** Now, I will be constructing my own functions which would convert metes to foot.

meter_to_foot <- function(length_m){
  length_f <- (length_m * 3.28)
  return(length_f)
}

** Testing the constructed command function

#the altitude of mount everest, meters -> feet 
meter_to_foot(8850)
## [1] 29028

The altitude of Mount Everest found on Google in ft is 29,028 which is the same as our result computed here.

# Data selection
USArrests
##                Murder Assault UrbanPop Rape
## Alabama          13.2     236       58 21.2
## Alaska           10.0     263       48 44.5
## Arizona           8.1     294       80 31.0
## Arkansas          8.8     190       50 19.5
## California        9.0     276       91 40.6
## Colorado          7.9     204       78 38.7
## Connecticut       3.3     110       77 11.1
## Delaware          5.9     238       72 15.8
## Florida          15.4     335       80 31.9
## Georgia          17.4     211       60 25.8
## Hawaii            5.3      46       83 20.2
## Idaho             2.6     120       54 14.2
## Illinois         10.4     249       83 24.0
## Indiana           7.2     113       65 21.0
## Iowa              2.2      56       57 11.3
## Kansas            6.0     115       66 18.0
## Kentucky          9.7     109       52 16.3
## Louisiana        15.4     249       66 22.2
## Maine             2.1      83       51  7.8
## Maryland         11.3     300       67 27.8
## Massachusetts     4.4     149       85 16.3
## Michigan         12.1     255       74 35.1
## Minnesota         2.7      72       66 14.9
## Mississippi      16.1     259       44 17.1
## Missouri          9.0     178       70 28.2
## Montana           6.0     109       53 16.4
## Nebraska          4.3     102       62 16.5
## Nevada           12.2     252       81 46.0
## New Hampshire     2.1      57       56  9.5
## New Jersey        7.4     159       89 18.8
## New Mexico       11.4     285       70 32.1
## New York         11.1     254       86 26.1
## North Carolina   13.0     337       45 16.1
## North Dakota      0.8      45       44  7.3
## Ohio              7.3     120       75 21.4
## Oklahoma          6.6     151       68 20.0
## Oregon            4.9     159       67 29.3
## Pennsylvania      6.3     106       72 14.9
## Rhode Island      3.4     174       87  8.3
## South Carolina   14.4     279       48 22.5
## South Dakota      3.8      86       45 12.8
## Tennessee        13.2     188       59 26.9
## Texas            12.7     201       80 25.5
## Utah              3.2     120       80 22.9
## Vermont           2.2      48       32 11.2
## Virginia          8.5     156       63 20.7
## Washington        4.0     145       73 26.2
## West Virginia     5.7      81       39  9.3
## Wisconsin         2.6      53       66 10.8
## Wyoming           6.8     161       60 15.6
library(ggplot2)
library(psych)
## 
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
library(moments)
# More detail on the data "Murder"
describe(USArrests$Murder)
##    vars  n mean   sd median trimmed  mad min  max range skew kurtosis   se
## X1    1 50 7.79 4.36   7.25    7.53 5.41 0.8 17.4  16.6 0.37    -0.95 0.62
# Basic density
p <- ggplot(USArrests, aes(x=Murder)) + 
  geom_density(color="darkgreen", fill="lightgreen")

# Add mean line
p+ geom_vline(aes(xintercept=mean(Murder)),
            color="black", linetype="dashed", size=2)
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

Based on the graph produced above on Murder, I think the data has a positive skewness which means that there are some extreme values on the right hand side of the distribution that is pulling the distribution skewing to the right.

** A package called “moments” can enable us to calculate skewness in simple commands.

# Find the skewness using "moments" package
skewness(USArrests$Murder)
## [1] 0.3820378

Based on the coefficient we get from above, 0.38, we can say that the distribution is approximately symmetric because the skewness coefficient is between - 0.5 and 0.5. Normally, we say that if skewness is less than -1, or greater than 1, the distribution is highly skewed. If the distribution is between -1 and -0.5 or between 0.5 and 1, the distribution is moderately skewed.