1. Import the Dataset

data("mtcars")
mtcars
##                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
## Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
## Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
## Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
## Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
## Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
## Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
## Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
## Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
help(mtcars)

2. Description

1.The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles.

2.This dataset contains 11 variables with 32 observations.

3.This dataset is cross-sectional data. Specifically, the data was collected at a single point in time and provide a snapshot of the characteristics of the automobiles for the 1973-1974 model years.

4.Our target variable (y) will be mpg (miles per gallon) based on other independent variables.

3. Estimating Equation

I tend to choose mpg as dependent variable, disp and wt independent variables.

\[ mpg = \beta_0\ + \beta_1disp\ + \beta_2 wt\ + \epsilon\ \]

Predict number of miles the car can travel on a gallon of fuel based on the values of displacement and weight.

4. Implement in Package

lm_mpg = lm(mtcars$mpg ~ mtcars$disp + mtcars$wt)
print(lm_mpg)
## 
## Call:
## lm(formula = mtcars$mpg ~ mtcars$disp + mtcars$wt)
## 
## Coefficients:
## (Intercept)  mtcars$disp    mtcars$wt  
##    34.96055     -0.01772     -3.35083

5. Implement in Matrix Algebra

Setup:

#checking the n/a
any(is.na(mtcars))
## [1] FALSE

Design Matrix:

# x variebles
X <- as.matrix(mtcars$disp)
#add a column of ones for beta 0 
X <- cbind (1, X)
#add the wt column to design marix
X <- cbind(X, mtcars$wt)
print(X)
##       [,1]  [,2]  [,3]
##  [1,]    1 160.0 2.620
##  [2,]    1 160.0 2.875
##  [3,]    1 108.0 2.320
##  [4,]    1 258.0 3.215
##  [5,]    1 360.0 3.440
##  [6,]    1 225.0 3.460
##  [7,]    1 360.0 3.570
##  [8,]    1 146.7 3.190
##  [9,]    1 140.8 3.150
## [10,]    1 167.6 3.440
## [11,]    1 167.6 3.440
## [12,]    1 275.8 4.070
## [13,]    1 275.8 3.730
## [14,]    1 275.8 3.780
## [15,]    1 472.0 5.250
## [16,]    1 460.0 5.424
## [17,]    1 440.0 5.345
## [18,]    1  78.7 2.200
## [19,]    1  75.7 1.615
## [20,]    1  71.1 1.835
## [21,]    1 120.1 2.465
## [22,]    1 318.0 3.520
## [23,]    1 304.0 3.435
## [24,]    1 350.0 3.840
## [25,]    1 400.0 3.845
## [26,]    1  79.0 1.935
## [27,]    1 120.3 2.140
## [28,]    1  95.1 1.513
## [29,]    1 351.0 3.170
## [30,]    1 145.0 2.770
## [31,]    1 301.0 3.570
## [32,]    1 121.0 2.780

Response Matrix:

#y variable
y <- as.matrix(mtcars$mpg)
y
##       [,1]
##  [1,] 21.0
##  [2,] 21.0
##  [3,] 22.8
##  [4,] 21.4
##  [5,] 18.7
##  [6,] 18.1
##  [7,] 14.3
##  [8,] 24.4
##  [9,] 22.8
## [10,] 19.2
## [11,] 17.8
## [12,] 16.4
## [13,] 17.3
## [14,] 15.2
## [15,] 10.4
## [16,] 10.4
## [17,] 14.7
## [18,] 32.4
## [19,] 30.4
## [20,] 33.9
## [21,] 21.5
## [22,] 15.5
## [23,] 15.2
## [24,] 13.3
## [25,] 19.2
## [26,] 27.3
## [27,] 26.0
## [28,] 30.4
## [29,] 15.8
## [30,] 19.7
## [31,] 15.0
## [32,] 21.4
#checking the rows and columns for design and response matrix
dim(X)
## [1] 32  3
dim(y)
## [1] 32  1

Now that we have design (X) and response (y) Matrices, we can use them to slove for parameters by using closed form solution:

\[ \beta = (X'X)^{-1} X'y \]

betas <- solve(t(X) %*% X) %*% t(X) %*% y
betas
##             [,1]
## [1,] 34.96055404
## [2,] -0.01772474
## [3,] -3.35082533
print(lm_mpg)
## 
## Call:
## lm(formula = mtcars$mpg ~ mtcars$disp + mtcars$wt)
## 
## Coefficients:
## (Intercept)  mtcars$disp    mtcars$wt  
##    34.96055     -0.01772     -3.35083

Thus, we got same results by using package and OLS closed form function.

6. Interpretation

Based on the the results, we can get our linear regression function as:

\[ mpg = 34.96055 - 0.01772disp - 3.35083wt + \epsilon\ \]