   2.3176894  5.0945932  2.1299673  2.9925074
## 757   2.6548113  5.1375794  2.5686440  3.4053883
## 758   0.6266607  1.1273138  0.5839560  0.4873999
## 759   1.8204981  4.1754250  1.4587001  2.5957037
## 760   0.8551680  1.3804008  1.1248140  1.7112854
## 761   0.6504760  0.9937500  0.8665933  1.4829797
## 762   1.4120152  2.8286774  1.4307592  2.0510606
## 763   0.3718631  0.7414879  0.4102458  0.3963060
## 764   0.8287574  1.6083066  0.9925963  1.1091118
## 765   0.6422585  1.4315044  0.7539851  1.1981745
## 766   1.8491193  3.7376290  1.7419296  2.2333282
## 767   0.3690030  0.8243484  0.3169496  0.3425102
## 768   1.0332531  1.7302655  1.0065811  1.0074156
## 769   1.8698105  3.8665892  1.7931410  1.6626836
## 770   0.3144401  0.6624428  0.3008351  0.3270490
## 771   1.2268711  2.4964901  1.1716889  1.1367210
## 772   1.8549330  4.0846045  1.5028784  1.7698090
## 773   0.7329918  1.3713930  0.6012645  0.8198870
## 774   0.5753299  0.9507639  0.6497098  0.9272717
## 775   1.3370085  2.9166608  1.1429457  1.5930392
## 776   0.4672523  1.0686226  0.4703967  0.5262306
## 777   0.8319214  1.5297432  1.0213278  1.1353436
## 778   0.1760986  0.3435439  0.2054110  0.2218765
## 779   1.1118918  1.9887728  1.2285496  1.7899982
## 780   0.6555484  1.3467712  0.7298695  0.7204048
## 781   1.5078349  2.7126324  1.6548887  2.3705184
## 782   0.8896953  1.9115254  1.0164707  1.5765155
## 783   1.6787267  3.3750474  1.4510695  1.6706314
## 784   0.7233093  1.5309107  0.8317359  1.2900006
## 785   0.8473912  1.6305543  0.8589690  0.9696786
## 786   1.5736815  3.1386881  1.4294164  1.7040951
## 787   0.3922152  0.6662819  0.4338509  0.4878631
## 788   1.0624974  1.8487070  1.0095080  1.2333875
## 789   0.3813277  0.5825203  0.4948699  0.8383676
## 790   1.2829055  2.7711291  1.0269677  1.0335175
## 791   0.6360267  1.3489245  0.7517125  1.0673970
## 792   0.4176445  0.7174529  0.5942348  0.7241246
## 793   0.7132741  1.1316172  0.9505002  1.4974299
## 794   2.1302633  4.2308710  1.8658367  2.5048268
## 795   2.2038221  4.6986565  1.9054686  2.3718270
## 796   0.6941029  1.4733715  0.7459448  0.9952135
## 797   1.0358884  2.1716674  1.1033941  1.5700837
## 798   0.7286249  1.4691940  0.5824191  0.7119178
## 799   0.8509895  1.7609529  0.7712737  0.7443726
## 800   1.1607579  2.2065827  0.9487588  1.5650898
## 801   0.7197629  1.4961259  0.6673747  0.7343752
## 802   0.5464476  0.9199840  0.6209138  0.8348663
## 803   0.8108695  1.5748858  0.7437758  1.0633298
## 804   1.5700227  3.2615896  1.5293516  1.7805991
## 805   1.2344840  2.5274049  0.9556171  1.0968852
## 806   0.1952930  0.3319954  0.2246643  0.3642688
## 807   0.7441652  1.7483204  0.6287677  0.9765807
## 808   1.0766773  1.8397648  1.3108814  1.5829967
## 809   0.4789684  0.9317472  0.4954185  0.6504461
## 810   2.4780371  5.3130583  2.4391957  3.0604874
## 811   0.8501414  1.6399200  0.7229962  0.7061114
## 812   0.5813783  1.2740130  0.4487130  0.6151462
## 813   0.9314344  2.0745458  1.1588161  1.9419265
## 814   1.4111108  2.4583019  1.3302263  1.6720730
## 815   1.5165332  3.1712637  1.3567595  1.2489048
## 816   0.6953299  1.2241531  0.7093948  0.7859751
## 817   1.2340907  2.1919189  1.2527400  1.2110411
## 818   0.4895137  0.6363203  0.7193432  1.3500404
## 819   0.8384567  1.5889783  0.6912777  1.0885992
## 820   1.2414471  2.8798549  1.1622424  1.4446708
## 821   1.4400568  2.6576448  1.4614302  1.5654606
## 822   1.2558299  2.3027679  1.3829195  2.0522932
## 823   1.1440702  2.3374122  1.4400614  1.6531061
## 824   1.8613148  4.2313419  1.4485188  2.3827468
## 825   0.9749711  1.7827630  1.0425067  1.2815830
## 826   0.4121620  0.8364270  0.4809471  0.6837505
## 827   0.9966395  1.8961649  1.4189923  1.6623912
## 828   2.2823696  4.4995868  1.9321320  2.6418173
## 829   0.4387532  0.8345713  0.4300882  0.6103366
## 830   1.1948444  2.5354658  1.1715925  1.6529036
## 831   0.9949123  2.2934268  1.0673412  1.2982988
## 832   1.8919347  4.3142244  1.5572330  2.5786930
## 833   0.8584446  1.8465186  0.8938070  1.1473593
## 834   0.6408938  1.1334420  0.6566966  0.6352836
## 835   2.0155499  4.3737439  2.2883586  3.1495851
## 836   1.5608962  2.6089186  1.6281015  1.7066945
## 837   0.7829910  1.5573323  0.7610014  0.7379370
## 838   1.3324142  2.7526504  1.4043770  1.9769933
## 839   1.1749908  2.4643704  1.0275954  1.0100834
## 840   1.3052692  2.0436033  1.5711597  2.3697322
## 841   1.1003524  2.1206811  0.8481308  1.3227436
## 842   0.8927883  1.6771900  0.9006678  1.1275599
## 843   0.5600217  1.1615552  0.5474662  0.7750209
## 844   0.2975729  0.5444301  0.2980984  0.3175347
## 845   1.2243346  2.4824019  1.0634722  1.3803793
## 846   0.5692327  1.0726870  0.4689157  0.5757096
## 847   1.7841522  3.1010452  1.9644721  2.7447297
## 848   0.4733163  0.9220430  0.4459084  0.4280061
## 849   0.7148774  1.4179548  0.8480784  0.8098281
## 850   1.1842099  2.1636592  1.0188146  1.4669891
## 851   1.1941711  2.1906831  1.0602595  1.4913186
## 852   1.0342059  2.2555275  1.3817864  2.3128497
## 853   0.6179532  1.3676978  0.5703302  0.8266387
## 854   0.7307487  1.2890512  0.7717595  1.0269133
## 855   1.2153539  2.1883375  1.6209124  1.7601285
## 856   0.9107522  1.5066695  1.0076135  1.3251404
## 857   0.3417530  0.5821706  0.4194038  0.6457497
## 858   0.6073551  1.0254398  0.7198494  0.7747289
## 859   0.4232162  0.7467533  0.5165650  0.6159615
## 860   0.6180343  1.3643643  0.6557714  0.8233299
## 861   1.4408733  3.2647479  1.4457226  1.5034087
## 862   0.8936468  1.4104975  1.0729553  1.3218052
## 863   0.9229936  1.7638804  0.9102598  1.1493834
## 864   1.1534723  2.6333427  1.2893092  1.7534855
## 865   1.0981571  1.7695538  1.1678339  1.4506633
## 866   0.8667577  1.9270235  0.8404299  0.9489890
## 867   0.8381536  1.9393699  0.6770857  1.1009015
## 868   0.2406365  0.4500605  0.2941335  0.3342241
## 869   0.9521390  1.8061631  0.7960003  0.9120849
## 870   0.6158891  1.1969825  0.5501659  0.8308910
## 871   1.1785024  2.4895661  0.9373182  1.0364594
## 872   1.2556397  2.3672397  1.2404408  1.4364946
## 873   0.8404018  1.9357110  0.8282348  0.9083094
## 874   1.7345446  3.3612853  1.5690839  1.7370340
## 875   1.7781194  3.7208952  1.7320442  1.7774634
## 876   1.0045641  2.0423134  1.1335794  1.5538632
## 877   0.7300596  1.0601566  1.0397234  1.7320363
## 878   1.6927267  3.1741887  1.3736042  2.3034070
## 879   0.9871905  1.7137496  0.9367410  1.1667504
## 880   1.0500984  2.4368463  0.9039614  1.1966570
## 881   1.0794379  2.3798903  1.3090424  1.4978992
## 882   1.6226695  3.4755204  1.7173509  2.2475580
## 883   0.8867904  1.9776302  0.9601027  1.1975342
## 884   1.2271919  2.2856929  1.2274090  1.5830204
## 885   1.4011224  3.2409186  1.1908330  1.8332846
## 886   1.5565308  3.2648744  1.4732909  2.2919586
## 887   0.8657563  1.9854368  0.8028565  1.0589668
## 888   0.8799809  1.9335952  0.7986092  1.2293398
## 889   0.8664402  2.0040085  1.0844517  1.8204804
## 890   1.7345452  4.0064703  2.4461589  4.4257239
## 891   0.7039971  1.1561868  0.7901055  1.0566705
## 892   0.3289808  0.6374630  0.3665943  0.3800293
## 893   0.1510932  0.3428602  0.1976044  0.3517815
## 894   2.2127670  4.2527713  2.0122742  2.9602073
## 895   1.4115644  3.0457590  1.4776941  1.8964787
## 896   0.2939591  0.6274187  0.3055957  0.3063549
## 897   0.1847922  0.3683771  0.1844569  0.2121026
## 898   1.0766459  1.9512817  0.9015777  1.3927773
## 899   0.9169124  1.7340987  0.8103244  1.1782586
## 900   0.2251962  0.4370318  0.2293790  0.2665959
## 901   2.0077140  4.4849476  1.9792366  2.0328590
## 902   1.2276273  2.1675329  1.1416649  1.2734907
## 903   1.2334601  2.4599986  1.1636553  1.4064966
## 904   1.2212715  2.1956098  0.9515975  1.7817415
## 905   0.3716371  0.7877760  0.3230977  0.3097479
## 906   0.3887062  0.6632264  0.4049398  0.4879804
## 907   0.3880718  0.7518210  0.5382507  0.5437078
## 908   1.4568143  2.9909553  1.5071251  1.7913566
## 909   1.6197826  3.6485404  1.5744094  1.9297422
## 910   0.7881182  1.7015411  0.7737850  1.0495336
## 911   0.8921201  1.6810276  0.7982830  0.9515139
## 912   0.8791068  1.9468630  0.8146569  1.2103467
## 913   0.4960920  0.7460456  0.6257239  1.0570022
## 914   0.3851030  0.8067791  0.3933114  0.4341826
## 915   0.7516314  1.4501068  0.7476958  0.8279029
## 916   1.0929726  2.5039651  0.9221469  1.5162155
## 917   0.8472784  1.9569085  0.8558842  0.8710158
## 918   0.6720345  1.3391055  0.6362775  0.7613582
## 919   0.4875841  0.7083143  0.6267700  1.0893680
## 920   0.5134113  1.0095823  0.6072728  0.7621811
## 921   0.8647325  1.8047117  0.8678699  1.1657302
## 922   0.7966062  1.4098632  0.7800920  0.9086216
## 923   1.0158758  1.8358416  1.0291156  1.3431109
## 924   0.6947562  1.2732866  0.8019844  1.1103692
## 925   1.6844314  3.4499066  1.6369655  2.3501213
## 926   0.3678961  0.7710909  0.3435536  0.4211689
## 927   0.3078743  0.5218198  0.3743978  0.3751525
## 928   1.2301122  2.8264752  1.3144497  1.6133299
## 929   1.5038921  2.7862932  1.2801073  2.2017800
## 930   0.7688038  1.3060179  0.9807751  1.3679719
## 931   1.2033252  2.4239418  0.9843432  1.1797731
## 932   1.2552496  2.3050757  1.3844657  1.9442536
## 933   0.5979069  1.1224806  0.4929590  0.8101618
## 934   1.5953780  3.0064118  1.6437274  1.7985425
## 935   1.9677032  4.4196418  1.6396244  2.5359187
## 936   0.6711704  1.3818644  0.5575239  0.5499143
## 937   0.6530207  1.3557827  0.6545780  0.7025188
## 938   1.0236654  1.9822418  0.8689488  0.9802629
## 939   0.9221856  2.0432359  0.9304801  0.9503135
## 940   1.6515301  3.1765459  2.0351465  2.4307747
## 941   0.5547560  0.9997929  0.5920876  0.8307680
## 942   0.3014815  0.5834921  0.2587368  0.2745038
## 943   1.2994149  2.3683308  1.6930886  1.9090581
## 944   1.0983939  2.1436950  1.1045511  1.3551264
## 945   0.9301433  2.0533706  0.8094665  0.9802772
## 946   0.3751827  0.6742320  0.3721206  0.4356656
## 947   0.1072729  0.2365069  0.1082040  0.1062341
## 948   0.5151279  0.9021090  0.4946506  0.5565553
## 949   0.8495874  1.5043954  1.0131093  1.2732024
## 950   0.5443162  1.0929276  0.4330117  0.4911303
## 951   0.2593044  0.5009282  0.2966398  0.3288506
## 952   0.5889680  1.1446815  0.5109655  0.7089959
## 953   0.9879530  1.9883666  0.9555003  1.0703707
## 954   0.5874607  1.0519730  0.5972428  0.6704819
## 955   0.7439384  1.3585232  0.8539391  0.7238975
## 956   0.7560077  1.7445925  0.6592488  0.9521444
## 957   1.1312515  2.3859889  1.0182445  1.2879333
## 958   0.5927712  0.9672854  0.6640280  0.9635709
## 959   0.3451558  0.7097825  0.3263705  0.4180605
## 960   2.6643401  5.1470188  2.2106430  2.6463994
## 961   1.1052057  2.3750854  0.8960861  0.8450528
## 962   0.6621958  1.4976744  0.5679006  0.9440493
## 963   1.0087288  1.9126135  0.7998606  1.1226405
## 964   0.7741248  1.8133058  0.7337022  0.8578185
## 965   1.9898015  3.9296776  2.2373087  2.4557716
## 966   0.6642519  1.4141243  0.7866611  1.2495471
## 967   0.9412902  1.7794822  1.0992206  1.0683596
## 968   1.0880422  2.2610754  1.2180854  1.7032757
## 969   1.4288740  2.6049694  1.6568531  2.2842610
## 970   1.3112225  2.6080541  1.4780532  1.8970683
## 971   0.3352981  0.7393513  0.4212767  0.6440492
## 972   0.1918581  0.3558049  0.2180213  0.1810720
## 973   0.6384296  1.3724233  0.6803522  0.6397688
## 974   1.3963724  2.5826059  1.1360771  1.9753047
## 975   1.0669564  2.5026696  1.0301152  1.1699013
## 976   1.1151084  1.7214035  1.2829008  1.8503003
## 977   0.3938340  0.7776327  0.3664632  0.3850910
## 978   0.6513355  1.4414607  0.8310974  1.2789241
## 979   0.4521065  1.0159718  0.3971504  0.6331110
## 980   0.4905416  1.0157228  0.5300665  0.4492714
## 981   0.6946290  1.2832570  0.6266537  0.5395657
## 982   1.5054391  3.1450373  1.1530744  1.2029916
## 983   0.4401047  0.8335646  0.4796253  0.5905821
## 984   0.3003470  0.4746940  0.3170447  0.3686164
## 985   1.7111694  2.8219054  2.0317382  3.3980836
## 986   1.0524659  2.1174992  1.0569779  1.2604433
## 987   2.1341109  4.8549184  2.0450703  2.2708402
## 988   0.4176621  0.9543342  0.5127675  0.6844378
## 989   2.3751047  4.7579256  1.9334818  1.9324450
## 990   0.9331670  1.9394523  0.9109838  1.0873220
## 991   0.6462386  1.4623248  0.5657779  0.8724986
## 992   0.6521340  1.2354069  0.7230086  1.0175683
## 993   0.7594492  1.1424808  0.9068972  1.3660399
## 994   1.4180220  2.3299556  1.7993201  2.5452878
## 995   0.3052074  0.6231843  0.3238777  0.4177967
## 996   1.3108126  2.4067989  1.0913945  1.8428787
## 997   1.1924435  2.6419888  1.2804028  1.4936073
## 998   0.6517871  1.2499555  0.5838490  0.7219293
## 999   1.3347185  2.9615204  1.5602537  2.4131620
## 1000  0.5503225  1.2376433  0.5433895  0.5892333
boxplot(results, las=1, main="Comparación estimadores con n=1000", col = c("green","yellow","purple","blue"), names = c("Estimador1","Estimador2","Estimador3","Estimador4"))
                                                                           abline(h=1,  col="red") 

apply (results,2,mean)
## Estimador1 Estimador2 Estimador3 Estimador4 
##  0.9992842  2.0012681  0.9954412  1.2887732
apply(results,2,var)
## Estimador1 Estimador2 Estimador3 Estimador4 
##  0.2832402  1.2208268  0.2573689  0.5159153

Los resutados indican para n=1000 el Estimador1 se puede clasificar como Insesgado, mientras que el Estimador3 como el más eficiente. Por lo que se puede concluir que el Estimador1 y el Estimador3 son los estimadores más consistente puesto que a medida que aumenta el valor de la muestra, estos se acercan al parametro definido que en este caso es 1.

Para concluir este punto, cabe aclarar que al ser aleatorios los valores, para cada simulación habrá una variación de los resultados, sin embargo, se presentaron los resultados con una de las muestras generadas.