Code
library(tidyverse)
library(RColorBrewer)
library(pheatmap)
library(factoextra)
library(kableExtra)
library(plotly)
library(DESeq2)
library(PoiClaClu)
library(vsn)
library(Glimma)
library(EnhancedVolcano)library(tidyverse)
library(RColorBrewer)
library(pheatmap)
library(factoextra)
library(kableExtra)
library(plotly)
library(DESeq2)
library(PoiClaClu)
library(vsn)
library(Glimma)
library(EnhancedVolcano)El siguientes análisis esta basado en datos referentes a la dinámica de ocupación y expresión génica del factor de transcripción TAL1, el cual es un regulador crítico en la hematopoyesis. Los autores combinaron datos ChiP-seq y RNA-seq en 6 tipos de células de ratón, correspondientes a dos líneas celulares: G1E y Megakaryocytes, donde se ha visto diferencias en la expresión. El flujo de trabajo está basado y es un complemento del [Tutorial de Análisis de Expresión Diferencial en Galaxy](https://sites.google.com/view/bioinformatica-genomica/expresi%C3%B3n-diferencial-rna-seq?authuser=0) de la Dra. Alejandra Rougon Cardozo, para llevar a cabo el DESeq con R.
Se cargan los archivos con las cuentas crudas y se crea una tabla que indica la línea celular de cada muestra.
# Se leen los archivos
G1E_rep1 <- read.table("./data/G1E_rep1.tabular", header = TRUE, sep="\t")
G1E_rep2 <- read.table("./data/G1E_rep2.tabular", header = TRUE, sep="\t")
MK_rep1 <- read.table("./data/MK_rep1.tabular", header = TRUE, sep="\t")
MK_rep2 <- read.table("./data/MK_rep2.tabular", header = TRUE, sep="\t")
# Se unen con left_join
countdata_df <- left_join(G1E_rep1, G1E_rep2) |> left_join(MK_rep1) |>
left_join(MK_rep2)
# Se transforma en una matriz
countdata <- as.matrix(dplyr::select(countdata_df, -Geneid))
row.names(countdata) <- countdata_df$Geneid
# Es necesario que la columna que contiene los nombres de las muestras se llame "names"
coldata <- data.frame(names = factor(colnames(countdata)),
cell = factor(c("G1E", "G1E", "MK", "MK")))
row.names(coldata) <- coldata$namesLa siguiente tabla muestra las dos lineas celulares G1E y Megakaryocytes con dos replicas. Y de cada una de estas lineas hay dos biblotecas pareadas de Illumina, par-forward y par-reverse. Se puede observar que hay genes no expresado (valores = 0) en ningúna de la líena célular.
Matriz de conteos
En este caso, como son pocos transcritos se muestra la matriz.
En este caso, como son pocos transcritos se muestra la matriz.
kable(countdata, align = "c") %>% kable_styling(c("striped", "hover"), full_width = F)%>% scroll_box(width="100%", height="300px", fixed_thead = TRUE)| G1E_rep1 | G1E_rep2 | MK_rep1 | MK_rep2 | |
|---|---|---|---|---|
| NM_001024952 | 9 | 8 | 0 | 1 |
| NM_080844 | 0 | 0 | 0 | 0 |
| MSTRG.7.1 | 7 | 22 | 27 | 0 |
| MSTRG.8.1 | 8 | 10 | 40 | 0 |
| MSTRG.1.1 | 10 | 8 | 4 | 0 |
| MSTRG.9.1 | 18 | 6 | 0 | 0 |
| MSTRG.26.1 | 4 | 51 | 0 | 0 |
| MSTRG.27.1 | 18 | 41 | 5 | 0 |
| NR_002840 | 9 | 22 | 15 | 0 |
| NR_028543 | 0 | 0 | 0 | 0 |
| MSTRG.20.2 | 0 | 0 | 0 | 0 |
| MSTRG.20.1 | 6 | 11 | 0 | 0 |
| NR_131029 | 0 | 0 | 0 | 0 |
| NR_131030 | 0 | 0 | 0 | 0 |
| NR_131028 | 0 | 0 | 0 | 0 |
| NM_001159930 | 0 | 0 | 0 | 0 |
| MSTRG.22.1 | 112 | 334 | 119 | 3 |
| MSTRG.23.1 | 245 | 400 | 119 | 0 |
| MSTRG.31.1 | 19 | 15 | 0 | 0 |
| MSTRG.32.1 | 213 | 291 | 48 | 5 |
| MSTRG.32.2 | 0 | 0 | 0 | 0 |
| MSTRG.33.1 | 70 | 139 | 15 | 0 |
| MSTRG.34.1 | 61 | 101 | 79 | 1 |
| NM_173424 | 1 | 0 | 0 | 0 |
| MSTRG.28.1 | 1 | 3 | 0 | 0 |
| MSTRG.28.2 | 0 | 0 | 0 | 0 |
| MSTRG.28.3 | 0 | 5 | 0 | 0 |
| NM_172644 | 4 | 5 | 0 | 0 |
| MSTRG.3.1 | 671 | 939 | 173 | 3 |
| MSTRG.4.1 | 3 | 7 | 0 | 0 |
| MSTRG.5.1 | 3 | 18 | 14 | 0 |
| NM_001039482 | 4 | 1 | 10 | 0 |
| MSTRG.24.1 | 0 | 0 | 0 | 7 |
| NM_199028 | 7 | 2 | 1 | 0 |
| MSTRG.11.1 | 375 | 607 | 531 | 6 |
| NM_009846 | 87 | 126 | 0 | 0 |
| NR_033558 | 0 | 0 | 0 | 0 |
| MSTRG.14.1 | 105 | 154 | 29 | 1 |
| MSTRG.14.2 | 1405 | 1564 | 210 | 1 |
| MSTRG.16.1 | 225 | 286 | 45 | 0 |
| MSTRG.17.1 | 166 | 182 | 265 | 5 |
| MSTRG.18.1 | 111 | 126 | 55 | 0 |
| MSTRG.6.1 | 104 | 56 | 119 | 18 |
| NM_026411 | 2 | 0 | 16 | 0 |
| MSTRG.12.1 | 22681 | 31970 | 79 | 6 |
| MSTRG.37.1 | 2 | 13 | 0 | 0 |
| MSTRG.39.1 | 269 | 490 | 3 | 0 |
| NM_030093 | 5 | 1 | 0 | 2 |
| MSTRG.41.2 | 0 | 0 | 0 | 0 |
| MSTRG.41.1 | 2 | 1 | 9 | 0 |
| MSTRG.41.3 | 0 | 1 | 1 | 0 |
| MSTRG.42.1 | 0 | 1 | 1 | 0 |
| MSTRG.42.2 | 0 | 0 | 0 | 0 |
| MSTRG.43.1 | 0 | 0 | 8 | 0 |
| MSTRG.43.2 | 0 | 0 | 0 | 0 |
| NM_010822 | 2 | 14 | 3 | 0 |
| MSTRG.46.1 | 5053 | 6558 | 808 | 149 |
| NM_010405 | 0 | 0 | 0 | 0 |
| NM_001083955 | 28 | 21 | 54 | 4 |
| NM_001033981 | 4 | 1 | 0 | 0 |
| NM_175000 | 0 | 0 | 0 | 0 |
| NM_177364 | 0 | 0 | 0 | 0 |
| NM_172799 | 0 | 0 | 0 | 1 |
| MSTRG.47.1 | 19 | 17 | 0 | 0 |
| NM_008267 | 25 | 13 | 0 | 0 |
| MSTRG.59.3 | 61 | 113 | 0 | 0 |
| MSTRG.59.4 | 0 | 0 | 0 | 0 |
| MSTRG.59.1 | 18 | 21 | 0 | 0 |
| MSTRG.59.2 | 0 | 0 | 0 | 0 |
| NR_108029 | 68 | 127 | 0 | 0 |
| NR_037977 | 0 | 0 | 0 | 0 |
| NR_029721 | 0 | 0 | 0 | 0 |
| NM_008270 | 0 | 0 | 0 | 0 |
| NM_010461 | 0 | 1 | 0 | 0 |
| NM_010460 | 1 | 0 | 0 | 0 |
| MSTRG.62.1 | 0 | 0 | 0 | 0 |
| MSTRG.62.2 | 0 | 0 | 0 | 0 |
| MSTRG.62.3 | 3 | 2 | 0 | 0 |
| NM_008374 | 0 | 0 | 0 | 0 |
| NM_001134458 | 0 | 0 | 0 | 0 |
| MSTRG.36.1 | 1857 | 2110 | 1375 | 19 |
| NM_010117 | 0 | 0 | 0 | 0 |
| NM_001291818 | 0 | 0 | 0 | 0 |
| MSTRG.45.1 | 0 | 0 | 0 | 0 |
| MSTRG.45.2 | 2 | 1 | 0 | 0 |
| NR_104306 | 0 | 0 | 0 | 0 |
| NM_181569 | 0 | 0 | 0 | 0 |
| NM_001284360 | 0 | 0 | 0 | 0 |
| NM_001284359 | 0 | 0 | 0 | 0 |
| MSTRG.52.1 | 1 | 0 | 0 | 0 |
| MSTRG.52.5 | 0 | 0 | 0 | 0 |
| MSTRG.52.3 | 3 | 5 | 6 | 1 |
| MSTRG.52.2 | 0 | 0 | 0 | 0 |
| MSTRG.52.4 | 273 | 417 | 165 | 64 |
| MSTRG.52.7 | 0 | 1 | 0 | 1 |
| MSTRG.52.6 | 0 | 2 | 0 | 0 |
| NM_001271018 | 0 | 0 | 0 | 0 |
| MSTRG.48.1 | 11092 | 14273 | 2 | 1 |
| MSTRG.50.1 | 71 | 98 | 0 | 0 |
| MSTRG.60.1 | 502 | 690 | 2 | 0 |
| MSTRG.55.1 | 171 | 186 | 2 | 0 |
| MSTRG.56.1 | 394 | 1195 | 567 | 22 |
| MSTRG.58.1 | 18 | 9 | 0 | 0 |
| NR_131758 | 2 | 1 | 0 | 0 |
| MSTRG.63.1 | 6 | 13 | 0 | 0 |
| NM_001177354 | 77 | 50 | 16 | 7 |
| NR_003368 | 0 | 0 | 0 | 0 |
| NR_132747 | 0 | 0 | 0 | 0 |
| NR_132746 | 0 | 0 | 0 | 0 |
| MSTRG.68.1 | 1 | 7 | 46 | 0 |
| MSTRG.69.1 | 5 | 11 | 132 | 2 |
| MSTRG.70.1 | 11 | 44 | 2 | 0 |
| MSTRG.71.1 | 99 | 205 | 279 | 3 |
| NM_010463 | 0 | 0 | 0 | 0 |
| NM_001024842 | 1 | 0 | 0 | 0 |
| NM_010462 | 0 | 0 | 0 | 0 |
| NR_029722 | 0 | 0 | 0 | 0 |
| MSTRG.77.1 | 154 | 174 | 0 | 0 |
| NM_008272 | 9 | 8 | 0 | 0 |
| MSTRG.78.2 | 140 | 151 | 0 | 0 |
| NM_010466 | 17 | 10 | 0 | 0 |
| MSTRG.81.1 | 7 | 12 | 0 | 0 |
| NM_010465 | 24 | 55 | 0 | 0 |
| MSTRG.80.1 | 11 | 12 | 0 | 0 |
| NM_175730 | 20 | 19 | 0 | 0 |
| NR_030526 | 21 | 32 | 0 | 0 |
| MSTRG.89.1 | 6 | 17 | 0 | 0 |
| NM_013553 | 68 | 104 | 0 | 0 |
| MSTRG.92.1 | 39 | 97 | 17 | 0 |
| MSTRG.65.3 | 0 | 0 | 0 | 0 |
| MSTRG.65.2 | 0 | 0 | 0 | 0 |
| MSTRG.65.1 | 0 | 0 | 0 | 0 |
| MSTRG.66.1 | 4 | 11 | 48 | 2 |
| NR_047528 | 0 | 0 | 0 | 0 |
| MSTRG.73.1 | 8 | 20 | 5 | 0 |
| MSTRG.79.1 | 1793 | 1751 | 2 | 4 |
| MSTRG.74.1 | 1 | 7 | 0 | 0 |
| MSTRG.75.1 | 1516 | 1618 | 4 | 1 |
| MSTRG.82.2 | 0 | 2 | 0 | 0 |
| MSTRG.82.1 | 0 | 0 | 0 | 0 |
| MSTRG.82.3 | 0 | 0 | 0 | 0 |
| MSTRG.82.5 | 0 | 0 | 0 | 0 |
| MSTRG.82.4 | 5 | 0 | 0 | 0 |
| MSTRG.82.6 | 0 | 0 | 0 | 0 |
| MSTRG.87.1 | 1980 | 2517 | 0 | 0 |
| MSTRG.88.1 | 44 | 159 | 0 | 0 |
| MSTRG.90.1 | 21 | 66 | 0 | 0 |
| MSTRG.85.1 | 100 | 218 | 1 | 0 |
| MSTRG.84.1 | 82 | 99 | 0 | 0 |
| MSTRG.91.1 | 89 | 231 | 0 | 1 |
| MSTRG.95.1 | 758 | 963 | 1 | 1 |
| MSTRG.97.1 | 8 | 7 | 0 | 0 |
| MSTRG.97.2 | 217 | 284 | 0 | 0 |
| MSTRG.93.1 | 132 | 85 | 6 | 1 |
| NR_045743 | 0 | 4 | 0 | 0 |
| MSTRG.94.1 | 46 | 95 | 39 | 0 |
| NM_007757 | 634 | 495 | 17 | 2 |
| NM_171826 | 0 | 0 | 0 | 0 |
| NM_001252451 | 0 | 0 | 0 | 0 |
| NM_001252450 | 0 | 0 | 0 | 0 |
| NM_172469 | 0 | 0 | 0 | 0 |
| MSTRG.108.1 | 142 | 246 | 1347 | 15 |
| MSTRG.110.1 | 249 | 199 | 659 | 49 |
| MSTRG.111.1 | 24 | 36 | 56 | 2 |
| MSTRG.112.1 | 41 | 98 | 41 | 2 |
| MSTRG.113.1 | 20066 | 23364 | 27300 | 3946 |
| MSTRG.104.1 | 1 | 0 | 170 | 21 |
| NM_001271687 | 0 | 0 | 0 | 0 |
| NM_001271690 | 0 | 0 | 0 | 0 |
| NM_001271692 | 0 | 0 | 0 | 0 |
| NM_001271694 | 0 | 0 | 0 | 0 |
| NM_019664 | 0 | 0 | 0 | 0 |
| NM_001271695 | 0 | 0 | 0 | 0 |
| NM_001271693 | 0 | 0 | 0 | 0 |
| NM_001271691 | 0 | 0 | 0 | 0 |
| NM_001271689 | 0 | 0 | 0 | 0 |
| NM_001039057 | 0 | 0 | 0 | 0 |
| NM_001039056 | 0 | 0 | 0 | 0 |
| MSTRG.106.1 | 181 | 251 | 246 | 0 |
| MSTRG.107.1 | 9 | 23 | 40 | 1 |
| MSTRG.98.1 | 0 | 0 | 1 | 0 |
| MSTRG.99.1 | 0 | 0 | 2 | 0 |
| NM_001033404 | 1 | 0 | 0 | 0 |
| NM_175011 | 0 | 0 | 0 | 0 |
| MSTRG.100.1 | 68667 | 77846 | 2722 | 86 |
| NM_001162955 | 0 | 0 | 0 | 0 |
| MSTRG.103.1 | 226 | 358 | 80 | 8 |
| NM_147001 | 0 | 0 | 0 | 0 |
| NM_009821 | 0 | 0 | 0 | 0 |
| NM_001111023 | 0 | 0 | 0 | 0 |
| NM_001111022 | 0 | 0 | 0 | 0 |
| NM_001111021 | 0 | 0 | 0 | 0 |
| NM_001302154 | 0 | 0 | 0 | 0 |
| NM_001302153 | 0 | 0 | 0 | 0 |
| NM_133659 | 0 | 0 | 0 | 0 |
| NM_001302183 | 0 | 0 | 0 | 0 |
| NM_001302179 | 0 | 0 | 0 | 0 |
| NM_001302152 | 0 | 0 | 0 | 0 |
| MSTRG.115.1 | 1 | 6 | 70 | 0 |
| NM_178652 | 0 | 0 | 0 | 0 |
| NM_001271631 | 0 | 0 | 0 | 0 |
| NM_001271630 | 0 | 0 | 0 | 0 |
| NM_001145920 | 0 | 0 | 0 | 0 |
| NM_009820 | 0 | 0 | 0 | 0 |
| NM_001271627 | 0 | 0 | 0 | 0 |
| NM_001146038 | 0 | 0 | 0 | 0 |
| MSTRG.116.1 | 445 | 449 | 236 | 6 |
| NM_029257 | 1 | 0 | 0 | 0 |
| NM_010721 | 38 | 32 | 10 | 3 |
| MSTRG.122.1 | 31 | 40 | 19 | 0 |
| MSTRG.122.2 | 10 | 31 | 2 | 0 |
| MSTRG.124.1 | 305 | 247 | 42 | 6 |
| MSTRG.124.2 | 0 | 0 | 0 | 0 |
| MSTRG.126.1 | 851 | 1401 | 208 | 15 |
| NM_177115 | 0 | 4 | 0 | 0 |
| MSTRG.119.1 | 27 | 58 | 39 | 1 |
| MSTRG.120.1 | 5 | 4 | 1 | 1 |
| MSTRG.123.1 | 2 | 22 | 2 | 0 |
| NM_008275 | 0 | 0 | 2 | 0 |
| NM_008274 | 0 | 0 | 0 | 0 |
| NR_073086 | 0 | 0 | 0 | 1 |
| NM_008273 | 0 | 0 | 0 | 0 |
| NM_013554 | 0 | 0 | 0 | 1 |
| NM_013555 | 0 | 0 | 0 | 0 |
| MSTRG.129.1 | 16 | 15 | 0 | 0 |
| MSTRG.129.2 | 4 | 2 | 0 | 0 |
| NM_010468 | 0 | 0 | 0 | 0 |
| NM_001290731 | 7 | 4 | 0 | 0 |
| NM_008276 | 0 | 0 | 0 | 0 |
| NM_001290730 | 0 | 0 | 0 | 0 |
| NM_010469 | 0 | 2 | 0 | 0 |
| NR_029566 | 0 | 0 | 0 | 0 |
| NR_110447 | 0 | 0 | 0 | 0 |
| NM_010467 | 0 | 0 | 0 | 0 |
| NM_001077514 | 0 | 0 | 0 | 0 |
| NM_011393 | 0 | 0 | 0 | 0 |
| NM_001077515 | 0 | 0 | 0 | 0 |
| MSTRG.128.1 | 0 | 0 | 0 | 5 |
| MSTRG.137.1 | 229 | 467 | 1266 | 19 |
| MSTRG.138.1 | 396 | 729 | 750 | 25 |
| MSTRG.140.1 | 5 | 18 | 1 | 0 |
| MSTRG.139.1 | 3 | 5 | 4 | 1 |
| NM_007967 | 0 | 0 | 6 | 3 |
| NR_027899 | 0 | 0 | 0 | 0 |
| MSTRG.131.2 | 13 | 11 | 0 | 0 |
| MSTRG.131.3 | 113 | 163 | 0 | 0 |
| MSTRG.134.1 | 987 | 952 | 0 | 0 |
| MSTRG.135.1 | 13 | 14 | 0 | 0 |
| NR_110445 | 1 | 0 | 0 | 0 |
| NM_001177785 | 0 | 0 | 0 | 0 |
| NM_001177787 | 0 | 0 | 0 | 0 |
| NM_009851 | 0 | 0 | 0 | 0 |
| NM_001177786 | 0 | 0 | 0 | 0 |
| NM_001039151 | 0 | 0 | 0 | 0 |
| NM_001039150 | 0 | 0 | 0 | 0 |
| NM_001111026 | 0 | 0 | 0 | 0 |
| NM_001111027 | 0 | 0 | 0 | 0 |
| NM_009822 | 0 | 0 | 0 | 0 |
| MSTRG.142.1 | 909 | 1635 | 552 | 1 |
| MSTRG.142.2 | 1 | 0 | 0 | 0 |
| MSTRG.142.3 | 0 | 0 | 0 | 0 |
| NM_001304555 | 0 | 0 | 0 | 0 |
| NM_009185 | 0 | 0 | 0 | 0 |
| NM_001304559 | 0 | 0 | 0 | 0 |
| NM_001304553 | 0 | 0 | 0 | 0 |
| NM_001304551 | 0 | 0 | 0 | 0 |
| NM_011527 | 14 | 18 | 26 | 11 |
| MSTRG.150.2 | 47 | 69 | 68 | 8 |
| NM_001287388 | 0 | 0 | 0 | 0 |
| MSTRG.152.1 | 1 | 2 | 0 | 0 |
| NM_026018 | 0 | 0 | 0 | 0 |
| NM_001164558 | 0 | 0 | 0 | 0 |
| NM_001164557 | 0 | 0 | 0 | 0 |
| NR_131922 | 2 | 0 | 57 | 0 |
| NM_025647 | 17 | 36 | 14 | 0 |
| MSTRG.144.1 | 340 | 635 | 18 | 0 |
| MSTRG.145.1 | 13 | 14 | 1 | 0 |
| MSTRG.146.1 | 373 | 493 | 100 | 0 |
| MSTRG.151.1 | 42554 | 41020 | 7676 | 617 |
| MSTRG.153.1 | 1008 | 1529 | 393 | 12 |
| MSTRG.154.1 | 2865 | 2689 | 820 | 17 |
| MSTRG.149.2 | 0 | 0 | 0 | 0 |
| MSTRG.149.1 | 0 | 1 | 2 | 0 |
| NM_001003947 | 0 | 0 | 1 | 0 |
| MSTRG.155.1 | 0 | 0 | 0 | 0 |
| MSTRG.155.3 | 0 | 0 | 0 | 0 |
| NM_009141 | 2 | 2 | 48 | 0 |
| NM_023785 | 0 | 0 | 194 | 4 |
| NM_019932 | 1 | 3 | 505 | 3 |
| NM_203320 | 3 | 1 | 0 | 0 |
| NM_011339 | 0 | 0 | 8 | 0 |
| MSTRG.162.1 | 0 | 0 | 0 | 6 |
| MSTRG.166.1 | 1721 | 3043 | 2152 | 55 |
| NM_031408 | 264 | 230 | 164 | 5 |
| MSTRG.169.1 | 34298 | 39464 | 18665 | 1336 |
| NM_031404 | 4 | 7 | 0 | 0 |
| NM_015799 | 0 | 0 | 0 | 0 |
| NM_001289509 | 0 | 0 | 0 | 0 |
| NM_001289511 | 0 | 0 | 0 | 0 |
| NM_001289507 | 0 | 2 | 0 | 0 |
| MSTRG.179.1 | 2195 | 2118 | 40 | 2 |
| MSTRG.172.1 | 11 | 17 | 12 | 0 |
| MSTRG.175.1 | 54 | 47 | 17 | 0 |
| MSTRG.176.1 | 29 | 63 | 59 | 2 |
| MSTRG.183.1 | 357 | 459 | 171 | 8 |
| MSTRG.181.1 | 93 | 140 | 3 | 2 |
| MSTRG.182.1 | 677 | 620 | 114 | 23 |
| MSTRG.187.1 | 228 | 363 | 43 | 2 |
| MSTRG.187.3 | 1 | 2 | 0 | 0 |
| MSTRG.187.2 | 0 | 0 | 0 | 0 |
| MSTRG.187.4 | 1 | 5 | 0 | 0 |
| MSTRG.187.5 | 17 | 25 | 1 | 0 |
| MSTRG.184.1 | 3 | 1 | 29 | 0 |
| MSTRG.189.1 | 1 | 9 | 27 | 1 |
| MSTRG.191.1 | 8218 | 37329 | 101935 | 754 |
| MSTRG.192.1 | 85704 | 188296 | 253635 | 11114 |
| NM_007984 | 1 | 0 | 0 | 0 |
| MSTRG.197.1 | 1644 | 1591 | 1460 | 147 |
| MSTRG.198.1 | 4480 | 6473 | 1174 | 93 |
| NR_040686 | 0 | 0 | 0 | 0 |
| NR_040429 | 0 | 0 | 6 | 0 |
| MSTRG.201.1 | 8 | 36 | 31 | 0 |
| MSTRG.202.1 | 22 | 79 | 47 | 0 |
| MSTRG.203.1 | 16249 | 22268 | 6590 | 13 |
| MSTRG.147.1 | 0 | 0 | 43 | 0 |
| MSTRG.157.1 | 0 | 0 | 0 | 0 |
| MSTRG.157.2 | 28 | 37 | 19266 | 468 |
| MSTRG.161.1 | 73 | 160 | 63261 | 856 |
| MSTRG.163.1 | 18 | 42 | 800 | 41 |
| NM_011741 | 1 | 1 | 0 | 2 |
| NM_007942 | 0 | 0 | 0 | 0 |
| NM_001312875 | 0 | 0 | 0 | 0 |
| NM_028753 | 15 | 13 | 7 | 0 |
| MSTRG.167.2 | 111 | 86 | 0 | 0 |
| MSTRG.167.1 | 0 | 0 | 0 | 0 |
| MSTRG.167.3 | 0 | 0 | 0 | 0 |
| NM_010312 | 41 | 18 | 2 | 7 |
| NR_105846 | 0 | 0 | 0 | 0 |
| MSTRG.186.1 | 31 | 54 | 0 | 1 |
| MSTRG.186.2 | 1 | 4 | 0 | 0 |
| MSTRG.186.3 | 0 | 0 | 0 | 0 |
| NM_001122730 | 0 | 0 | 0 | 0 |
| NM_178242 | 0 | 0 | 0 | 0 |
| MSTRG.180.1 | 3 | 7 | 0 | 0 |
| MSTRG.171.1 | 156 | 133 | 38 | 1 |
| MSTRG.173.1 | 10 | 20 | 5 | 0 |
| MSTRG.174.1 | 11 | 13 | 1 | 0 |
| MSTRG.177.1 | 0 | 0 | 0 | 6 |
| NM_001033312 | 1 | 0 | 0 | 9 |
| NM_007393 | 121 | 133 | 486 | 7 |
| MSTRG.194.1 | 1 | 0 | 31 | 0 |
| MSTRG.195.1 | 1 | 0 | 97 | 16 |
| NM_207110 | 0 | 0 | 0 | 0 |
| NM_080561 | 0 | 0 | 0 | 0 |
| NR_102383 | 0 | 0 | 0 | 0 |
| NR_102384 | 0 | 0 | 0 | 0 |
| NM_001313894 | 0 | 0 | 1 | 6 |
| NM_010439 | 1 | 2 | 0 | 0 |
| NR_015478 | 0 | 0 | 0 | 0 |
| NM_133933 | 11 | 6 | 3 | 0 |
| MSTRG.199.1 | 1 | 8 | 0 | 0 |
| MSTRG.204.1 | 26 | 35 | 0 | 0 |
| MSTRG.208.1 | 4 | 14 | 0 | 0 |
| MSTRG.209.1 | 21 | 28 | 0 | 0 |
| MSTRG.210.1 | 15 | 24 | 0 | 9 |
| MSTRG.211.1 | 14 | 18 | 3 | 0 |
| MSTRG.212.1 | 21 | 37 | 0 | 0 |
| MSTRG.213.1 | 21 | 32 | 1 | 1 |
| MSTRG.214.1 | 326 | 376 | 0 | 0 |
| MSTRG.215.1 | 378 | 702 | 18 | 1 |
| MSTRG.215.2 | 11 | 15 | 15 | 0 |
| MSTRG.215.3 | 3 | 11 | 0 | 0 |
| NM_008090 | 316 | 224 | 17 | 2 |
| NM_019964 | 2 | 0 | 0 | 0 |
| MSTRG.223.1 | 2633 | 3146 | 728 | 14 |
| MSTRG.206.1 | 1795 | 2847 | 3755 | 41 |
| NR_105795 | 0 | 6 | 0 | 0 |
| MSTRG.216.1 | 65 | 48 | 0 | 0 |
| MSTRG.221.1 | 233983 | 233798 | 13104 | 1015 |
| NM_023060 | 4 | 0 | 1 | 0 |
| MSTRG.217.1 | 7 | 0 | 0 | 0 |
| MSTRG.219.1 | 3 | 12 | 2 | 0 |
| MSTRG.229.2 | 58 | 49 | 32 | 1 |
| MSTRG.229.1 | 4674 | 7074 | 15880 | 994 |
| MSTRG.225.1 | 2 | 0 | 0 | 0 |
| MSTRG.227.1 | 2 | 5 | 73 | 5 |
| MSTRG.231.1 | 0 | 0 | 0 | 0 |
| MSTRG.231.2 | 0 | 0 | 0 | 0 |
| NM_013616 | 0 | 0 | 0 | 0 |
| NM_147119 | 0 | 0 | 0 | 0 |
| MSTRG.218.1 | 83 | 599 | 162 | 0 |
| NM_146821 | 0 | 0 | 0 | 0 |
| NM_147098 | 0 | 0 | 0 | 0 |
| NM_013621 | 0 | 0 | 0 | 0 |
| NM_013620 | 0 | 0 | 0 | 0 |
| NM_013619 | 0 | 0 | 0 | 0 |
| NM_016956 | 2 | 0 | 15 | 0 |
| NM_001278161 | 11 | 8 | 17 | 7 |
| NM_001127686 | 0 | 0 | 0 | 0 |
| NM_008219 | 0 | 0 | 0 | 0 |
| NM_008221 | 0 | 0 | 1 | 0 |
| NM_013618 | 0 | 0 | 0 | 0 |
| NM_013617 | 1 | 0 | 0 | 0 |
| MSTRG.234.1 | 20 | 36 | 32 | 2 |
| MSTRG.235.1 | 45 | 71 | 21 | 0 |
| MSTRG.232.1 | 7 | 12 | 13 | 0 |
| MSTRG.237.1 | 154 | 292 | 15 | 0 |
| MSTRG.238.1 | 168 | 241 | 30 | 0 |
| MSTRG.239.1 | 43 | 55 | 0 | 0 |
| MSTRG.240.1 | 0 | 2 | 0 | 0 |
| NM_133224 | 22 | 15 | 15 | 0 |
| NM_198101 | 19 | 15 | 0 | 0 |
| NM_020028 | 1 | 2 | 0 | 0 |
| NM_001024954 | 0 | 0 | 0 | 0 |
| MSTRG.242.1 | 4 | 0 | 31 | 1 |
| MSTRG.248.1 | 0 | 0 | 0 | 0 |
| MSTRG.248.2 | 9 | 13 | 9 | 2 |
| MSTRG.255.1 | 7627 | 12787 | 8783 | 73 |
| NM_032004 | 33 | 19 | 274 | 23 |
| MSTRG.258.1 | 12 | 8 | 8 | 3 |
| MSTRG.258.3 | 0 | 0 | 0 | 0 |
| MSTRG.258.2 | 0 | 0 | 0 | 0 |
| MSTRG.258.4 | 0 | 0 | 0 | 0 |
| MSTRG.259.1 | 23 | 57 | 0 | 0 |
| MSTRG.263.1 | 1434 | 1415 | 14 | 4 |
| NM_026014 | 59 | 54 | 0 | 2 |
| MSTRG.270.1 | 7639 | 18610 | 9063 | 381 |
| MSTRG.272.1 | 3 | 2 | 0 | 0 |
| MSTRG.272.2 | 44 | 64 | 100 | 10 |
| MSTRG.273.2 | 0 | 0 | 0 | 0 |
| MSTRG.273.1 | 0 | 0 | 0 | 0 |
| NM_021502 | 5 | 2 | 0 | 0 |
| MSTRG.276.1 | 0 | 1 | 57 | 0 |
| MSTRG.280.1 | 1115 | 1680 | 2242 | 207 |
| MSTRG.280.2 | 6 | 7 | 0 | 0 |
| MSTRG.280.3 | 0 | 0 | 0 | 0 |
| MSTRG.278.1 | 3 | 14 | 0 | 0 |
| NM_144932 | 0 | 0 | 0 | 0 |
| NM_001200023 | 7 | 0 | 0 | 0 |
| NM_177899 | 4 | 1 | 0 | 3 |
| MSTRG.244.1 | 704 | 576 | 118 | 22 |
| MSTRG.244.3 | 1 | 6 | 0 | 0 |
| MSTRG.244.2 | 0 | 0 | 0 | 0 |
| MSTRG.244.4 | 0 | 0 | 0 | 0 |
| MSTRG.245.1 | 203 | 642 | 197 | 9 |
| MSTRG.249.2 | 1 | 6 | 0 | 0 |
| MSTRG.249.1 | 0 | 0 | 0 | 0 |
| MSTRG.249.3 | 15 | 24 | 1 | 0 |
| MSTRG.251.2 | 0 | 0 | 0 | 0 |
| MSTRG.251.1 | 2 | 5 | 1 | 0 |
| MSTRG.253.1 | 30 | 47 | 14 | 0 |
| MSTRG.246.1 | 108 | 84 | 5 | 1 |
| MSTRG.246.2 | 7 | 11 | 5 | 0 |
| NM_026818 | 0 | 0 | 9 | 1 |
| NM_023312 | 9 | 18 | 44 | 0 |
| NM_001113346 | 0 | 0 | 0 | 0 |
| NM_145596 | 0 | 0 | 0 | 0 |
| NM_001286450 | 0 | 0 | 0 | 0 |
| NM_001037298 | 23 | 13 | 143 | 13 |
| MSTRG.264.1 | 0 | 4 | 29 | 0 |
| MSTRG.265.1 | 0 | 2 | 26 | 0 |
| MSTRG.260.1 | 0 | 0 | 8 | 0 |
| MSTRG.261.1 | 0 | 6 | 5 | 0 |
| MSTRG.266.1 | 38325 | 39909 | 2392 | 156 |
| MSTRG.268.1 | 31413 | 32063 | 3343 | 337 |
| NM_009698 | 1 | 3 | 0 | 0 |
| MSTRG.269.1 | 0 | 8 | 0 | 0 |
| NM_016722 | 0 | 0 | 0 | 0 |
| NM_001193645 | 0 | 0 | 0 | 0 |
| MSTRG.275.1 | 45 | 85 | 86 | 0 |
| NM_001007462 | 0 | 1 | 0 | 2 |
| NR_105821 | 0 | 0 | 0 | 0 |
| NM_177289 | 0 | 0 | 0 | 0 |
| NM_001109873 | 0 | 0 | 0 | 0 |
| NM_009824 | 8 | 2 | 2 | 0 |
| MSTRG.277.1 | 6 | 6 | 14 | 0 |
| MSTRG.282.1 | 12 | 17 | 79 | 0 |
| MSTRG.283.1 | 109 | 175 | 136 | 0 |
| MSTRG.284.3 | 0 | 0 | 0 | 0 |
| MSTRG.284.2 | 0 | 0 | 0 | 0 |
| MSTRG.284.1 | 0 | 0 | 0 | 0 |
| MSTRG.288.3 | 0 | 0 | 0 | 0 |
| MSTRG.288.2 | 0 | 0 | 0 | 0 |
| MSTRG.288.1 | 0 | 0 | 0 | 0 |
| NM_025977 | 0 | 0 | 0 | 0 |
| NM_001164614 | 0 | 0 | 0 | 0 |
| NM_001290299 | 0 | 0 | 0 | 0 |
| NM_144935 | 0 | 0 | 0 | 0 |
| NM_025870 | 101 | 102 | 85 | 0 |
| MSTRG.294.1 | 12420 | 16940 | 11883 | 715 |
| MSTRG.296.1 | 0 | 0 | 69 | 0 |
| NM_008925 | 0 | 0 | 0 | 0 |
| NM_001293651 | 0 | 0 | 0 | 0 |
| NM_001293650 | 0 | 0 | 0 | 0 |
| MSTRG.306.2 | 0 | 0 | 0 | 0 |
| MSTRG.306.1 | 0 | 0 | 0 | 0 |
| MSTRG.306.3 | 0 | 0 | 0 | 0 |
| MSTRG.301.1 | 0 | 0 | 41 | 0 |
| MSTRG.302.1 | 0 | 0 | 77 | 0 |
| NM_019659 | 0 | 0 | 0 | 0 |
| NM_001168354 | 0 | 0 | 0 | 0 |
| MSTRG.308.1 | 3 | 15 | 133 | 12 |
| MSTRG.309.1 | 287 | 420 | 5268 | 111 |
| MSTRG.310.1 | 1 | 0 | 0 | 11 |
| MSTRG.311.1 | 207 | 407 | 2999 | 46 |
| MSTRG.313.1 | 2 | 0 | 65 | 0 |
| MSTRG.314.1 | 2 | 4 | 178 | 9 |
| NM_031874 | 1 | 0 | 5 | 1 |
| NM_001253869 | 0 | 0 | 0 | 0 |
| NM_178577 | 0 | 0 | 0 | 0 |
| NR_045606 | 0 | 0 | 0 | 2 |
| NM_001253870 | 0 | 0 | 0 | 0 |
| NM_001253868 | 0 | 0 | 0 | 0 |
| NM_001253867 | 0 | 0 | 0 | 0 |
| MSTRG.290.1 | 0 | 4 | 0 | 0 |
| MSTRG.291.1 | 15 | 3 | 0 | 1 |
| MSTRG.292.1 | 7 | 12 | 20 | 9 |
| MSTRG.298.1 | 0 | 1 | 0 | 0 |
| MSTRG.298.4 | 0 | 0 | 0 | 0 |
| MSTRG.298.3 | 0 | 0 | 0 | 0 |
| MSTRG.298.2 | 0 | 0 | 0 | 0 |
| MSTRG.299.1 | 322 | 295 | 148 | 6 |
| NR_132099 | 0 | 0 | 0 | 0 |
| MSTRG.285.1 | 110 | 143 | 16 | 0 |
| MSTRG.287.1 | 62 | 83 | 54 | 3 |
| NM_010149 | 15 | 16 | 43 | 0 |
| NM_023622 | 0 | 0 | 1 | 0 |
| NM_029939 | 0 | 0 | 0 | 0 |
| NM_001163787 | 0 | 0 | 0 | 0 |
| MSTRG.304.1 | 0 | 0 | 0 | 0 |
| MSTRG.304.2 | 0 | 0 | 0 | 0 |
| MSTRG.304.3 | 0 | 0 | 0 | 0 |
| MSTRG.304.4 | 0 | 0 | 0 | 0 |
| NM_010487 | 0 | 1 | 0 | 2 |
| NM_177318 | 0 | 0 | 0 | 0 |
| NM_001310759 | 0 | 0 | 0 | 0 |
| NR_030448 | 0 | 0 | 0 | 0 |
| NM_010605 | 0 | 0 | 0 | 0 |
| NM_008026 | 5 | 8 | 23 | 7 |
| MSTRG.312.1 | 6 | 15 | 500 | 49 |
| NM_138604 | 0 | 0 | 0 | 0 |
| NM_001290536 | 0 | 0 | 0 | 0 |
| NM_001290537 | 0 | 0 | 0 | 0 |
| NM_138606 | 4 | 3 | 6 | 0 |
| NM_001083937 | 0 | 0 | 0 | 0 |
| NM_078484 | 0 | 0 | 0 | 0 |
| MSTRG.328.1 | 9891 | 11411 | 9337 | 283 |
| MSTRG.329.1 | 51 | 144 | 12 | 0 |
| NR_132589 | 0 | 0 | 0 | 0 |
| NM_011591 | 0 | 0 | 0 | 0 |
| NM_001313693 | 0 | 0 | 0 | 0 |
| NM_013892 | 0 | 0 | 1 | 0 |
| MSTRG.333.1 | 359 | 639 | 105 | 48 |
| MSTRG.334.1 | 43 | 99 | 16 | 0 |
| MSTRG.335.1 | 102 | 191 | 0 | 0 |
| MSTRG.335.2 | 0 | 0 | 0 | 0 |
| MSTRG.340.1 | 5064 | 6160 | 16401 | 3518 |
| MSTRG.338.1 | 1 | 5 | 12 | 0 |
| MSTRG.343.1 | 30 | 22 | 3 | 0 |
| MSTRG.343.2 | 0 | 0 | 0 | 0 |
| NR_131207 | 1 | 0 | 0 | 0 |
| MSTRG.353.1 | 2 | 4 | 0 | 0 |
| MSTRG.353.2 | 7 | 4 | 4 | 0 |
| MSTRG.355.1 | 159 | 421 | 106 | 1 |
| MSTRG.356.1 | 220 | 251 | 89 | 15 |
| MSTRG.356.2 | 2 | 5 | 0 | 0 |
| MSTRG.356.4 | 0 | 1 | 0 | 0 |
| MSTRG.356.3 | 0 | 0 | 0 | 0 |
| MSTRG.356.5 | 22 | 59 | 4 | 0 |
| MSTRG.356.7 | 0 | 0 | 0 | 0 |
| MSTRG.356.6 | 5 | 8 | 0 | 0 |
| MSTRG.356.10 | 0 | 0 | 0 | 0 |
| MSTRG.356.12 | 0 | 0 | 0 | 0 |
| MSTRG.356.8 | 21 | 31 | 0 | 0 |
| MSTRG.356.9 | 0 | 0 | 0 | 0 |
| MSTRG.356.11 | 0 | 0 | 0 | 0 |
| MSTRG.356.13 | 0 | 0 | 0 | 0 |
| MSTRG.356.15 | 0 | 0 | 0 | 0 |
| MSTRG.356.14 | 0 | 0 | 0 | 0 |
| NM_009767 | 0 | 0 | 0 | 0 |
| NM_009440 | 0 | 0 | 0 | 0 |
| NR_002844 | 1 | 7 | 145 | 0 |
| MSTRG.347.1 | 0 | 2 | 618 | 3 |
| MSTRG.348.1 | 0 | 0 | 52 | 0 |
| MSTRG.349.1 | 1 | 1 | 89 | 0 |
| MSTRG.350.1 | 0 | 2 | 155 | 10 |
| NR_015508 | 0 | 0 | 0 | 2 |
| NR_033398 | 4 | 0 | 0 | 0 |
| NR_037298 | 0 | 0 | 0 | 0 |
| MSTRG.316.1 | 9047 | 11590 | 7512 | 644 |
| MSTRG.317.1 | 25 | 39 | 3 | 0 |
| MSTRG.318.3 | 0 | 0 | 0 | 0 |
| MSTRG.318.2 | 0 | 0 | 0 | 0 |
| MSTRG.318.1 | 16 | 16 | 82 | 1 |
| MSTRG.320.1 | 25 | 27 | 286 | 13 |
| MSTRG.325.1 | 1121 | 1148 | 639 | 36 |
| MSTRG.325.2 | 55 | 93 | 88 | 2 |
| MSTRG.325.3 | 0 | 0 | 0 | 0 |
| NM_019478 | 0 | 0 | 0 | 0 |
| NM_001252528 | 0 | 0 | 0 | 0 |
| NM_001252529 | 0 | 0 | 0 | 0 |
| MSTRG.331.1 | 9107 | 11549 | 7682 | 576 |
| MSTRG.322.1 | 0 | 0 | 52 | 6 |
| MSTRG.323.1 | 0 | 0 | 83 | 9 |
| NM_181548 | 0 | 0 | 0 | 0 |
| NM_010413 | 0 | 0 | 0 | 0 |
| NM_001130416 | 0 | 0 | 0 | 0 |
| NM_008089 | 13 | 14 | 15 | 3 |
| MSTRG.341.1 | 20 | 39 | 19 | 1 |
| MSTRG.336.1 | 10 | 14 | 6 | 0 |
| NM_027227 | 0 | 2 | 0 | 0 |
| NM_001290716 | 0 | 0 | 0 | 0 |
| NM_011514 | 0 | 0 | 0 | 0 |
| MSTRG.352.1 | 9 | 18 | 0 | 0 |
| NR_015505 | 9 | 8 | 0 | 0 |
| MSTRG.346.2 | 0 | 0 | 0 | 0 |
| MSTRG.346.1 | 1 | 2 | 0 | 0 |
| NR_001570 | 0 | 0 | 0 | 0 |
| NR_001463 | 0 | 5 | 0 | 0 |
| MSTRG.344.1 | 29 | 95 | 0 | 0 |
| MSTRG.357.1 | 5 | 12 | 1 | 0 |
| MSTRG.361.1 | 17 | 7 | 79 | 5 |
| MSTRG.362.1 | 0 | 1 | 23 | 0 |
| MSTRG.358.1 | 0 | 0 | 33 | 0 |
| MSTRG.359.1 | 0 | 0 | 27 | 0 |
| NR_028381 | 0 | 0 | 1 | 0 |
| NR_028380 | 0 | 0 | 0 | 0 |
| NR_030558 | 0 | 0 | 0 | 0 |
| NR_030418 | 0 | 0 | 0 | 0 |
kable(coldata, align = "c") %>% kable_styling(c("striped", "hover"), full_width = F)%>% scroll_box(width="50%", height="200px", fixed_thead = TRUE)| names | cell | |
|---|---|---|
| G1E_rep1 | G1E_rep1 | G1E |
| G1E_rep2 | G1E_rep2 | G1E |
| MK_rep1 | MK_rep1 | MK |
| MK_rep2 | MK_rep2 | MK |
Con la matriz de conteos y la tabla con la información de la condición experimental (en este caso línea celular) se crea un objeto de la clase DESeqDataSet, el cual tiene una fórmula de diseño asociada. La formula de diseño indica qué columnas de la tabla de información de las muestras especifican el diseño experimental y cómo se deben utilizar estos factores en el análisis. Aquí se usa la formula design = ~ cell. A continuación se muestra la información del objeto generado.
dds <- DESeqDataSetFromMatrix(countData = countdata,
colData = coldata,
design = ~ cell)
dds$cell <- relevel(dds$cell, "MK")
ddsclass: DESeqDataSet
dim: 629 4
metadata(1): version
assays(1): counts
rownames(629): NM_001024952 NM_080844 ... NR_030558 NR_030418
rowData names(0):
colnames(4): G1E_rep1 G1E_rep2 MK_rep1 MK_rep2
colData names(2): names cell
A partir de este objeto se puede acceder a la matriz de conteos por medio de las funciones counts(dds) o assay(dds); y a la tabla con la información de las muestras con colData(dds).
Dado que en la matriz de conteos existen muchas filas que sólo contienen ceros, estas se eliminan.
# Número inicial de filas
nrow(dds)[1] 629
keep <- rowSums(counts(dds))>1
dds <- dds[keep, ]
# Número de filas después del filtro
nrow(dds)[1] 359
La normalización en DESeq es crucial ya que los datos de cuentas crudas de RNA-seq pueden estar sujetos a variaciones técnicas y biológicas que pueden dificultar la comparación entre las muestras. La normalización tiene como objetivo corregir estas variaciones para que los datos sean más comparables y se puedan realizar análisis de expresión diferencial más confiables.
DESeq utiliza un enfoque llamado “normalización de factores de tamaño” para lograr esto. El proceso general de normalización en DESeq involucra los siguientes pasos:
1. Cálculo de factores de tamaño (size factor): Para cada muestra, se calcula un “factor de tamaño” que ajusta los conteos brutos para reflejar la cantidad total de lecturas secuenciadas en esa muestra en relación con la cantidad total de lecturas en todas las muestras. Los factores de tamaño son esenciales para tener en cuenta las diferencias en la profundidad de secuenciación entre las muestras. El factor de tamaño para la \(j\)-ésima columna (muestra) está dado por:
\[\begin{equation} s_j=\underset{i: K_i^{R} \neq 0}{mediana} \frac{K_{i j}}{K_i^{R}} \quad \text{ donde } \quad K_i^{R}=\left(\prod_{j=1}^m K_{i j}\right)^{1 / m} \end{equation}\]2. Aplicación de factores de tamaño: Se aplican los factores de tamaño a los datos de conteo de cada muestra, dividiendo las cuents crudas por el factor de tamaño correspondiente. Esto tiene el efecto de normalizar los datos para que sean comparables entre todas las muestras.
A menudo, después de la normalización, a los datos se les aplica alguna transformación para reducir la heterocedasticidad y hacer que los datos sean más adecuados para análisis estadísticos posteriores. DESeq2 cuenta con dos transformaciones para datos de conteo que estabilizan la varianza: variance stabilizing transformation (VST) y la regularized-logarithm transformation (rlog).
Gráfica de medias y desviación estándar, alta heterocedasticidad.
meanSdPlot(counts(dds), ranks = FALSE)A continuación se aplica la normalización a la matriz de cuentas crudas, además de aplicar las transformaciones VST y rlog (el diseño del experimento no contribuye a la tendencia esperada media-varianza). Para mostrar los efectos de las transformaciones se hace un scatterplot de las primeras dos muestras con los valores obtenidos.
# Normalización
dds <- estimateSizeFactors(dds)
# variance stabilizing transformation (VST), la función vst() se utiliza para conjuntos con muchos datos, en esta caso utilizamos la siguiente función:
vsd <- varianceStabilizingTransformation(dds, blind = FALSE)
# regularized-log transformation (rlog)
rld <- rlog(dds, blind=FALSE)# Juntar los datos de las tres normalizaciones
df <- bind_rows(
as_tibble(log2(counts(dds, normalized=TRUE)[, 1:2]+1)) %>%
mutate(transformation = "log2(x + 1)"),
as_tibble(assay(vsd)[, 1:2]) %>% mutate(transformation = "vst"),
as_tibble(assay(rld)[, 1:2]) %>% mutate(transformation = "rlog"))
# Renombrar columnas
colnames(df)[1:2] <- c("x", "y")
# Nombre de las graficas
lvls <- c("log2(x + 1)", "vst", "rlog")
# Agrupar los tres tipos de normalizacion en grupos como factores
df$transformation <- factor(df$transformation, levels=lvls)
# Plotear los datos
ggplot(df, aes(x = x, y = y)) +
geom_hex(bins = 80) +
coord_fixed() +
facet_grid( . ~ transformation)Inicialmente se evalúa la similitud general entre las muestras visualizando las matrices de distancias con la función pheatmat(). Al calcular la matriz de distancias es necesario brindar la matriz transpuesta de los conteos, pues las funciones dist() y PoissonDistance() calculan las distancias entre las filas. A continuación se muestran los heatmaps para las métricas Euclidiana, basada en la correlación de Pearson y la distancia de Poisson.
#####Euclidiana-raw. Hay una mayor similitud entre las lineas celulares G1E con la replica 1 con 1 y 2 con 2. Lo mismo ocurre con las de Megakaryocytes.
Heatmap con la métrica Euclidiana sobre las cuentas crudas.
# Se encuentra la matriz de distancias
sample_dist_euc_raw <- dist(t(assay(dds)))
sampleDistMatrix_euc_raw <- as.matrix(sample_dist_euc_raw)
colors <- colorRampPalette( rev(brewer.pal(9, "Blues")) )(255)
pheatmap(sampleDistMatrix_euc_raw,
clustering_distance_rows = sample_dist_euc_raw,
clustering_distance_cols = sample_dist_euc_raw,
col = colors)Para que se tenga una contribución approximadamente igual de todos los genes, se consideran los datos transformados por VST (almacenados en el objeto vsd) y se calcula la distancia Euclidiana.
# Se encuentra la matriz de distancias
sample_dist_euc_vst <- dist(t(assay(vsd)))
sampleDistMatrix_euc_vst <- as.matrix(sample_dist_euc_vst)
colors <- colorRampPalette( rev(brewer.pal(9, "Blues")) )(255)
pheatmap(sampleDistMatrix_euc_vst,
clustering_distance_rows = sample_dist_euc_vst,
clustering_distance_cols = sample_dist_euc_vst,
col = colors)# Se encuentra la matriz de distancias
sample_dist_pear_vst <- get_dist(t(assay(vsd)), method = "pearson")
sampleDistMatrix_pear_vst <- as.matrix(sample_dist_pear_vst)
colors <- colorRampPalette( rev(brewer.pal(9, "Blues")) )(255)
pheatmap(sampleDistMatrix_pear_vst,
clustering_distance_rows = sample_dist_pear_vst,
clustering_distance_cols = sample_dist_pear_vst,
col = colors)Otra opción para calcular distancias de muestra es utilizar la distancia de Poisson, implementada en el package PoiClaClu. Esta medida de disimilitud entre conteos también tiene en cuenta la estructura de varianza inherente de las cuentas al calcular las distancias entre muestras. La función PoissonDistance toma la matriz de conteos original (no normalizada) con las muestras como filas en lugar de columnas.
# Se encuentra la matriz de distancias
sample_dist_pois <- PoissonDistance(t(counts(dds)))
sampleDistMatrix_pois <- as.matrix(sample_dist_pois$dd)
rownames(sampleDistMatrix_pois) <- dds$names
colnames(sampleDistMatrix_pois) <- dds$names
colors <- colorRampPalette( rev(brewer.pal(9, "Blues")) )(255)
pheatmap(sampleDistMatrix_pois,
clustering_distance_rows = sample_dist_pois$dd,
clustering_distance_cols = sample_dist_pois$dd,
col = colors)DESeq2 cuenta con la función plotPCA() la cual lleva a cabo un análisis de componentes principales considerando como variables los transcritos (toma por default los primeros ntop=500) y como observaciones las muestras. El resultado es la gráfica de los scores en el subespacio generado por las dos primeras componentes principales.
####Como se puede observar estan mejor agrupados las lineas celulares G1E que las de Mk
plotPCA(vsd , intgroup="cell")O bien, podemos utilizar el script que desarrollamos previamente, nótese que es necesario aplicar la función sobre la matriz transpuesta de las cuentas (en este caso las correspondientes a VST)
PC_total <- prcomp(t(assay(vsd)), scale. = TRUE, center = TRUE)
eig_total <- get_eigenvalue(PC_total)
eig_tabla <- data.frame(PC=paste0("PC",1:dim(eig_total)[1]),
Eigenvalor=round(eig_total$eigenvalue,3),
Varianza=round(eig_total$variance.percent,2),
Var_acu=round(eig_total$cumulative.variance.percent,2))
kable(eig_tabla, align = "c", col.names = c("Componente", "Eigenvalor", "% varianza", "% varianza acumulada")) %>% kable_styling(c("striped", "hover"), full_width = F)%>% scroll_box(width="100%", height="300px", fixed_thead = TRUE)| Componente | Eigenvalor | % varianza | % varianza acumulada |
|---|---|---|---|
| PC1 | 222.956 | 62.10 | 62.10 |
| PC2 | 102.468 | 28.54 | 90.65 |
| PC3 | 33.575 | 9.35 | 100.00 |
| PC4 | 0.000 | 0.00 | 100.00 |
fviz_eig(PC_total, addlabels = TRUE)PC_coef <-data.frame(PC_total$rotation)
kable(PC_coef, align = "c") %>% kable_styling(c("striped", "hover"), full_width = F)%>% scroll_box(width="100%", height="300px", fixed_thead = TRUE)| PC1 | PC2 | PC3 | PC4 | |
|---|---|---|---|---|
| NM_001024952 | 0.0039696 | 0.0986019 | -0.0027679 | 0.2575323 |
| MSTRG.7.1 | -0.0222913 | -0.0927576 | 0.0150250 | 0.2119173 |
| MSTRG.8.1 | -0.0053619 | -0.0970779 | -0.0288363 | -0.1330317 |
| MSTRG.1.1 | -0.0556195 | -0.0442070 | -0.0572452 | 0.0470005 |
| MSTRG.9.1 | -0.0583275 | 0.0217820 | -0.0757903 | 0.0270105 |
| MSTRG.26.1 | -0.0552600 | 0.0076743 | 0.0965721 | -0.0491509 |
| MSTRG.27.1 | -0.0641237 | -0.0260213 | 0.0203126 | 0.0005552 |
| NR_002840 | -0.0402389 | -0.0786923 | 0.0115309 | 0.0299995 |
| MSTRG.20.1 | -0.0657831 | 0.0169927 | 0.0129011 | 0.0623158 |
| MSTRG.22.1 | -0.0487338 | -0.0443084 | 0.0895608 | -0.0034428 |
| MSTRG.23.1 | -0.0579161 | -0.0493255 | -0.0091953 | -0.0010840 |
| MSTRG.31.1 | -0.0640608 | 0.0202680 | -0.0357620 | 0.0263561 |
| MSTRG.32.1 | -0.0556267 | 0.0550047 | -0.0015328 | -0.0445433 |
| MSTRG.33.1 | -0.0650439 | -0.0228416 | 0.0098768 | 0.0134423 |
| MSTRG.34.1 | -0.0344471 | -0.0846329 | -0.0066560 | -0.0212275 |
| MSTRG.28.1 | -0.0643026 | 0.0144141 | 0.0411390 | 0.0630614 |
| MSTRG.28.3 | -0.0391631 | -0.0000697 | 0.1399959 | 0.0441424 |
| NM_172644 | -0.0656448 | 0.0187153 | -0.0099666 | 0.0467747 |
| MSTRG.3.1 | -0.0661313 | -0.0141300 | -0.0115449 | -0.0007900 |
| MSTRG.4.1 | -0.0652744 | 0.0157641 | 0.0270536 | -0.0043887 |
| MSTRG.5.1 | -0.0261175 | -0.0866474 | 0.0483868 | -0.0245222 |
| NM_001039482 | -0.0052342 | -0.0873476 | -0.0794805 | 0.0870912 |
| MSTRG.24.1 | 0.0479008 | 0.0682529 | 0.0181703 | 0.0020808 |
| NM_199028 | -0.0523576 | -0.0171079 | -0.1033771 | 0.1035555 |
| MSTRG.11.1 | -0.0319259 | -0.0865865 | -0.0116048 | 0.0104240 |
| NM_009846 | -0.0658399 | 0.0180749 | -0.0009545 | 0.0168415 |
| MSTRG.14.1 | -0.0668931 | 0.0040681 | -0.0043821 | -0.0381071 |
| MSTRG.14.2 | -0.0649491 | -0.0202335 | -0.0228522 | 0.0135338 |
| MSTRG.16.1 | -0.0639735 | -0.0271565 | -0.0188716 | 0.0057304 |
| MSTRG.17.1 | 0.0073851 | -0.0902622 | -0.0675062 | 0.0148719 |
| MSTRG.18.1 | -0.0558864 | -0.0512254 | -0.0321765 | -0.0026979 |
| MSTRG.6.1 | 0.0569818 | 0.0437960 | -0.0486707 | -0.0233613 |
| NM_026411 | 0.0162433 | -0.0867082 | -0.0713209 | -0.0374104 |
| MSTRG.12.1 | -0.0653649 | 0.0215083 | -0.0000398 | -0.0095012 |
| MSTRG.37.1 | -0.0596457 | 0.0104311 | 0.0763374 | -0.0050878 |
| MSTRG.39.1 | -0.0666722 | 0.0081644 | 0.0078860 | 0.0047905 |
| NM_030093 | 0.0333294 | 0.0852612 | -0.0148873 | -0.0272819 |
| MSTRG.41.1 | 0.0008161 | -0.0938506 | -0.0538381 | 0.0507810 |
| MSTRG.41.3 | -0.0028627 | -0.0848191 | 0.0881656 | -0.0884877 |
| MSTRG.42.1 | -0.0028627 | -0.0848191 | 0.0881656 | -0.0884877 |
| MSTRG.43.1 | 0.0281413 | -0.0889972 | -0.0187746 | -0.0227259 |
| NM_010822 | -0.0483729 | -0.0516701 | 0.0780867 | 0.0016181 |
| MSTRG.46.1 | -0.0421537 | 0.0767477 | 0.0027937 | -0.0079373 |
| NM_001083955 | 0.0644995 | 0.0112030 | -0.0421318 | 0.0280634 |
| NM_001033981 | -0.0560000 | 0.0219717 | -0.0865211 | -0.0506239 |
| MSTRG.47.1 | -0.0646350 | 0.0198951 | -0.0288782 | 0.0210257 |
| NM_008267 | -0.0616122 | 0.0212030 | -0.0566038 | -0.0176105 |
| MSTRG.59.3 | -0.0657937 | 0.0170383 | 0.0123455 | 0.0184221 |
| MSTRG.59.1 | -0.0655082 | 0.0189693 | -0.0137514 | -0.0474127 |
| NR_108029 | -0.0657878 | 0.0170127 | 0.0126577 | -0.0131490 |
| MSTRG.62.3 | -0.0630506 | 0.0207431 | -0.0455208 | 0.1165478 |
| MSTRG.36.1 | -0.0503557 | -0.0597168 | -0.0454113 | 0.0084068 |
| MSTRG.45.2 | -0.0611549 | 0.0213152 | -0.0596846 | 0.0764204 |
| MSTRG.52.3 | 0.0586804 | 0.0463152 | 0.0192720 | -0.0456037 |
| MSTRG.52.4 | 0.0369878 | 0.0813490 | 0.0224188 | -0.0117069 |
| MSTRG.52.7 | 0.0426795 | 0.0714720 | 0.0458048 | -0.0347734 |
| MSTRG.52.6 | -0.0391631 | -0.0000697 | 0.1399959 | -0.0097234 |
| MSTRG.48.1 | -0.0648961 | 0.0243873 | -0.0014998 | -0.0024712 |
| MSTRG.50.1 | -0.0658017 | 0.0182679 | -0.0035975 | 0.0067731 |
| MSTRG.60.1 | -0.0664482 | 0.0120782 | -0.0042882 | -0.0081776 |
| MSTRG.55.1 | -0.0662910 | 0.0093365 | -0.0183338 | -0.0091423 |
| MSTRG.56.1 | -0.0143203 | -0.0431497 | 0.1507966 | 0.1012908 |
| MSTRG.58.1 | -0.0612899 | 0.0212834 | -0.0587930 | -0.0479393 |
| NR_131758 | -0.0611549 | 0.0213152 | -0.0596846 | 0.0764204 |
| MSTRG.63.1 | -0.0654823 | 0.0161603 | 0.0226454 | -0.0364418 |
| NM_001177354 | 0.0183796 | 0.0921694 | -0.0401765 | 0.0297902 |
| MSTRG.68.1 | 0.0113528 | -0.0972923 | 0.0062761 | 0.0111685 |
| MSTRG.69.1 | 0.0526247 | -0.0610853 | -0.0024483 | 0.0041926 |
| MSTRG.70.1 | -0.0627076 | -0.0134207 | 0.0558754 | -0.0024513 |
| MSTRG.71.1 | 0.0014660 | -0.0985399 | 0.0116343 | 0.0476541 |
| MSTRG.77.1 | -0.0655252 | 0.0189412 | -0.0133256 | -0.0105986 |
| NM_008272 | -0.0645767 | 0.0199381 | -0.0296436 | -0.0327064 |
| MSTRG.78.2 | -0.0654172 | 0.0191081 | -0.0158773 | -0.0021671 |
| NM_010466 | -0.0623661 | 0.0209856 | -0.0511013 | -0.0224300 |
| MSTRG.81.1 | -0.0658439 | 0.0173167 | 0.0089080 | 0.0592505 |
| NM_010465 | -0.0653803 | 0.0159566 | 0.0249287 | -0.0183365 |
| MSTRG.80.1 | -0.0653244 | 0.0192333 | -0.0178333 | -0.0599785 |
| NM_175730 | -0.0648773 | 0.0196996 | -0.0254787 | -0.0210757 |
| NR_030526 | -0.0658634 | 0.0178643 | 0.0018640 | -0.0226307 |
| MSTRG.89.1 | -0.0645918 | 0.0147658 | 0.0375975 | -0.0635039 |
| NM_013553 | -0.0658639 | 0.0178561 | 0.0019719 | -0.0162338 |
| MSTRG.92.1 | -0.0613296 | -0.0374889 | 0.0227511 | -0.0320588 |
| MSTRG.66.1 | 0.0636819 | -0.0289155 | 0.0173880 | -0.0415638 |
| MSTRG.73.1 | -0.0582098 | -0.0469965 | 0.0232952 | 0.0023140 |
| MSTRG.79.1 | -0.0600059 | 0.0434843 | -0.0101274 | -0.0172873 |
| MSTRG.74.1 | -0.0590885 | 0.0100497 | 0.0793133 | 0.0426127 |
| MSTRG.75.1 | -0.0642546 | 0.0272316 | -0.0102170 | -0.0037616 |
| MSTRG.82.2 | -0.0391631 | -0.0000697 | 0.1399959 | -0.0097234 |
| MSTRG.82.4 | -0.0368791 | 0.0208140 | -0.1393916 | 0.0503955 |
| MSTRG.87.1 | -0.0657887 | 0.0183192 | -0.0043102 | 0.0044664 |
| MSTRG.88.1 | -0.0638345 | 0.0138955 | 0.0462122 | -0.0040202 |
| MSTRG.90.1 | -0.0642600 | 0.0143645 | 0.0416314 | 0.0123285 |
| MSTRG.85.1 | -0.0662825 | 0.0089810 | 0.0190668 | 0.0104688 |
| MSTRG.84.1 | -0.0656190 | 0.0187691 | -0.0107572 | -0.0225297 |
| MSTRG.91.1 | -0.0554794 | 0.0498080 | 0.0421110 | -0.0067756 |
| MSTRG.95.1 | -0.0632325 | 0.0325009 | -0.0030080 | -0.0147624 |
| MSTRG.97.1 | -0.0645043 | 0.0199896 | -0.0305696 | 0.0351302 |
| MSTRG.97.2 | -0.0657625 | 0.0184105 | -0.0055893 | -0.0034154 |
| MSTRG.93.1 | -0.0554806 | 0.0436491 | -0.0594062 | 0.0148108 |
| NR_045743 | -0.0391631 | -0.0000697 | 0.1399959 | 0.0551918 |
| MSTRG.94.1 | -0.0527453 | -0.0608061 | 0.0050484 | 0.0191431 |
| NM_007757 | -0.0620081 | 0.0319470 | -0.0337093 | -0.0011134 |
| MSTRG.108.1 | 0.0441046 | -0.0742549 | -0.0062544 | 0.0059901 |
| MSTRG.110.1 | 0.0653661 | 0.0037389 | -0.0369883 | 0.0045490 |
| MSTRG.111.1 | 0.0568629 | -0.0519976 | -0.0078067 | -0.0349996 |
| MSTRG.112.1 | -0.0357253 | -0.0084203 | 0.1452310 | 0.0596738 |
| MSTRG.113.1 | 0.0599568 | 0.0435901 | -0.0106553 | -0.0228793 |
| MSTRG.104.1 | 0.0668491 | 0.0055399 | -0.0038893 | -0.0010083 |
| MSTRG.106.1 | -0.0403287 | -0.0776921 | -0.0237121 | 0.0020689 |
| MSTRG.107.1 | 0.0465952 | -0.0684453 | 0.0326980 | 0.0413835 |
| MSTRG.99.1 | 0.0281413 | -0.0889972 | -0.0187746 | -0.0586364 |
| MSTRG.100.1 | -0.0665334 | 0.0090108 | -0.0118581 | -0.0014406 |
| MSTRG.103.1 | -0.0481073 | 0.0674302 | 0.0232208 | -0.0580271 |
| MSTRG.115.1 | 0.0154910 | -0.0961051 | -0.0015770 | 0.0093491 |
| MSTRG.116.1 | -0.0582260 | -0.0300227 | -0.0672297 | 0.0088030 |
| NM_010721 | 0.0142870 | 0.0947367 | -0.0322106 | -0.0327858 |
| MSTRG.122.1 | -0.0544038 | -0.0556964 | -0.0257341 | 0.0092481 |
| MSTRG.122.2 | -0.0640150 | -0.0165413 | 0.0416721 | 0.0241774 |
| MSTRG.124.1 | -0.0469555 | 0.0636393 | -0.0527509 | 0.0107714 |
| MSTRG.126.1 | -0.0625481 | 0.0342387 | 0.0150593 | 0.0066118 |
| NM_177115 | -0.0391631 | -0.0000697 | 0.1399959 | 0.0551918 |
| MSTRG.119.1 | -0.0206951 | -0.0867844 | 0.0628835 | 0.0662916 |
| MSTRG.120.1 | 0.0323839 | 0.0863945 | -0.0063631 | 0.0595805 |
| MSTRG.123.1 | -0.0508019 | -0.0319440 | 0.0976295 | 0.0603389 |
| NM_008275 | 0.0281413 | -0.0889972 | -0.0187746 | -0.0586364 |
| MSTRG.129.1 | -0.0648164 | 0.0197516 | -0.0263697 | -0.0499469 |
| MSTRG.129.2 | -0.0611725 | 0.0213111 | -0.0595693 | -0.0012553 |
| NM_001290731 | -0.0621067 | 0.0210655 | -0.0530612 | -0.0382163 |
| NM_010469 | -0.0391631 | -0.0000697 | 0.1399959 | -0.0097234 |
| MSTRG.128.1 | 0.0479008 | 0.0682529 | 0.0181703 | -0.0089686 |
| MSTRG.137.1 | 0.0403041 | -0.0786889 | 0.0099880 | -0.0265053 |
| MSTRG.138.1 | 0.0417895 | -0.0745474 | 0.0350254 | -0.0820917 |
| MSTRG.140.1 | -0.0631292 | -0.0153204 | 0.0510209 | -0.0398069 |
| MSTRG.139.1 | 0.0522342 | 0.0605280 | 0.0220174 | 0.0318008 |
| NM_007967 | 0.0607846 | 0.0408373 | 0.0126155 | -0.0310472 |
| MSTRG.131.2 | -0.0643699 | 0.0200803 | -0.0322253 | 0.0299430 |
| MSTRG.131.3 | -0.0658380 | 0.0180870 | -0.0011189 | -0.0120046 |
| MSTRG.134.1 | -0.0654459 | 0.0190663 | -0.0152325 | 0.0019954 |
| MSTRG.135.1 | -0.0652894 | 0.0192771 | -0.0185268 | 0.0221332 |
| MSTRG.142.1 | -0.0558073 | -0.0545300 | -0.0052406 | 0.0048154 |
| NM_011527 | 0.0549164 | 0.0561414 | 0.0117572 | -0.0202943 |
| MSTRG.150.2 | 0.0595828 | 0.0445739 | 0.0120714 | -0.0039668 |
| MSTRG.152.1 | -0.0656466 | 0.0165478 | 0.0181957 | -0.0847421 |
| NR_131922 | 0.0221267 | -0.0891688 | -0.0476116 | 0.0261612 |
| NM_025647 | -0.0536024 | -0.0590283 | 0.0083904 | 0.0061479 |
| MSTRG.144.1 | -0.0668574 | -0.0044634 | 0.0063705 | -0.0055171 |
| MSTRG.145.1 | -0.0660520 | -0.0052829 | -0.0269632 | 0.0314610 |
| MSTRG.146.1 | -0.0618700 | -0.0363801 | -0.0180415 | -0.0071711 |
| MSTRG.151.1 | -0.0583829 | 0.0440961 | -0.0348567 | -0.0417220 |
| MSTRG.153.1 | -0.0666184 | -0.0098889 | -0.0038461 | 0.0006571 |
| MSTRG.154.1 | -0.0634480 | -0.0179370 | -0.0454929 | 0.0057918 |
| MSTRG.149.1 | 0.0062811 | -0.0917556 | 0.0618681 | 0.1456624 |
| NM_009141 | 0.0155532 | -0.0948627 | -0.0267156 | 0.0154819 |
| NM_023785 | 0.0606114 | -0.0418658 | -0.0062603 | 0.0054643 |
| NM_019932 | 0.0493285 | -0.0666330 | -0.0086743 | 0.0149035 |
| NM_203320 | -0.0581671 | 0.0217996 | -0.0765891 | 0.0638370 |
| NM_011339 | 0.0281413 | -0.0889972 | -0.0187746 | -0.0227259 |
| MSTRG.162.1 | 0.0479008 | 0.0682529 | 0.0181703 | -0.0089686 |
| MSTRG.166.1 | -0.0297311 | -0.0878363 | 0.0191841 | 0.0068821 |
| NM_031408 | -0.0455245 | -0.0311805 | -0.1142554 | 0.0087314 |
| MSTRG.169.1 | -0.0335680 | 0.0768391 | -0.0654378 | -0.1424992 |
| NM_031404 | -0.0658283 | 0.0172140 | 0.0101869 | 0.0800665 |
| NM_001289507 | -0.0391631 | -0.0000697 | 0.1399959 | -0.0097234 |
| MSTRG.179.1 | -0.0653754 | 0.0190188 | -0.0172858 | -0.0014584 |
| MSTRG.172.1 | -0.0450245 | -0.0725218 | -0.0164631 | -0.0199717 |
| MSTRG.175.1 | -0.0589958 | -0.0376288 | -0.0484799 | 0.0083183 |
| MSTRG.176.1 | 0.0382579 | -0.0723652 | 0.0638939 | 0.1111631 |
| MSTRG.183.1 | -0.0654510 | 0.0117760 | -0.0302300 | -0.0293150 |
| MSTRG.181.1 | -0.0491251 | 0.0667010 | 0.0134365 | 0.0061988 |
| MSTRG.182.1 | -0.0307725 | 0.0855752 | -0.0338563 | 0.0223627 |
| MSTRG.187.1 | -0.0661715 | 0.0148440 | 0.0059053 | 0.0228196 |
| MSTRG.187.3 | -0.0656466 | 0.0165478 | 0.0181957 | -0.0847421 |
| MSTRG.187.4 | -0.0613777 | 0.0117042 | 0.0659510 | -0.0087881 |
| MSTRG.187.5 | -0.0669338 | -0.0017868 | -0.0048802 | -0.0482796 |
| MSTRG.184.1 | 0.0117908 | -0.0933258 | -0.0477446 | -0.0292836 |
| MSTRG.189.1 | 0.0595249 | -0.0357876 | 0.0484395 | 0.0256510 |
| MSTRG.191.1 | 0.0274167 | -0.0845879 | 0.0543661 | 0.0331678 |
| MSTRG.192.1 | 0.0606406 | -0.0317726 | 0.0477908 | -0.0001728 |
| MSTRG.197.1 | 0.0515951 | 0.0550429 | -0.0534798 | 0.0367289 |
| MSTRG.198.1 | -0.0596871 | 0.0447606 | 0.0034996 | -0.0325294 |
| NR_040429 | 0.0281413 | -0.0889972 | -0.0187746 | 0.0104223 |
| MSTRG.201.1 | -0.0271435 | -0.0879745 | 0.0356530 | -0.0338503 |
| MSTRG.202.1 | -0.0388759 | -0.0783458 | 0.0318602 | -0.0126991 |
| MSTRG.203.1 | -0.0565300 | -0.0519388 | -0.0181730 | -0.0068396 |
| MSTRG.147.1 | 0.0281413 | -0.0889972 | -0.0187746 | -0.0033894 |
| MSTRG.157.2 | 0.0642718 | -0.0276769 | -0.0038789 | -0.0003625 |
| MSTRG.161.1 | 0.0627286 | -0.0346014 | 0.0005909 | 0.0064597 |
| MSTRG.163.1 | 0.0657492 | -0.0183160 | 0.0073103 | 0.0080795 |
| NM_011741 | 0.0403312 | 0.0783610 | 0.0155681 | 0.0083252 |
| NM_028753 | -0.0544399 | -0.0490690 | -0.0524890 | 0.0408744 |
| MSTRG.167.2 | -0.0642636 | 0.0201479 | -0.0334806 | 0.0108135 |
| NM_010312 | 0.0243188 | 0.0908503 | -0.0258264 | -0.0178496 |
| MSTRG.186.1 | -0.0397572 | 0.0780192 | 0.0266612 | -0.0297801 |
| MSTRG.186.2 | -0.0627754 | 0.0128705 | 0.0557649 | -0.0077529 |
| MSTRG.180.1 | -0.0652744 | 0.0157641 | 0.0270536 | -0.0043887 |
| MSTRG.171.1 | -0.0627099 | -0.0014680 | -0.0605248 | -0.0294285 |
| MSTRG.173.1 | -0.0600826 | -0.0433743 | 0.0083999 | 0.0020231 |
| MSTRG.174.1 | -0.0662605 | -0.0075337 | -0.0213503 | -0.0000407 |
| MSTRG.177.1 | 0.0479008 | 0.0682529 | 0.0181703 | -0.0089686 |
| NM_001033312 | 0.0459600 | 0.0717509 | 0.0067275 | -0.0006519 |
| NM_007393 | 0.0384242 | -0.0778510 | -0.0385078 | 0.0084052 |
| MSTRG.194.1 | 0.0225365 | -0.0892542 | -0.0458132 | -0.0235330 |
| MSTRG.195.1 | 0.0662323 | 0.0145297 | -0.0030892 | -0.0067443 |
| NM_001313894 | 0.0522705 | 0.0610102 | 0.0167553 | -0.0072992 |
| NM_010439 | -0.0656466 | 0.0165478 | 0.0181957 | -0.0847421 |
| NM_133933 | -0.0552584 | -0.0333955 | -0.0781243 | -0.0681574 |
| MSTRG.199.1 | -0.0581592 | 0.0094373 | 0.0839675 | -0.0533207 |
| MSTRG.204.1 | -0.0657684 | 0.0183911 | -0.0053166 | -0.0220371 |
| MSTRG.208.1 | -0.0635714 | 0.0136248 | 0.0487946 | 0.0261394 |
| MSTRG.209.1 | -0.0657551 | 0.0184340 | -0.0059210 | -0.0426357 |
| MSTRG.210.1 | 0.0276275 | 0.0889620 | 0.0237044 | -0.0242431 |
| MSTRG.211.1 | -0.0645353 | -0.0239064 | -0.0195762 | 0.0346044 |
| MSTRG.212.1 | -0.0658272 | 0.0172073 | 0.0102701 | -0.0046967 |
| MSTRG.213.1 | -0.0287382 | 0.0884434 | 0.0206624 | -0.0405297 |
| MSTRG.214.1 | -0.0656155 | 0.0187760 | -0.0108592 | -0.0013035 |
| MSTRG.215.1 | -0.0656396 | 0.0180596 | 0.0133220 | -0.0121240 |
| MSTRG.215.2 | -0.0379088 | -0.0800753 | -0.0259232 | 0.0063193 |
| MSTRG.215.3 | -0.0633065 | 0.0133641 | 0.0512402 | -0.0435026 |
| NM_008090 | -0.0587453 | 0.0379550 | -0.0497081 | 0.0001936 |
| NM_019964 | -0.0368791 | 0.0208140 | -0.1393916 | -0.1333008 |
| MSTRG.223.1 | -0.0651960 | -0.0178734 | -0.0241516 | 0.0006978 |
| MSTRG.206.1 | -0.0114672 | -0.0969203 | -0.0155733 | -0.0197278 |
| NR_105795 | -0.0391631 | -0.0000697 | 0.1399959 | -0.0649704 |
| MSTRG.216.1 | -0.0639032 | 0.0203545 | -0.0374450 | 0.0253022 |
| MSTRG.221.1 | -0.0632941 | 0.0308726 | -0.0164997 | -0.0155189 |
| NM_023060 | -0.0232540 | -0.0262164 | -0.1552265 | 0.0195777 |
| MSTRG.217.1 | -0.0368791 | 0.0208140 | -0.1393916 | 0.0856155 |
| MSTRG.219.1 | -0.0573513 | -0.0403849 | 0.0544486 | 0.0465791 |
| MSTRG.229.2 | -0.0489570 | -0.0205937 | -0.1121319 | -0.0313657 |
| MSTRG.229.1 | 0.0667553 | -0.0077035 | 0.0032936 | 0.0012865 |
| MSTRG.225.1 | -0.0368791 | 0.0208140 | -0.1393916 | -0.1333008 |
| MSTRG.227.1 | 0.0666838 | -0.0075888 | 0.0089209 | 0.0130631 |
| MSTRG.218.1 | -0.0454425 | -0.0635186 | 0.0613014 | 0.0078887 |
| NM_016956 | 0.0158067 | -0.0864425 | -0.0729384 | -0.0070027 |
| NM_001278161 | 0.0549987 | 0.0563560 | -0.0021061 | -0.0063697 |
| MSTRG.234.1 | 0.0648130 | 0.0078274 | 0.0412541 | 0.0575985 |
| MSTRG.235.1 | -0.0594793 | -0.0450769 | -0.0094821 | -0.0097089 |
| MSTRG.232.1 | -0.0328090 | -0.0858055 | -0.0128836 | 0.0410710 |
| MSTRG.237.1 | -0.0665346 | -0.0103488 | 0.0077791 | -0.0011275 |
| MSTRG.238.1 | -0.0650072 | -0.0229021 | -0.0109891 | -0.0057581 |
| MSTRG.239.1 | -0.0657014 | 0.0185839 | -0.0080590 | -0.0161536 |
| MSTRG.240.1 | -0.0391631 | -0.0000697 | 0.1399959 | -0.0097234 |
| NM_133224 | -0.0447215 | -0.0625789 | -0.0674622 | -0.0178366 |
| NM_198101 | -0.0640608 | 0.0202680 | -0.0357620 | 0.0263561 |
| NM_020028 | -0.0656466 | 0.0165478 | 0.0181957 | -0.0847421 |
| MSTRG.242.1 | 0.0594960 | -0.0296001 | -0.0600330 | -0.0091630 |
| MSTRG.248.2 | 0.0494117 | 0.0660666 | 0.0158147 | -0.0099511 |
| MSTRG.255.1 | -0.0440485 | -0.0742190 | -0.0093955 | 0.0464390 |
| NM_032004 | 0.0665784 | 0.0006345 | -0.0186375 | -0.0109920 |
| MSTRG.258.1 | 0.0475118 | 0.0690658 | -0.0153619 | 0.0144266 |
| MSTRG.259.1 | -0.0651565 | 0.0155661 | 0.0292065 | 0.0147365 |
| MSTRG.263.1 | -0.0614669 | 0.0384508 | -0.0135187 | -0.0033520 |
| NM_026014 | -0.0303014 | 0.0877604 | -0.0134668 | 0.0230147 |
| MSTRG.270.1 | -0.0240218 | -0.0396172 | 0.1454709 | -0.0062371 |
| MSTRG.272.1 | -0.0630506 | 0.0207431 | -0.0455208 | 0.1165478 |
| MSTRG.272.2 | 0.0648742 | 0.0241641 | 0.0073650 | 0.0160007 |
| NM_021502 | -0.0595622 | 0.0216182 | -0.0692773 | 0.0497163 |
| MSTRG.276.1 | 0.0245704 | -0.0918795 | -0.0033669 | -0.0178600 |
| MSTRG.280.1 | 0.0655291 | 0.0196875 | 0.0092867 | -0.0260822 |
| MSTRG.280.2 | -0.0654972 | 0.0189872 | -0.0140229 | -0.0402737 |
| MSTRG.278.1 | -0.0618750 | 0.0121013 | 0.0625589 | -0.0441123 |
| NM_001200023 | -0.0368791 | 0.0208140 | -0.1393916 | 0.0856155 |
| NM_177899 | 0.0375232 | 0.0817952 | -0.0039384 | 0.0037266 |
| MSTRG.244.1 | -0.0311843 | 0.0831895 | -0.0469634 | -0.0025277 |
| MSTRG.244.3 | -0.0601533 | 0.0107893 | 0.0734876 | 0.0998248 |
| MSTRG.245.1 | -0.0415441 | -0.0095437 | 0.1343310 | -0.0101468 |
| MSTRG.249.2 | -0.0601533 | 0.0107893 | 0.0734876 | 0.0998248 |
| MSTRG.249.3 | -0.0669379 | -0.0031157 | 0.0004942 | 0.0279946 |
| MSTRG.251.1 | -0.0604781 | -0.0398807 | 0.0253290 | -0.0648732 |
| MSTRG.253.1 | -0.0595811 | -0.0447595 | -0.0098221 | 0.0248646 |
| MSTRG.246.1 | -0.0559206 | 0.0475767 | -0.0459364 | 0.0308867 |
| MSTRG.246.2 | -0.0538441 | -0.0583202 | -0.0123096 | -0.0701640 |
| NM_026818 | 0.0667517 | 0.0073958 | 0.0053107 | -0.0026373 |
| NM_023312 | -0.0110967 | -0.0972360 | -0.0105368 | -0.0277095 |
| NM_001037298 | 0.0664241 | 0.0059447 | -0.0194176 | 0.0110458 |
| MSTRG.264.1 | 0.0172623 | -0.0943686 | 0.0250323 | 0.0487856 |
| MSTRG.265.1 | 0.0203377 | -0.0938041 | 0.0135252 | -0.0097598 |
| MSTRG.260.1 | 0.0281413 | -0.0889972 | -0.0187746 | -0.0227259 |
| MSTRG.261.1 | -0.0055320 | -0.0820195 | 0.0951307 | 0.0777172 |
| MSTRG.266.1 | -0.0643142 | 0.0260178 | -0.0158343 | -0.0121976 |
| MSTRG.268.1 | -0.0589113 | 0.0456136 | -0.0196963 | -0.0361587 |
| NM_009698 | -0.0643026 | 0.0144141 | 0.0411390 | 0.0630614 |
| MSTRG.269.1 | -0.0391631 | -0.0000697 | 0.1399959 | -0.0097234 |
| MSTRG.275.1 | -0.0346968 | -0.0843872 | -0.0075116 | 0.0202397 |
| NM_001007462 | 0.0443420 | 0.0707785 | 0.0379269 | 0.0219081 |
| NM_009824 | -0.0467647 | -0.0308192 | -0.1111873 | -0.0748094 |
| MSTRG.277.1 | -0.0194091 | -0.0914983 | -0.0416172 | -0.0189381 |
| MSTRG.282.1 | -0.0023515 | -0.0977595 | -0.0240923 | -0.0151238 |
| MSTRG.283.1 | -0.0431306 | -0.0750787 | -0.0150966 | 0.0206542 |
| NM_025870 | -0.0457766 | -0.0680329 | -0.0417497 | 0.0338087 |
| MSTRG.294.1 | 0.0559786 | 0.0490218 | -0.0405095 | -0.0015499 |
| MSTRG.296.1 | 0.0281413 | -0.0889972 | -0.0187746 | 0.0104223 |
| MSTRG.301.1 | 0.0281413 | -0.0889972 | -0.0187746 | 0.0104223 |
| MSTRG.302.1 | 0.0281413 | -0.0889972 | -0.0187746 | 0.0104223 |
| MSTRG.308.1 | 0.0664589 | 0.0000209 | 0.0213113 | -0.0086674 |
| MSTRG.309.1 | 0.0606172 | -0.0418116 | -0.0069539 | 0.0212899 |
| MSTRG.310.1 | 0.0461202 | 0.0714978 | 0.0076112 | -0.0172291 |
| MSTRG.311.1 | 0.0545337 | -0.0573127 | 0.0032873 | 0.0060435 |
| MSTRG.313.1 | 0.0225115 | -0.0892493 | -0.0459234 | 0.0234251 |
| MSTRG.314.1 | 0.0658047 | -0.0183236 | 0.0020124 | -0.0048556 |
| NM_031874 | 0.0626185 | 0.0317075 | -0.0260319 | 0.0512756 |
| NR_045606 | 0.0479008 | 0.0682529 | 0.0181703 | -0.0213991 |
| MSTRG.290.1 | -0.0391631 | -0.0000697 | 0.1399959 | 0.0551918 |
| MSTRG.291.1 | 0.0044265 | 0.0922942 | -0.0604733 | -0.0050869 |
| MSTRG.292.1 | 0.0559519 | 0.0532773 | 0.0182293 | -0.0204155 |
| MSTRG.299.1 | -0.0565510 | 0.0014409 | -0.0924177 | 0.0559439 |
| MSTRG.285.1 | -0.0655754 | -0.0178037 | -0.0161685 | 0.0257270 |
| MSTRG.287.1 | 0.0217829 | 0.0667068 | -0.1142478 | 0.5370302 |
| NM_010149 | -0.0159729 | -0.0935045 | -0.0375051 | 0.0546939 |
| NM_010487 | 0.0443420 | 0.0707785 | 0.0379269 | 0.0219081 |
| NM_008026 | 0.0597001 | 0.0439711 | 0.0146874 | -0.0287076 |
| MSTRG.312.1 | 0.0668753 | -0.0023814 | 0.0082552 | 0.0100439 |
| NM_138606 | -0.0269365 | -0.0840352 | -0.0584243 | -0.0806763 |
| MSTRG.328.1 | -0.0294520 | -0.0715987 | -0.0915344 | -0.1116006 |
| MSTRG.329.1 | -0.0641311 | -0.0217290 | 0.0321218 | 0.0125991 |
| MSTRG.333.1 | 0.0093431 | 0.0955054 | 0.0369727 | -0.0137663 |
| MSTRG.334.1 | -0.0624315 | -0.0341956 | 0.0182341 | 0.0194255 |
| MSTRG.335.1 | -0.0657951 | 0.0170449 | 0.0122658 | 0.0049497 |
| MSTRG.340.1 | 0.0643153 | 0.0275409 | -0.0009255 | -0.0255544 |
| MSTRG.338.1 | -0.0030399 | -0.0982164 | 0.0168088 | 0.0108775 |
| MSTRG.343.1 | -0.0633799 | -0.0102495 | -0.0528036 | -0.0373356 |
| MSTRG.353.1 | -0.0656478 | 0.0165510 | 0.0181575 | -0.0609195 |
| MSTRG.353.2 | -0.0457014 | -0.0567601 | -0.0779874 | 0.0596532 |
| MSTRG.355.1 | -0.0592721 | -0.0406958 | 0.0374190 | -0.0000203 |
| MSTRG.356.1 | 0.0066946 | 0.0978620 | -0.0160735 | -0.0285496 |
| MSTRG.356.2 | -0.0650480 | 0.0153960 | 0.0310305 | -0.0580098 |
| MSTRG.356.5 | -0.0648969 | -0.0162294 | 0.0318240 | 0.0163347 |
| MSTRG.356.6 | -0.0658688 | 0.0176380 | 0.0048232 | 0.0347573 |
| MSTRG.356.8 | -0.0658500 | 0.0180030 | 0.0000150 | -0.0005138 |
| NR_002844 | 0.0186940 | -0.0948280 | -0.0044157 | -0.0055234 |
| MSTRG.347.1 | 0.0490455 | -0.0672463 | -0.0030819 | 0.0167991 |
| MSTRG.348.1 | 0.0281413 | -0.0889972 | -0.0187746 | -0.0033894 |
| MSTRG.349.1 | 0.0218530 | -0.0924537 | -0.0229346 | 0.0197658 |
| MSTRG.350.1 | 0.0662696 | -0.0120548 | 0.0133254 | 0.0014041 |
| NR_015508 | 0.0479008 | 0.0682529 | 0.0181703 | -0.0213991 |
| NR_033398 | -0.0368791 | 0.0208140 | -0.1393916 | 0.0068885 |
| MSTRG.316.1 | 0.0422440 | 0.0755552 | -0.0226173 | -0.0030626 |
| MSTRG.317.1 | -0.0664946 | -0.0116355 | -0.0030788 | 0.0418815 |
| MSTRG.318.1 | 0.0381013 | -0.0785835 | -0.0360164 | -0.0134684 |
| MSTRG.320.1 | 0.0652581 | -0.0214022 | -0.0103206 | -0.0145375 |
| MSTRG.325.1 | -0.0421993 | 0.0393900 | -0.1149923 | 0.0799853 |
| MSTRG.325.2 | -0.0015604 | -0.0987407 | 0.0035433 | 0.0063720 |
| MSTRG.331.1 | 0.0422134 | 0.0733650 | -0.0390394 | 0.0766226 |
| MSTRG.322.1 | 0.0668140 | 0.0061305 | 0.0050254 | -0.0118366 |
| MSTRG.323.1 | 0.0669113 | 0.0033464 | 0.0043956 | 0.0066788 |
| NM_008089 | 0.0541322 | 0.0581532 | -0.0020911 | -0.0072343 |
| MSTRG.341.1 | -0.0325479 | 0.0080457 | 0.1501712 | 0.1657315 |
| MSTRG.336.1 | -0.0556568 | -0.0537639 | -0.0197994 | 0.0021582 |
| NM_027227 | -0.0391631 | -0.0000697 | 0.1399959 | -0.0097234 |
| MSTRG.352.1 | -0.0656559 | 0.0165731 | 0.0178999 | 0.0257311 |
| NR_015505 | -0.0645767 | 0.0199381 | -0.0296436 | -0.0327064 |
| MSTRG.346.1 | -0.0656466 | 0.0165478 | 0.0181957 | -0.0847421 |
| NR_001463 | -0.0391631 | -0.0000697 | 0.1399959 | 0.0441424 |
| MSTRG.344.1 | -0.0641423 | 0.0142303 | 0.0429565 | -0.0328379 |
| MSTRG.357.1 | -0.0650679 | -0.0181214 | 0.0258238 | 0.0380162 |
| MSTRG.361.1 | 0.0653924 | -0.0049637 | -0.0362320 | 0.0008721 |
| MSTRG.362.1 | 0.0224749 | -0.0930125 | 0.0051614 | -0.0138325 |
| MSTRG.358.1 | 0.0281413 | -0.0889972 | -0.0187746 | -0.0227259 |
| MSTRG.359.1 | 0.0281413 | -0.0889972 | -0.0187746 | -0.0310129 |
fviz_pca_var(PC_total, col.var = "contrib", gradient.cols=c("#1627dc", "#ffb600", "#ff2e16"), axes=c(1,2))fviz_pca_var(PC_total, col.var = "contrib", gradient.cols=c("#1627dc", "#ffb600", "#ff2e16"), select.var = list(contrib=20), axes=c(1,2))fviz_contrib(PC_total, "var", axes = 1, select.var = list(contrib=100))fviz_contrib(PC_total, "var", axes = 2, select.var = list(contrib=100))fviz_pca_ind(PC_total,
fill.ind = colData(vsd)$cell,
pointshape = 21,
pointsize = 2,
#addEllipses = TRUE,
label.ind = colData(vsd)$cell,
repel = TRUE,
ggtheme = theme_bw()
)proy_scores <- fviz_pca_ind(PC_total,
fill.ind = colData(vsd)$cell,
pointshape = 21,
pointsize = 2,
#addEllipses = TRUE,
label.ind = colData(vsd)$cell,
#repel = TRUE,
ggtheme = theme_bw()
)
ggplotly(proy_scores)#######Con este ánalisis es posible localizar genes que se expresan diferente. Por ejemplo, la línea G1E expresa el factor de transcirpción GATA-1, el cual es clave en la sintesis de eritrocitos. Mientras que Mk es clave la sintesis de plaquetas, responsalbes de la coagulación.
El análisis de expresión diferencial se lleva a cabo sobre las cuentas originales por medio de la función DESeq:
dds <- DESeq(dds)using pre-existing size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
ddsclass: DESeqDataSet
dim: 359 4
metadata(1): version
assays(4): counts mu H cooks
rownames(359): NM_001024952 MSTRG.7.1 ... MSTRG.358.1 MSTRG.359.1
rowData names(22): baseMean baseVar ... deviance maxCooks
colnames(4): G1E_rep1 G1E_rep2 MK_rep1 MK_rep2
colData names(3): names cell sizeFactor
Esta función muestra mensajes de los pasos realizados (ver ?DESeq). Los cuales son: estimar los factores de tamaño (controlando las diferencias en la profundidad de secuenciación de las muestras), la estimación de los valores de dispersión para cada gen y el ajuste de un modelo lineal generalizado.
El objeto generado es de la clase DESeqDataSet que contiene todos los parámetros ajustados y tablas de resultados.
Al llamar los resultados sin ningún argumento muestra los log2 fold changes y p-values para la última variable en la fórmula del diseño experimental (en este caso sólo es una variable). Si existieran más de dos niveles en esta variable, los resultados mostrarían la tabla de comparación del último nivel respecto al primer nivel.
res <- results(dds)
reslog2 fold change (MLE): cell G1E vs MK
Wald test p-value: cell G1E vs MK
DataFrame with 359 rows and 6 columns
baseMean log2FoldChange lfcSE stat pvalue padj
<numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
NM_001024952 4.58123 0.0488519 3.18513 0.0153375 0.987763 NA
MSTRG.7.1 6.55401 -0.6334148 2.46508 -0.2569551 0.797213 0.85974
MSTRG.8.1 7.43120 -1.7231046 2.35914 -0.7303961 0.465148 0.57815
MSTRG.1.1 2.54861 0.9148084 3.47067 0.2635829 0.792101 NA
MSTRG.9.1 2.86126 3.1664089 4.01910 0.7878394 0.430791 NA
... ... ... ... ... ... ...
MSTRG.357.1 1.83409 1.62935 3.93965 0.413577 0.6791837 NA
MSTRG.361.1 27.29284 -3.11403 1.34622 -2.313173 0.0207131 0.0515021
MSTRG.362.1 3.26117 -5.11248 4.00011 -1.278084 0.2012196 NA
MSTRG.358.1 4.55392 -6.95601 4.21178 -1.651563 0.0986236 NA
MSTRG.359.1 3.72594 -6.66930 4.53816 -1.469605 0.1416687 NA
Es posible extraer la tabla como una DataFrame, la cual contiene metadatos con información del significado de las columnas:
res_df <- results(dds, contrast = c("cell", "G1E", "MK"))
# Se crea una versión tibble
res_tibble <- as_tibble(res_df)
#Se crea una data frame usual
res_data_frame <- as.data.frame(res_df)
mcols(res_df, use.names = TRUE)DataFrame with 6 rows and 2 columns
type description
<character> <character>
baseMean intermediate mean of normalized c..
log2FoldChange results log2 fold change (ML..
lfcSE results standard error: cell..
stat results Wald statistic: cell..
pvalue results Wald test p-value: c..
padj results BH adjusted p-values
La primera columna, baseMean, es el promedio de los valores de las cuentas normalizadas, divididos por los factores de tamaño, tomados de todas las muestras en el DESeqDataSet. Las cuatro columnas restantes se refieren a la comparación del nivel G1E sobre el nivel de referencia MK para la variable cell.
La columna log2FoldChange es la estimación del tamaño del efecto consecuencia de la condición experimental. Nos dice cuánto parece cambiar la expresión del gen entre las líneas celulares. Este valor se reporta en una escala logarítmica en base 2.
La incertidumbre asociada a esta estimación está disponible en la columna lfcSE, que es el error estándar del valor estimado del log2FoldChange.
El propósito de un análisis de expresión diferencial es comprobar si los datos proporcionan evidencia suficiente para concluir que el log2FoldChange es significativamente diferente de cero. DESeq2 realiza para cada transcrito una prueba de hipótesis para ver si la evidencia es suficiente para rechazar la hipótesis nula (que la diferencia de expresión es cero y que la diferencia observada entre líneas celulares es causada simplemente por la variabilidad experimental). Como es habitual en estadística, el resultado de esta prueba se reporta por medio de un p-value. DESeq2 utiliza la corrección de Benjamini-Hochberg (BH) que controla la False Discovery Rate (FDR) : la proporción esperada de falsos positvios entre todas las hipótesis rechazadas, es decir, la FDR mide cuántos de los casos considerados significativos (rechazo de la hipótesis nula) son probablemente falsos. En DESeq se calcula para cada gen un p-value ajustado dado en la columna padj y por default considera un treshold de 0.1 para evaluar la hipótesis.
Podemos resumir los resultados con la siguiente línea de código, que proporciona información adicional.
summary(res)
out of 359 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up) : 55, 15%
LFC < 0 (down) : 48, 13%
outliers [1] : 0, 0%
low counts [2] : 139, 39%
(mean count < 6)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results
El MA plot representa la distribución de los coeficientes estimados en el modelo, es decir, la distribución de los genes o transcritos en las comparaciones de interés. En el eje y, la M corresponde a “minus”, es la diferencia del logaritmo de los valores que es equivalente al logaritmo del cociente. Y en el eje de de las x, A corresponde a average, que es el promedio de las cuentas normalizadas para cada gen en todas las muestras.
Este gráfico se puede generar con la función plotMA() :
plotMA(res)O bien, podemos utilizar ggplot2 para generarla y poder modificar los atributos (se muestra una versión básica):
res_tibble <- mutate(res_tibble, isDE=if_else(padj<0.1, "DE", "nDE", missing="nDE"))
res_tibble$isDE <- factor(res_tibble$isDE)
ggplot(res_tibble)+
geom_point(aes(baseMean, log2FoldChange, color=isDE), size=2, show.legend = TRUE)+
scale_x_log10()+
theme_bw()También es posible generar un MA plot interactivo y gráficas de expresión para genes específicos con el package Glimma, para ello es necesario crear una variable group que corresponda a los niveles asociados al diseño experimental.
group <- colData(dds)$cell
dds$group <- group
glimmaMA(dds)139 of 359 genes were filtered out in DESeq2 tests
#####De los dos anteriores MA Plot sobresalen los puntos que quedan fuera del área delimitada por las curvas, los cuales son los genes expresados diferencialmente. Estos estan representados por los colores puntos de color azúl en el primer plot y los de color anaranjado en el el segundo Plot
De manera análoga al MA plot, en el volcano plot se distinguen los genes o transcritos que muestran expresión diferencial entre líneas celulares. En las ordenadas se grafica \(-log_{10}(padj)\) y en las abscisas el log2FoldChange. Este gráfico se puede realizar por medio de la función EnhancedVolcano , a continuación se muestra el volcano plot básico.
EnhancedVolcano(res,
lab= rownames(res),
x='log2FoldChange',
y= 'pvalue')#######Gracias a las etiquetas de los genes en el VolcanoPlot, se distinguen los genes expresados diferencialmente como lo son los MSTRG 157, MSTRG 161 etc, los cuales a su vez fueron mejor representado con el estadistico del P-value.
También es posible utilizar el package Glimma para una versión interactiva del gráfico.
glimmaVolcano(dds)A partir de los datos podemos generar el plot con ggplot2.
res_tibble <- mutate(res_tibble, neglog10padj=if_else(is.na(padj), 0, -log10(padj)))
ggplot(res_tibble)+
geom_point(aes(log2FoldChange, neglog10padj, color=isDE), size=2, show.legend = TRUE)+
theme_bw()Por medio de un heatmap con agrupamiento podemos visualizar la expresión de los genes diferencialmente expresados en términos de las cuentas normalizadas estandarizadas.
# Se filtran los transcritos con expresión diferencial
significant <- res_data_frame |> filter(log2FoldChange > 0 & padj < 0.1 |
log2FoldChange < 0 & padj < 0.1)
##Se extrae la matriz de cuentas normalizadas
norm_counts <- counts(dds, normalized = T)
##Se filtran las filas que corresponden a los transcritos significativos
norm_counts <- norm_counts[rownames(significant), ]
##Generar una tabla de anotaciones que incluye el tipo de células
annotation_col <- coldata[, c("names","cell")]
##Generar el heatmap empleando clustering jerarquico
pheatmap(norm_counts,
border_color = NA,
scale = "row",
clustering_distance_rows = "euclidean",
clustering_distance_cols = "euclidean",
clustering_method = "average",
show_colnames = T,
show_rownames = F,
annotation_col = annotation_col)######El análisis de la expresión diferencial de genes nos permite detectar aquellos genes que son diferencialmente expresados con respecto a una condición de control. A partir de este de este ánalisis es tantivo especular que particularmente los transcritos de genes observados fuera de la curva (visualizados en Ma Plot) pueden estar sobreexpresados más que otros debido a que tienen funciones vitales en lacorrecta coagulación sanguinea
LITERATURA
Wu W, Morrissey CS, Keller CA, Mishra T, Pimkin M, Blobel GA, Weiss MJ, Hardison RC. Dynamic shifts in occupancy by TAL1 are guided by GATA factors and drive large-scale reprogramming of gene expression during hematopoiesis. Genome Res. 2014 Dec;24(12):1945-62. doi: 10.1101/gr.164830.113. Epub 2014 Oct 15. PMID: 25319994; PMCID: PMC4248312.
Diana M. Kelmansky. 2006. Análisis Exploratorio y Confirmatorio de Datos de Experimentos de Microarrays. http://www.dm.uba.ar/materias/analisis_expl_y_conf_de_datos_de_exp_de_marrays_Mae/2006/1/teoricas/Teor5.pdf