
Email          : albert.prayogo99@gmail.com
RPubs         : https://rpubs.com/albert23899
Jurusan      : Statistika
Address     : ARA Center, Matana University Tower
   Â
         Jl. CBD Barat Kav, RT.1, Curug Sangereng, Kelapa Dua,
Tangerang, Banten 15810.
Load the Library that
We NEED
library(DT) #Library untuk Menampilkan Tabel Agar Mudah Dilihat di Browser
library(MVN) #Library untuk Uji Multivariate Normal
library(MASS) #Library untuk Fungsi Diskriminan Analisis
library(biotools) #Library untuk Melakukan Uji Box-M
## ---
## biotools version 4.2
Load the IRIS
database
data("iris")
datatable(iris)
Assumption Test
Data Variabel
Independen Terdistribusi Normal
mvn(data = iris[, c(1:4)], multivariatePlot = 'qq') # Hanya mengambil kolom variabel prediktor

## $multivariateNormality
## Test HZ p value MVN
## 1 Henze-Zirkler 2.336394 0 NO
##
## $univariateNormality
## Test Variable Statistic p value Normality
## 1 Anderson-Darling Sepal.Length 0.8892 0.0225 NO
## 2 Anderson-Darling Sepal.Width 0.9080 0.0202 NO
## 3 Anderson-Darling Petal.Length 7.6785 <0.001 NO
## 4 Anderson-Darling Petal.Width 5.1057 <0.001 NO
##
## $Descriptives
## n Mean Std.Dev Median Min Max 25th 75th Skew
## Sepal.Length 150 5.843333 0.8280661 5.80 4.3 7.9 5.1 6.4 0.3086407
## Sepal.Width 150 3.057333 0.4358663 3.00 2.0 4.4 2.8 3.3 0.3126147
## Petal.Length 150 3.758000 1.7652982 4.35 1.0 6.9 1.6 5.1 -0.2694109
## Petal.Width 150 1.199333 0.7622377 1.30 0.1 2.5 0.3 1.8 -0.1009166
## Kurtosis
## Sepal.Length -0.6058125
## Sepal.Width 0.1387047
## Petal.Length -1.4168574
## Petal.Width -1.3581792
Perbedaan Rata-Rata
Antar Variabel Independen
m <- manova(formula = cbind(iris$Sepal.Length, iris$Sepal.Width, iris$Petal.Length,
iris$Petal.Width) ~ iris$Species)
summary(object = m, test = 'Wilks')
## Df Wilks approx F num Df den Df Pr(>F)
## iris$Species 2 0.023439 199.15 8 288 < 2.2e-16 ***
## Residuals 147
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Memulai Analisis
Diskriminan
Membuat training and
test data set
set.seed(123)
train_index <- sample(seq(nrow(iris)), size = floor(0.75 * nrow(iris)), replace = F)
training_data <- iris[train_index, ]
test_data <- iris[-train_index, ]
Membentuk Fungsi
Diskriminan
linearDA <- lda(formula = Species ~., data = training_data)
linearDA
## Call:
## lda(Species ~ ., data = training_data)
##
## Prior probabilities of groups:
## setosa versicolor virginica
## 0.3392857 0.2946429 0.3660714
##
## Group means:
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## setosa 4.976316 3.405263 1.471053 0.2578947
## versicolor 5.966667 2.784848 4.303030 1.3393939
## virginica 6.585366 2.956098 5.534146 2.0097561
##
## Coefficients of linear discriminants:
## LD1 LD2
## Sepal.Length 0.8739864 -0.1767027
## Sepal.Width 1.3356317 -1.8714548
## Petal.Length -2.1802288 1.1793326
## Petal.Width -2.7858940 -3.1801017
##
## Proportion of trace:
## LD1 LD2
## 0.993 0.007
plot(linearDA, col = as.integer(training_data$Species))
Memprediksi
predicted <- predict(object = linearDA, newdata = test_data)
table(actual = test_data$Species, predicted = predicted$class)
## predicted
## actual setosa versicolor virginica
## setosa 12 0 0
## versicolor 0 16 1
## virginica 0 0 9
LS0tDQp0aXRsZTogIkFuYWxpc2lzIERpc2tyaW1pbmFuIg0Kc3VidGl0bGU6ICJTdHVkaSBLYXN1cyBEZW5nYW4gRGF0YSBTZXQgSVJJUyINCmF1dGhvcjogIktlbG9tcG9rIDIiDQpkYXRlOiAiYHIgZm9ybWF0KFN5cy5EYXRlKCksICclQiAlZCwgJVknKWAiDQpvdXRwdXQ6IA0KICBodG1sX2RvY3VtZW50OiANCiAgICBodG1sX2RvY3VtZW50OiBudWxsDQogICAgY29kZV9mb2xkaW5nOiBoaWRlDQogICAgdG9jOiB5ZXMNCiAgICB0b2NfZmxvYXQ6DQogICAgICBjb2xsYXBzZWQ6IHllcw0KICAgIG51bWJlcl9zZWN0aW9uczogeWVzDQogICAgY29kZV9kb3dubG9hZDogeWVzDQogICAgdGhlbWU6IHNhbmRzdG9uZQ0KICAgIGNzczogc3R5bGUxLmNzcw0KICAgIGhpZ2hsaWdodDogbW9ub2Nocm9tZQ0KLS0tDQoNCg0KYGBge3IgbG9nbywgZWNobz1GQUxTRSxmaWcuYWxpZ249J2NlbnRlcicsIG91dC53aWR0aCA9ICczMCUnfQ0Ka25pdHI6OmluY2x1ZGVfZ3JhcGhpY3MoImxvZ29tYXRhbmEucG5nIikNCmBgYA0KDQpFbWFpbCAmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsmbmJzcDs6ICBhbGJlcnQucHJheW9nbzk5QGdtYWlsLmNvbSA8YnI+DQpSUHVicyAgJm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7OiBodHRwczovL3JwdWJzLmNvbS9hbGJlcnQyMzg5OSA8YnI+DQpKdXJ1c2FuICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDs6IFtTdGF0aXN0aWthXShodHRwczovL21hdGFuYXVuaXZlcnNpdHkuYWMuaWQvP2x5PWFjYWRlbWljJmM9c2IpIDxicj4NCkFkZHJlc3MgICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyA6IEFSQSBDZW50ZXIsIE1hdGFuYSBVbml2ZXJzaXR5IFRvd2VyIDxicj4NCiZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7Jm5ic3A7IEpsLiBDQkQgQmFyYXQgS2F2LCBSVC4xLCBDdXJ1ZyBTYW5nZXJlbmcsIEtlbGFwYSBEdWEsIFRhbmdlcmFuZywgQmFudGVuIDE1ODEwLg0KDQoqKioqDQojIExvYWQgdGhlIExpYnJhcnkgdGhhdCBXZSBORUVEDQpgYGB7cn0NCmxpYnJhcnkoRFQpICAgICAgICNMaWJyYXJ5IHVudHVrIE1lbmFtcGlsa2FuIFRhYmVsIEFnYXIgTXVkYWggRGlsaWhhdCBkaSBCcm93c2VyDQpsaWJyYXJ5KE1WTikgICAgICAjTGlicmFyeSB1bnR1ayBVamkgTXVsdGl2YXJpYXRlIE5vcm1hbA0KbGlicmFyeShNQVNTKSAgICAgI0xpYnJhcnkgdW50dWsgRnVuZ3NpIERpc2tyaW1pbmFuIEFuYWxpc2lzDQpsaWJyYXJ5KGJpb3Rvb2xzKSAjTGlicmFyeSB1bnR1ayBNZWxha3VrYW4gVWppIEJveC1NDQpgYGANCiMgTG9hZCB0aGUgSVJJUyBkYXRhYmFzZQ0KYGBge3J9DQpkYXRhKCJpcmlzIikNCmRhdGF0YWJsZShpcmlzKQ0KYGBgDQojIEFzc3VtcHRpb24gVGVzdA0KIyMgRGF0YSBWYXJpYWJlbCBJbmRlcGVuZGVuIFRlcmRpc3RyaWJ1c2kgTm9ybWFsDQpgYGB7cn0NCm12bihkYXRhID0gaXJpc1ssIGMoMTo0KV0sIG11bHRpdmFyaWF0ZVBsb3QgPSAncXEnKSAjIEhhbnlhIG1lbmdhbWJpbCBrb2xvbSB2YXJpYWJlbCBwcmVkaWt0b3INCmBgYA0KIyMgUGVyYmVkYWFuIFJhdGEtUmF0YSBBbnRhciBWYXJpYWJlbCBJbmRlcGVuZGVuDQpgYGB7cn0NCm0gPC0gbWFub3ZhKGZvcm11bGEgPSBjYmluZChpcmlzJFNlcGFsLkxlbmd0aCwgaXJpcyRTZXBhbC5XaWR0aCwgaXJpcyRQZXRhbC5MZW5ndGgsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgaXJpcyRQZXRhbC5XaWR0aCkgfiBpcmlzJFNwZWNpZXMpDQpzdW1tYXJ5KG9iamVjdCA9IG0sIHRlc3QgPSAnV2lsa3MnKQ0KYGBgDQojIE1lbXVsYWkgQW5hbGlzaXMgRGlza3JpbWluYW4NCiMjIE1lbWJ1YXQgdHJhaW5pbmcgYW5kIHRlc3QgZGF0YSBzZXQNCmBgYHtyfQ0Kc2V0LnNlZWQoMTIzKQ0KdHJhaW5faW5kZXggPC0gc2FtcGxlKHNlcShucm93KGlyaXMpKSwgc2l6ZSA9IGZsb29yKDAuNzUgKiBucm93KGlyaXMpKSwgcmVwbGFjZSA9IEYpDQp0cmFpbmluZ19kYXRhIDwtIGlyaXNbdHJhaW5faW5kZXgsIF0gDQp0ZXN0X2RhdGEgPC0gaXJpc1stdHJhaW5faW5kZXgsIF0NCmBgYA0KIyMgTWVtYmVudHVrIEZ1bmdzaSBEaXNrcmltaW5hbg0KYGBge3J9DQpsaW5lYXJEQSA8LSBsZGEoZm9ybXVsYSA9IFNwZWNpZXMgfi4sIGRhdGEgPSB0cmFpbmluZ19kYXRhKQ0KbGluZWFyREENCmBgYA0KYGBge3J9DQpwbG90KGxpbmVhckRBLCBjb2wgPSBhcy5pbnRlZ2VyKHRyYWluaW5nX2RhdGEkU3BlY2llcykpDQpgYGANCk1lbXByZWRpa3NpDQpgYGB7cn0NCnByZWRpY3RlZCA8LSBwcmVkaWN0KG9iamVjdCA9IGxpbmVhckRBLCBuZXdkYXRhID0gdGVzdF9kYXRhKQ0KdGFibGUoYWN0dWFsID0gdGVzdF9kYXRhJFNwZWNpZXMsIHByZWRpY3RlZCA9IHByZWRpY3RlZCRjbGFzcykNCmBgYA0KDQoNCiAgDQogIA0KICA=