Rows: 423 Columns: 44
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (2): County, Crime Type
dbl (42): Year, Anti-Male, Anti-Female, Anti-Transgender, Anti-Gender Identi...
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
county year crimetype anti-male
Length:423 Min. :2010 Length:423 Min. :0.000000
Class :character 1st Qu.:2011 Class :character 1st Qu.:0.000000
Mode :character Median :2013 Mode :character Median :0.000000
Mean :2013 Mean :0.007092
3rd Qu.:2015 3rd Qu.:0.000000
Max. :2016 Max. :1.000000
anti-female anti-transgender anti-genderidentityexpression
Min. :0.00000 Min. :0.00000 Min. :0.00000
1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000
Median :0.00000 Median :0.00000 Median :0.00000
Mean :0.01655 Mean :0.04728 Mean :0.05674
3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000
Max. :1.00000 Max. :5.00000 Max. :3.00000
anti-age* anti-white anti-black
Min. :0.00000 Min. : 0.0000 Min. : 0.000
1st Qu.:0.00000 1st Qu.: 0.0000 1st Qu.: 0.000
Median :0.00000 Median : 0.0000 Median : 1.000
Mean :0.05201 Mean : 0.3357 Mean : 1.761
3rd Qu.:0.00000 3rd Qu.: 0.0000 3rd Qu.: 2.000
Max. :9.00000 Max. :11.0000 Max. :18.000
anti-americanindian/alaskannative anti-asian
Min. :0.000000 Min. :0.0000
1st Qu.:0.000000 1st Qu.:0.0000
Median :0.000000 Median :0.0000
Mean :0.007092 Mean :0.1773
3rd Qu.:0.000000 3rd Qu.:0.0000
Max. :1.000000 Max. :8.0000
anti-nativehawaiian/pacificislander anti-multi-racialgroups anti-otherrace
Min. :0 Min. :0.00000 Min. :0
1st Qu.:0 1st Qu.:0.00000 1st Qu.:0
Median :0 Median :0.00000 Median :0
Mean :0 Mean :0.08511 Mean :0
3rd Qu.:0 3rd Qu.:0.00000 3rd Qu.:0
Max. :0 Max. :3.00000 Max. :0
anti-jewish anti-catholic anti-protestant anti-islamic(muslim)
Min. : 0.000 Min. : 0.0000 Min. :0.00000 Min. : 0.0000
1st Qu.: 0.000 1st Qu.: 0.0000 1st Qu.:0.00000 1st Qu.: 0.0000
Median : 0.000 Median : 0.0000 Median :0.00000 Median : 0.0000
Mean : 3.981 Mean : 0.2695 Mean :0.02364 Mean : 0.4704
3rd Qu.: 3.000 3rd Qu.: 0.0000 3rd Qu.:0.00000 3rd Qu.: 0.0000
Max. :82.000 Max. :12.0000 Max. :1.00000 Max. :10.0000
anti-multi-religiousgroups anti-atheism/agnosticism
Min. : 0.00000 Min. :0
1st Qu.: 0.00000 1st Qu.:0
Median : 0.00000 Median :0
Mean : 0.07565 Mean :0
3rd Qu.: 0.00000 3rd Qu.:0
Max. :10.00000 Max. :0
anti-religiouspracticegenerally anti-otherreligion anti-buddhist
Min. :0.000000 Min. :0.000 Min. :0
1st Qu.:0.000000 1st Qu.:0.000 1st Qu.:0
Median :0.000000 Median :0.000 Median :0
Mean :0.007092 Mean :0.104 Mean :0
3rd Qu.:0.000000 3rd Qu.:0.000 3rd Qu.:0
Max. :2.000000 Max. :4.000 Max. :0
anti-easternorthodox(greek,russian,etc.) anti-hindu
Min. :0.000000 Min. :0.000000
1st Qu.:0.000000 1st Qu.:0.000000
Median :0.000000 Median :0.000000
Mean :0.002364 Mean :0.002364
3rd Qu.:0.000000 3rd Qu.:0.000000
Max. :1.000000 Max. :1.000000
anti-jehovahswitness anti-mormon anti-otherchristian anti-sikh
Min. :0 Min. :0 Min. :0.00000 Min. :0
1st Qu.:0 1st Qu.:0 1st Qu.:0.00000 1st Qu.:0
Median :0 Median :0 Median :0.00000 Median :0
Mean :0 Mean :0 Mean :0.01655 Mean :0
3rd Qu.:0 3rd Qu.:0 3rd Qu.:0.00000 3rd Qu.:0
Max. :0 Max. :0 Max. :3.00000 Max. :0
anti-hispanic anti-arab anti-otherethnicity/nationalorigin
Min. : 0.0000 Min. :0.00000 Min. : 0.0000
1st Qu.: 0.0000 1st Qu.:0.00000 1st Qu.: 0.0000
Median : 0.0000 Median :0.00000 Median : 0.0000
Mean : 0.3735 Mean :0.06619 Mean : 0.2837
3rd Qu.: 0.0000 3rd Qu.:0.00000 3rd Qu.: 0.0000
Max. :17.0000 Max. :2.00000 Max. :19.0000
anti-non-hispanic* anti-gaymale anti-gayfemale anti-gay(maleandfemale)
Min. :0 Min. : 0.000 Min. :0.0000 Min. :0.0000
1st Qu.:0 1st Qu.: 0.000 1st Qu.:0.0000 1st Qu.:0.0000
Median :0 Median : 0.000 Median :0.0000 Median :0.0000
Mean :0 Mean : 1.499 Mean :0.2411 Mean :0.1017
3rd Qu.:0 3rd Qu.: 1.000 3rd Qu.:0.0000 3rd Qu.:0.0000
Max. :0 Max. :36.000 Max. :8.0000 Max. :4.0000
anti-heterosexual anti-bisexual anti-physicaldisability
Min. :0.000000 Min. :0.000000 Min. :0.00000
1st Qu.:0.000000 1st Qu.:0.000000 1st Qu.:0.00000
Median :0.000000 Median :0.000000 Median :0.00000
Mean :0.002364 Mean :0.004728 Mean :0.01182
3rd Qu.:0.000000 3rd Qu.:0.000000 3rd Qu.:0.00000
Max. :1.000000 Max. :1.000000 Max. :1.00000
anti-mentaldisability totalincidents totalvictims totaloffenders
Min. :0.000000 Min. : 1.00 Min. : 1.00 Min. : 1.00
1st Qu.:0.000000 1st Qu.: 1.00 1st Qu.: 1.00 1st Qu.: 1.00
Median :0.000000 Median : 3.00 Median : 3.00 Median : 3.00
Mean :0.009456 Mean : 10.09 Mean : 10.48 Mean : 11.77
3rd Qu.:0.000000 3rd Qu.: 10.00 3rd Qu.: 10.00 3rd Qu.: 11.00
Max. :1.000000 Max. :101.00 Max. :106.00 Max. :113.00
plot2 <- hatenew |>ggplot() +geom_bar(aes(x=year, y=crimecount, fill = victim_cat),position ="dodge", stat ="identity") +labs(fill ="Hate Crime Type",y ="Number of Hate Crime Incidents",title ="Hate Crime Type in NY Counties Between 2010-2016",caption ="Source: NY State Division of Criminal Justice Services")plot2
Bar graphs by county
plot3 <- hatenew |>ggplot() +geom_bar(aes(x=county, y=crimecount, fill = victim_cat),position ="dodge", stat ="identity") +labs(fill ="Hate Crime Type",y ="Number of Hate Crime Incidents",title ="Hate Crime Type in NY Counties Between 2010-2016",caption ="Source: NY State Division of Criminal Justice Services")plot3
# A tibble: 5 × 2
county sum
<chr> <dbl>
1 Kings 713
2 New York 459
3 Suffolk 360
4 Nassau 298
5 Queens 235
plot4 <- hatenew |>filter(county %in%c("Kings", "New York", "Suffolk", "Nassau", "Queens")) |>ggplot() +geom_bar(aes(x=county, y=crimecount, fill = victim_cat),position ="dodge", stat ="identity") +labs(y ="Number of Hate Crime Incidents",title ="5 Counties in NY with Highest Incidents of Hate Crimes",subtitle ="Between 2010-2016", fill ="Hate Crime Type",caption ="Source: NY State Division of Criminal Justice Services")plot4
Look at hate crimes in counties per year by population density
Rows: 62 Columns: 8
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (1): Geography
dbl (7): 2010, 2011, 2012, 2013, 2014, 2015, 2016
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
# A tibble: 6 × 3
county year population
<chr> <dbl> <dbl>
1 Albany , New York 2010 304078
2 Allegany , New York 2010 48949
3 Bronx , New York 2010 1388240
4 Broome , New York 2010 200469
5 Cattaraugus , New York 2010 80249
6 Cayuga , New York 2010 79844
Focus on 2012 since it had the highest counts of hate crimes
Look at the populations of counties in 2012
Clean the nypoplong12 variable, county, so it matches the counties12 variable by cutting off “, New York”
nypoplong12 <- nypoplong |>filter(year ==2012) |>arrange(desc(population)) |>head(10)nypoplong12$county<-gsub(" , New York","",nypoplong12$county)nypoplong12
# A tibble: 10 × 3
county year population
<chr> <dbl> <dbl>
1 Kings 2012 2572282
2 Queens 2012 2278024
3 New York 2012 1625121
4 Suffolk 2012 1499382
5 Bronx 2012 1414774
6 Nassau 2012 1350748
7 Westchester 2012 961073
8 Erie 2012 920792
9 Monroe 2012 748947
10 Richmond 2012 470978
A positive aspect of this dataset is that it includes data from all counties in New York. This ensures that the entire state is represented in these results. It also includes data on hate crimes against several different populations; not just the populations with the most victims or that the public perceives as being most affected by hate crimes. This also removes potential selection bias. The main negative aspect of this dataset is that the bias of the person reporting (or not reporting) the hate crimes is embedded in the data and it cannot be removed since we do not know what types of crimes we are missing. I would also have liked to see data about general crime rates in each county to see if hate crimes are disproportionally higher or lower than other types of crime anywhere.
2 different paths I would like to hypothetically study about this dataset
I would like to know more about whether different types of crimes (e.g., property crimes vs. crimes against persons) vary depending on the group the victim is a part of. I would also like to study whether the proportions of crimes based on a person’s race/ethnicity, gender identity, and religion vary across counties and years.
2 things I would do to follow up after seeing the output from the hatecrimes tutorial
I want to find out why there was such a big increase in hate crimes against Jewish people in 2012. Did the rate increase because more hate crime incidents and arrests occurred, and if so, were there any external factors leading to this? Or did the crime rate remain the same, but more crimes were reported as hate crimes? If the way crimes are reported is inconsistent from year to year, it might be necessary to re-classify crimes so they are judged the same way. This would allow accurate comparisons to be made from year to year and give us a better understanding of why crimes rates change.
I would also want to contact local officials to find out how hate crimes are classified in our area. According to a ProPublica article about hate crime statistics, police in Anne Arundel County reported 0 hate crimes from 2012-2015 because incidents that were clearly motivated by bias were flagged as “inconclusive.” If the criteria used in local jurisdictions are unclear and/or incomplete, I would advocate for the criteria to be changed and for police at all levels of duty to be trained in how to report hate crimes accurately. If the criteria are complete and training is provided but hate crimes are not identified accurately, I would want to know what local officials can do to solve this problem.