Problema 3: Teorema del limite central

Para este ejercicio se hace la sigueinte funcion:

ademas se desarrolla el punto c

p3<- function(n) {
Teorema<-matrix(,n,n)
exito<-rep(1,500)
fracaso<-rep(0,500)
lote<-c(exito,fracaso)

for (i in 1:n) {
  Teorema[i,]=sample(lote, n, replace = FALSE, prob = NULL) 
  
}
pi<-rowSums(Teorema)/n
promedio<-(mean(pi))
#print(pi)
#print(pi)
print(shapiro.test(pi))
print(qqnorm(pi))
print(promedio)

}
p3(100)
## 
##  Shapiro-Wilk normality test
## 
## data:  pi
## W = 0.98885, p-value = 0.5727

## $x
##   [1] -1.10306256 -1.05812162 -1.81191067 -0.42614801 -0.11303854 -0.39885507
##   [7] -0.08784484 -1.31057911 -0.93458929  1.81191067 -2.57582930 -0.06270678
##  [13] -0.89647336 -0.37185609 -1.01522203  0.45376219  1.95996398 -0.03760829
##  [19] -0.62800601 -1.69539771 -0.59776013  0.29237490 -0.72247905 -0.34512553
##  [25] -0.85961736 -1.25356544 -1.59819314 -0.31863936  1.51410189  0.85961736
##  [31] -0.29237490  0.48172685  0.51007346  1.59819314  0.89647336  1.20035886
##  [37] -0.56805150 -1.20035886 -0.53883603  0.93458929  0.13830421  0.97411388
##  [43]  1.25356544 -0.97411388  0.16365849  2.17009038 -1.51410189  0.18911843
##  [49] -0.69030882 -0.65883769 -0.26631061 -2.17009038  0.31863936 -0.24042603
##  [55] -0.82389363  0.34512553 -0.01253347  0.01253347  1.31057911  0.53883603
##  [61]  1.37220381  0.69030882  0.72247905  0.03760829  0.75541503  1.43953147
##  [67] -1.95996398 -0.21470157 -0.78919165  0.56805150  0.37185609  0.39885507
##  [73]  1.01522203  1.05812162  0.78919165 -0.18911843 -1.37220381  0.21470157
##  [79] -1.15034938  0.06270678  0.82389363 -1.43953147 -0.16365849  1.69539771
##  [85] -0.75541503  0.59776013  0.62800601  2.57582930 -0.13830421  0.42614801
##  [91]  1.10306256  1.15034938 -0.51007346  0.08784484 -0.48172685  0.11303854
##  [97] -0.45376219  0.24042603  0.65883769  0.26631061
## 
## $y
##   [1] 0.45 0.45 0.41 0.49 0.50 0.49 0.50 0.44 0.46 0.60 0.38 0.50 0.46 0.49 0.45
##  [16] 0.53 0.60 0.50 0.48 0.42 0.48 0.52 0.47 0.49 0.46 0.44 0.42 0.49 0.57 0.55
##  [31] 0.49 0.53 0.53 0.57 0.55 0.56 0.48 0.44 0.48 0.55 0.51 0.55 0.56 0.45 0.51
##  [46] 0.62 0.42 0.51 0.47 0.47 0.49 0.40 0.52 0.49 0.46 0.52 0.50 0.50 0.56 0.53
##  [61] 0.56 0.54 0.54 0.50 0.54 0.56 0.40 0.49 0.46 0.53 0.52 0.52 0.55 0.55 0.54
##  [76] 0.49 0.43 0.51 0.44 0.50 0.54 0.42 0.49 0.57 0.46 0.53 0.53 0.62 0.49 0.52
##  [91] 0.55 0.55 0.48 0.50 0.48 0.50 0.48 0.51 0.53 0.51
## 
## [1] 0.5014

Por lo anterior, se tiene que el estimador tiende a el parametro poblacional ya que la cantidad de obervaciones, este es la regla de oro del teorema del limite centrar ya que por esto entre mas grande la muestra los estimadores seran muy cercanos a los parametros poblacionales.

Ademas por viendo la normalidad de los datos se ve que se cumple con este supuesto ya que el p valor es mayor al 5%.

punto D

p3(5)
## 
##  Shapiro-Wilk normality test
## 
## data:  pi
## W = 0.88104, p-value = 0.314

## $x
## [1]  0.0000000 -1.1797611  1.1797611  0.4972006 -0.4972006
## 
## $y
## [1] 0.6 0.4 0.8 0.6 0.4
## 
## [1] 0.56
p3(10)
## 
##  Shapiro-Wilk normality test
## 
## data:  pi
## W = 0.91416, p-value = 0.3108

## $x
##  [1] -0.1225808 -0.6554235  1.0004905  0.1225808 -1.5466353 -0.3754618
##  [7]  0.3754618  1.5466353 -1.0004905  0.6554235
## 
## $y
##  [1] 0.5 0.4 0.6 0.5 0.2 0.4 0.5 0.8 0.2 0.5
## 
## [1] 0.46
p3(15)
## 
##  Shapiro-Wilk normality test
## 
## data:  pi
## W = 0.96631, p-value = 0.8002

## $x
##  [1] -0.7279133 -0.5244005  0.7279133 -0.3406948  0.1678940 -0.1678940
##  [7]  0.3406948 -1.8339146  1.8339146  0.0000000  0.5244005  0.9674216
## [13] -1.2815516  1.2815516 -0.9674216
## 
## $y
##  [1] 0.4000000 0.4000000 0.6000000 0.4000000 0.5333333 0.4666667 0.5333333
##  [8] 0.2666667 0.7333333 0.4666667 0.5333333 0.6000000 0.3333333 0.6000000
## [15] 0.3333333
## 
## [1] 0.48
p3(20)
## 
##  Shapiro-Wilk normality test
## 
## data:  pi
## W = 0.95937, p-value = 0.5314

## $x
##  [1]  1.43953147  0.59776013 -0.93458929 -0.06270678 -0.75541503 -1.43953147
##  [7] -0.59776013 -1.15034938 -0.45376219  0.31863936  1.95996398 -0.31863936
## [13]  0.45376219  0.06270678 -0.18911843  0.75541503 -1.95996398  0.93458929
## [19]  1.15034938  0.18911843
## 
## $y
##  [1] 0.70 0.55 0.35 0.45 0.35 0.30 0.40 0.30 0.40 0.50 0.70 0.40 0.50 0.45 0.40
## [16] 0.55 0.25 0.55 0.60 0.45
## 
## [1] 0.4575
p3(30)
## 
##  Shapiro-Wilk normality test
## 
## data:  pi
## W = 0.97654, p-value = 0.7281

## $x
##  [1] -0.3853205  0.4770404  2.1280452  0.0417893  0.5729675 -1.0364334
##  [7]  1.1918162 -2.1280452 -0.9027348  0.9027348 -0.2967378  0.1256613
## [13] -0.6744898 -0.5729675 -0.7835004  0.6744898  0.7835004 -1.6448536
## [19]  1.3829941  0.2104284 -1.3829941 -1.1918162 -0.4770404  0.2967378
## [25]  1.0364334  1.6448536 -0.2104284  0.3853205 -0.1256613 -0.0417893
## 
## $y
##  [1] 0.5000000 0.5666667 0.6666667 0.5333333 0.5666667 0.4333333 0.6333333
##  [8] 0.3333333 0.4333333 0.6000000 0.5000000 0.5333333 0.4666667 0.4666667
## [15] 0.4333333 0.5666667 0.5666667 0.4000000 0.6333333 0.5333333 0.4000000
## [22] 0.4000000 0.4666667 0.5333333 0.6000000 0.6333333 0.5000000 0.5333333
## [29] 0.5000000 0.5000000
## 
## [1] 0.5144444
p3(50)
## 
##  Shapiro-Wilk normality test
## 
## data:  pi
## W = 0.98022, p-value = 0.5613

## $x
##  [1]  1.88079361 -0.67448975 -1.88079361 -0.17637416  1.12639113  0.95416525
##  [7] -0.12566135  1.22652812 -1.03643339  0.33185335  1.34075503  0.38532047
## [13]  0.43991317 -0.95416525 -0.07526986 -0.02506891 -0.61281299 -1.34075503
## [19] -1.22652812  0.07526986  0.12566135 -0.87789630  0.49585035  0.02506891
## [25] -1.12639113  0.17637416  0.55338472  0.61281299 -0.55338472 -0.80642125
## [31]  1.47579103 -0.73884685 -0.49585035  0.67448975 -0.43991317 -0.38532047
## [37] -0.33185335  0.73884685 -0.27931903 -1.64485363 -2.32634787  1.03643339
## [43]  1.64485363 -0.22754498  0.80642125  2.32634787  0.22754498 -1.47579103
## [49]  0.27931903  0.87789630
## 
## $y
##  [1] 0.60 0.46 0.38 0.48 0.56 0.54 0.48 0.56 0.44 0.52 0.56 0.52 0.52 0.44 0.48
## [16] 0.48 0.46 0.42 0.42 0.50 0.50 0.44 0.52 0.48 0.42 0.50 0.52 0.52 0.46 0.44
## [31] 0.56 0.44 0.46 0.52 0.46 0.46 0.46 0.52 0.46 0.40 0.36 0.54 0.56 0.46 0.52
## [46] 0.64 0.50 0.40 0.50 0.52
## 
## [1] 0.4872
p3(60)
## 
##  Shapiro-Wilk normality test
## 
## data:  pi
## W = 0.97492, p-value = 0.252

## $x
##  [1]  0.14674496 -0.75541503 -1.56891963  0.50058011 -0.70095142 -1.33056151
##  [7] -0.64849218  0.18911843 -0.59776013  0.75541503  0.81221780  0.54852228
## [13] -2.39397980 -0.18911843 -0.93458929  1.15034938  0.59776013  0.23183436
## [19]  0.64849218  0.87177097 -0.14674496 -1.43953147  1.95996398 -0.10463346
## [25] -1.23544034  1.23544034 -0.87177097 -0.06270678 -0.54852228 -1.15034938
## [31]  1.56891963  0.93458929 -0.50058011  2.39397980  1.00133130  0.27497775
## [37]  0.31863936 -0.45376219  0.36291730 -1.07286134 -0.02089009  1.33056151
## [43] -0.40791874  0.02089009 -1.00133130  0.70095142 -1.95996398  0.06270678
## [49]  0.40791874  1.07286134 -0.36291730 -0.31863936  0.10463346  1.73166440
## [55]  0.45376219 -0.27497775 -1.73166440 -0.23183436 -0.81221780  1.43953147
## 
## $y
##  [1] 0.5166667 0.4833333 0.4333333 0.5333333 0.4833333 0.4500000 0.4833333
##  [8] 0.5166667 0.4833333 0.5500000 0.5500000 0.5333333 0.4166667 0.5000000
## [15] 0.4666667 0.5666667 0.5333333 0.5166667 0.5333333 0.5500000 0.5000000
## [22] 0.4333333 0.6166667 0.5000000 0.4500000 0.5666667 0.4666667 0.5000000
## [29] 0.4833333 0.4500000 0.5833333 0.5500000 0.4833333 0.6333333 0.5500000
## [36] 0.5166667 0.5166667 0.4833333 0.5166667 0.4500000 0.5000000 0.5666667
## [43] 0.4833333 0.5000000 0.4500000 0.5333333 0.4166667 0.5000000 0.5166667
## [50] 0.5500000 0.4833333 0.4833333 0.5000000 0.6000000 0.5166667 0.4833333
## [57] 0.4166667 0.4833333 0.4666667 0.5666667
## 
## [1] 0.5061111
p3(100)
## 
##  Shapiro-Wilk normality test
## 
## data:  pi
## W = 0.98581, p-value = 0.3627

## $x
##   [1]  0.01253347  1.31057911 -1.01522203 -1.81191067  0.78919165 -0.39885507
##   [7]  1.37220381  0.45376219  0.03760829 -0.16365849 -0.37185609 -0.13830421
##  [13] -0.69030882 -1.37220381 -0.93458929  0.97411388 -0.89647336 -0.85961736
##  [19] -0.11303854  0.82389363 -0.65883769 -1.95996398  1.81191067  0.85961736
##  [25] -0.62800601  0.51007346 -0.34512553  0.26631061 -0.31863936  0.06270678
##  [31]  0.29237490 -0.08784484  1.43953147  0.08784484  2.17009038  0.48172685
##  [37]  0.11303854  0.53883603  0.56805150  0.31863936  0.13830421 -0.06270678
##  [43]  1.01522203  1.05812162 -0.29237490  0.34512553  0.89647336 -2.57582930
##  [49] -0.82389363  1.51410189  0.59776013 -0.97411388 -0.59776013  0.62800601
##  [55]  0.37185609  0.65883769  0.39885507 -1.25356544  0.69030882  0.93458929
##  [61] -0.26631061 -0.78919165  1.59819314  1.10306256 -2.17009038  0.72247905
##  [67]  1.15034938 -0.56805150 -0.53883603  1.20035886  0.16365849 -1.69539771
##  [73] -0.24042603 -1.59819314 -0.51007346 -0.75541503 -1.20035886 -0.48172685
##  [79] -0.72247905  0.18911843  0.21470157  1.69539771 -0.03760829 -1.15034938
##  [85]  0.75541503 -1.10306256 -0.45376219 -0.42614801  1.25356544 -1.05812162
##  [91] -1.51410189 -0.01253347  0.24042603 -0.21470157 -1.43953147  0.42614801
##  [97]  1.95996398 -1.31057911  2.57582930 -0.18911843
## 
## $y
##   [1] 0.51 0.57 0.46 0.42 0.55 0.49 0.57 0.53 0.51 0.50 0.49 0.50 0.48 0.43 0.47
##  [16] 0.56 0.47 0.47 0.50 0.55 0.48 0.40 0.58 0.55 0.48 0.54 0.49 0.52 0.49 0.51
##  [31] 0.52 0.50 0.57 0.51 0.60 0.53 0.51 0.54 0.54 0.52 0.51 0.50 0.56 0.56 0.49
##  [46] 0.52 0.55 0.37 0.47 0.57 0.54 0.46 0.48 0.54 0.52 0.54 0.52 0.45 0.54 0.55
##  [61] 0.49 0.47 0.57 0.56 0.39 0.54 0.56 0.48 0.48 0.56 0.51 0.42 0.49 0.42 0.48
##  [76] 0.47 0.45 0.48 0.47 0.51 0.51 0.57 0.50 0.45 0.54 0.45 0.48 0.48 0.56 0.45
##  [91] 0.42 0.50 0.51 0.49 0.42 0.52 0.59 0.44 0.62 0.49
## 
## [1] 0.5044
p3(200)
## 
##  Shapiro-Wilk normality test
## 
## data:  pi
## W = 0.99294, p-value = 0.4526

## $x
##   [1]  0.905878812  1.047215930  0.590284394 -0.131980140 -1.004785806
##   [6] -1.918876226 -1.494672250  0.056429069 -0.575430769  0.068986959
##  [11] -0.043880072 -0.984234960  0.763777244 -1.669592577  0.285840875
##  [16]  0.780664237  1.422090432  1.576111974  0.298921424  0.081555738
##  [21] -0.780664237 -0.560703032 -0.392078788 -0.488776411 -0.031337982
##  [26]  0.094137414  0.474701147 -0.378579699  0.924934461  0.797776846
##  [31]  1.069154627 -0.365149249 -1.621082251 -2.807033768  1.091620367
##  [36] -1.239933478  1.114651015  0.312053322 -0.018800820  0.605269415
##  [41]  1.239933478  1.138288582 -1.114651015 -2.432379059  2.807033768
##  [46] -0.763777244 -0.964091607  1.162579875 -0.944332036  1.457421739
##  [51]  0.815126333  0.944332036 -0.351784345  0.620391602 -1.457421739
##  [56]  0.106734011 -1.213339622  2.241402728 -0.338481986 -0.924934461
##  [61]  1.267434417 -0.474701147  0.832724719 -1.422090432 -0.460719309
##  [66]  1.295928846 -1.388450197 -0.905878812  0.850584865 -1.845258117
##  [71] -0.006266612 -0.887146559  0.635657014 -1.780464342  0.868720547
##  [76]  0.651072016  1.187577263 -0.325239256  0.119347567 -0.312053322
##  [81]  0.131980140  1.918876226  0.964091607  2.432379059 -1.722383890
##  [86]  0.666643306  0.887146559  0.144633812  1.621082251  0.157310685
##  [91]  0.682377942  1.669592577 -0.298921424 -0.119347567 -1.091620367
##  [96] -0.747105302 -1.187577263 -2.004654462  0.006266612  0.698283366
## [101]  0.325239256 -2.241402728 -0.106734011 -1.356311745 -1.162579875
## [106] -0.285840875 -0.272809053 -1.576111974 -0.259823400  0.338481986
## [111] -0.094137414  1.494672250 -0.246881415 -1.138288582  2.004654462
## [116]  1.325516200  0.488776411  0.170012889 -0.546095926  2.108358399
## [121]  0.018800820  0.502949184  0.517223714  0.351784345 -0.730638483
## [126]  0.031337982 -0.531604424  0.365149249 -0.714367440 -0.698283366
## [131] -0.233980651  0.984234960 -0.868720547  0.182742585 -1.325516200
## [136] -0.446826965 -0.221118713 -0.682377942  1.356311745  0.378579699
## [141] -1.295928846 -0.850584865 -0.208293252  1.213339622  0.195501964
## [146]  0.043880072 -0.666643306  0.208293252  0.531604424 -0.651072016
## [151] -2.108358399 -0.081555738 -0.195501964  0.392078788  0.546095926
## [156] -1.267434417  1.004785806 -0.635657014 -1.069154627  0.405649708
## [161] -0.517223714  1.722383890  0.419295753 -1.534120544  0.560703032
## [166]  1.025770021 -1.047215930 -0.433020331 -0.620391602  0.433020331
## [171]  1.534120544 -0.419295753 -0.502949184  0.221118713 -0.182742585
## [176]  0.446826965  0.714367440 -0.170012889  0.233980651 -0.068986959
## [181] -1.025770021  1.388450197 -0.605269415  0.730638483  0.246881415
## [186]  0.460719309  1.780464342 -0.157310685 -0.590284394  1.845258117
## [191]  0.575430769  0.259823400 -0.832724719 -0.815126333 -0.056429069
## [196]  0.747105302 -0.405649708 -0.144633812 -0.797776846  0.272809053
## 
## $y
##   [1] 0.525 0.530 0.515 0.490 0.465 0.440 0.450 0.500 0.475 0.500 0.495 0.465
##  [13] 0.520 0.445 0.505 0.520 0.540 0.545 0.505 0.500 0.470 0.475 0.485 0.480
##  [25] 0.495 0.500 0.510 0.485 0.525 0.520 0.530 0.485 0.445 0.420 0.530 0.455
##  [37] 0.530 0.505 0.495 0.515 0.535 0.530 0.460 0.420 0.575 0.470 0.465 0.530
##  [49] 0.465 0.540 0.520 0.525 0.485 0.515 0.450 0.500 0.455 0.565 0.485 0.465
##  [61] 0.535 0.480 0.520 0.450 0.480 0.535 0.450 0.465 0.520 0.440 0.495 0.465
##  [73] 0.515 0.440 0.520 0.515 0.530 0.485 0.500 0.485 0.500 0.555 0.525 0.565
##  [85] 0.440 0.515 0.520 0.500 0.545 0.500 0.515 0.545 0.485 0.490 0.460 0.470
##  [97] 0.455 0.435 0.495 0.515 0.505 0.430 0.490 0.450 0.455 0.485 0.485 0.445
## [109] 0.485 0.505 0.490 0.540 0.485 0.455 0.555 0.535 0.510 0.500 0.475 0.555
## [121] 0.495 0.510 0.510 0.505 0.470 0.495 0.475 0.505 0.470 0.470 0.485 0.525
## [133] 0.465 0.500 0.450 0.480 0.485 0.470 0.535 0.505 0.450 0.465 0.485 0.530
## [145] 0.500 0.495 0.470 0.500 0.510 0.470 0.430 0.490 0.485 0.505 0.510 0.450
## [157] 0.525 0.470 0.460 0.505 0.475 0.545 0.505 0.445 0.510 0.525 0.460 0.480
## [169] 0.470 0.505 0.540 0.480 0.475 0.500 0.485 0.505 0.515 0.485 0.500 0.490
## [181] 0.460 0.535 0.470 0.515 0.500 0.505 0.545 0.485 0.470 0.545 0.510 0.500
## [193] 0.465 0.465 0.490 0.515 0.480 0.485 0.465 0.500
## 
## [1] 0.4937
p3(500)
## 
##  Shapiro-Wilk normality test
## 
## data:  pi
## W = 0.99588, p-value = 0.2161

## $x
##   [1]  1.253565438  0.830953321 -0.568051498  0.538836030 -1.654627902
##   [6] -0.184017151  1.264641136  0.184017151 -0.775574943 -2.575829304
##  [11]  0.062706778  1.411830078 -0.768820293  2.575829304 -0.052663527
##  [16]  1.075837361 -1.635234015 -0.178920660 -0.047643956  0.431644239
##  [21] -0.323918153  0.544641655  0.437153541  0.550465695  1.170002408
##  [26] -1.058121618  0.189118426 -0.671346215  0.683960672  0.690308824
##  [31] -1.514101888 -0.318639364  0.556308467 -0.313369439  0.966088297
##  [36] -0.404289290  0.838054670  0.313369439 -0.398855066  0.845198535
##  [41] -0.950220942  0.194224628 -1.895697924 -0.308108202  0.442676144
##  [46]  2.120071690 -0.042625585  1.084823128  0.199335898  1.425544037
##  [51] -0.562170292 -1.616436371  1.762410298 -1.385171608  0.448212281
##  [56] -0.942376333  0.852385798  0.453762190  0.067730713  0.204452382
##  [61]  1.093897353 -0.037608288  1.439531471 -0.393432594  0.859617364
##  [66]  0.209574223 -1.498513068 -0.556308467  1.866295743 -0.173828813
##  [71]  1.103062556  0.214701568  1.180000540 -1.180000540 -0.388021666
##  [76]  0.866894167 -0.934589291 -0.168741468 -0.550465695  0.974113877
##  [81] -0.544641655 -0.382622075 -0.032591937  1.112321367 -1.483280127
##  [86] -1.253565438 -0.538836030 -1.372203809  0.696684917 -0.926858513
##  [91] -0.027576406 -0.163658486 -1.242641419  1.453806359  1.995393310
##  [96] -0.762100541 -1.049387085  0.874217165  0.459326111  1.468383798
## [101] -0.533048511  1.275874179 -0.527278791  0.982202695  1.190118042
## [106]  0.219834564 -0.665078946 -1.359462745  0.464904288  0.990356294
## [111]  0.998576271  0.224973358  0.072756358  0.470496968 -1.040731886
## [116] -0.158579730 -0.521526572 -0.755415026  1.483280127 -0.919182735
## [121] -1.866295743  0.230118101  0.476104403 -1.346938626 -0.302855481
## [126] -0.297611102  0.318639364 -1.598193140 -1.231863709  1.121676528
## [131]  1.006864279  0.703089460  1.200358858  1.287270563 -0.515791557
## [136] -0.748763107  0.481726850  1.895697924  0.077783842  0.235268941
## [141]  0.487364565  0.881587347  0.562170292 -1.334622287 -1.032153958
## [146] -0.153505060 -0.911560735  2.747781385 -1.170002408 -1.160119883
## [151]  1.298836633 -0.022561568 -0.510073457 -1.023651312  1.498513068
## [156]  1.514101888  0.709522974  0.568051498 -1.580466818 -0.017547298
## [161] -0.504371986 -0.148434341 -1.015222033  2.290367878 -1.006864279
## [166]  0.323918153 -0.998576271 -0.012533470  0.493017814 -0.498686864
## [171] -0.903991328  0.573952419  1.530067588 -0.493017814  0.579873392
## [176]  0.498686864  1.210727133  1.546433122 -1.221227222 -0.007519956
## [181]  1.131130901 -0.002506631  0.715985990 -1.468383798 -0.292374896
## [186] -0.287146694 -0.896473364 -1.150349380  0.082813292  0.240426031
## [191]  0.002506631  0.329205984  0.585814766 -0.742144154  2.365618127
## [196]  1.635234015  1.654627902  0.722479052 -0.377233617 -0.658837693
## [201] -0.990356294  0.504371986  0.007519956  1.015222033  0.334503036
## [206] -0.487364565 -2.074854734 -0.481726850 -0.476104403  2.170090378
## [211] -1.838423669  1.926836573  1.140687476  0.889005731  0.729002718
## [216]  1.221227222 -0.735557557 -2.033520149  0.510073457 -0.652621998
## [221] -0.281926330 -0.276713637 -0.889005731  2.226211769 -0.646431416
## [226] -3.090232306 -0.729002718 -0.982202695  0.087844838  0.339809491
## [231]  1.310579112  1.023651312 -1.322505137  0.591776891  0.345125531
## [236] -1.210727133 -1.995393310 -0.470496968  0.012533470 -2.290367878
## [241]  0.597760126 -0.143367435  0.350451343  0.092878609 -0.464904288
## [246]  0.097914734 -0.459326111 -0.138304208  0.735557557 -0.271508452
## [251] -0.133244524 -0.453762190  0.896473364 -0.266310613 -0.371856089
## [256] -0.881587347 -0.640265509  0.603764838 -0.128188248 -1.959963985
## [261]  0.742144154 -0.448212281 -1.140687476  0.609791399 -0.366489294
## [266]  0.245589523 -0.123135248 -0.634123849 -0.442676144 -0.437153541
## [271] -0.722479052  0.102953344 -0.974113877 -0.628006014  0.355787114
## [276] -2.747781385 -0.874217165  0.250759572  0.615840189 -0.621911596
## [281] -0.615840189 -0.261119960  0.903991328 -2.457263390 -0.118085389
## [286]  0.361133034  0.107994569 -0.866894167 -0.859617364  1.032153958
## [291]  0.621911596 -0.609791399  1.322505137  0.515791557  0.017547298
## [296]  1.786613365 -1.811910673 -1.926836573 -0.431644239 -0.852385798
## [301]  0.366489294  0.113038541  0.628006014 -0.255936332  0.255936332
## [306]  0.022561568 -1.131130901 -0.603764838 -0.250759572 -0.597760126
## [311]  0.027576406 -1.563223647 -0.361133034  0.032591937  0.634123849
## [316]  0.748763107  1.334622287 -0.245589523  0.521526572 -0.240426031
## [321]  0.371856089 -1.546433122  0.037608288 -1.453806359 -1.310579112
## [326]  0.118085389 -0.113038541  0.123135248 -1.200358858 -1.786613365
## [331] -0.235268941  0.128188248  0.755415026 -1.439531471 -0.107994569
## [336] -1.121676528  0.133244524  0.762100541  0.377233617  0.138304208
## [341]  0.382622075  1.346938626  2.457263390  1.811910673  0.261119960
## [346]  0.266310613 -0.845198535 -0.102953344  1.040731886  1.838423669
## [351]  0.271508452  0.388021666 -0.230118101  0.640265509 -0.426148008
## [356] -0.591776891 -0.420664620 -0.715985990 -0.838054670  0.393432594
## [361] -0.224973358  2.033520149  1.563223647  0.768820293 -1.762410298
## [366] -1.112321367  0.276713637  0.042625585  1.674664889  0.775574943
## [371] -0.097914734 -0.355787114  0.646431416  3.090232306 -1.103062556
## [376] -0.709522974  0.047643956  2.074854734  1.049387085  0.527278791
## [381]  0.281926330 -0.092878609 -0.219834564  0.052663527  0.057684425
## [386] -0.087844838 -0.415193851 -0.966088297  0.911560735  0.782365165
## [391] -2.226211769  0.652621998 -0.350451343 -0.082813292 -1.093897353
## [396]  0.919182735 -0.214701568 -0.345125531 -0.830953321 -1.739197665
## [401] -1.716886018  0.789191653 -0.823893630  1.580466818  0.533048511
## [406] -1.530067588  0.658837693  0.926858513 -1.425544037 -0.339809491
## [411]  0.796055117  1.058121618 -1.298836633 -0.209574223  0.934589291
## [416]  1.231863709  1.150349380  0.143367435 -0.585814766 -2.365618127
## [421] -2.170090378  0.942376333  1.359462745 -0.579873392 -0.204452382
## [426] -1.084823128 -1.287270563 -0.703089460 -1.075837361  1.372203809
## [431] -0.199335898 -1.066937632  0.148434341 -1.695397710  0.153505060
## [436] -1.275874179 -0.077783842 -0.816874766 -1.411830078  0.287146694
## [441] -1.674664889 -1.264641136 -0.334503036  0.950220942  0.292374896
## [446]  0.665078946  0.158579730  0.802956288  0.297611102 -0.194224628
## [451] -0.809895915 -0.802956288  0.302855481  0.163658486 -0.072756358
## [456]  0.398855066  0.404289290 -1.398376621 -0.958124465  0.409735480
## [461]  0.809895915  0.958124465  1.598193140 -0.696684917  1.160119883
## [466] -0.690308824  0.168741468  1.695397710  0.415193851 -0.573952419
## [471]  1.716886018 -0.796055117  1.066937632 -0.067730713 -0.683960672
## [476]  0.173828813  1.739197665  1.385171608  0.671346215 -0.409735480
## [481]  0.816874766  1.398376621 -0.789191653 -0.189118426  1.242641419
## [486] -0.782365165 -2.120071690  1.959963985 -1.190118042 -0.062706778
## [491]  0.178920660  0.308108202  0.420664620  0.677639965  0.823893630
## [496] -0.677639965 -0.329205984  0.426148008 -0.057684425  1.616436371
## 
## $y
##   [1] 0.522 0.514 0.492 0.510 0.474 0.498 0.522 0.504 0.488 0.464 0.502 0.524
##  [13] 0.488 0.544 0.500 0.518 0.474 0.498 0.500 0.508 0.496 0.510 0.508 0.510
##  [25] 0.520 0.484 0.504 0.490 0.512 0.512 0.476 0.496 0.510 0.496 0.516 0.494
##  [37] 0.514 0.506 0.494 0.514 0.486 0.504 0.472 0.496 0.508 0.534 0.500 0.518
##  [49] 0.504 0.524 0.492 0.474 0.528 0.478 0.508 0.486 0.514 0.508 0.502 0.504
##  [61] 0.518 0.500 0.524 0.494 0.514 0.504 0.476 0.492 0.530 0.498 0.518 0.504
##  [73] 0.520 0.482 0.494 0.514 0.486 0.498 0.492 0.516 0.492 0.494 0.500 0.518
##  [85] 0.476 0.480 0.492 0.478 0.512 0.486 0.500 0.498 0.480 0.524 0.532 0.488
##  [97] 0.484 0.514 0.508 0.524 0.492 0.522 0.492 0.516 0.520 0.504 0.490 0.478
## [109] 0.508 0.516 0.516 0.504 0.502 0.508 0.484 0.498 0.492 0.488 0.524 0.486
## [121] 0.472 0.504 0.508 0.478 0.496 0.496 0.506 0.474 0.480 0.518 0.516 0.512
## [133] 0.520 0.522 0.492 0.488 0.508 0.530 0.502 0.504 0.508 0.514 0.510 0.478
## [145] 0.484 0.498 0.486 0.544 0.482 0.482 0.522 0.500 0.492 0.484 0.524 0.524
## [157] 0.512 0.510 0.474 0.500 0.492 0.498 0.484 0.536 0.484 0.506 0.484 0.500
## [169] 0.508 0.492 0.486 0.510 0.524 0.492 0.510 0.508 0.520 0.524 0.480 0.500
## [181] 0.518 0.500 0.512 0.476 0.496 0.496 0.486 0.482 0.502 0.504 0.500 0.506
## [193] 0.510 0.488 0.542 0.526 0.526 0.512 0.494 0.490 0.484 0.508 0.500 0.516
## [205] 0.506 0.492 0.470 0.492 0.492 0.534 0.472 0.530 0.518 0.514 0.512 0.520
## [217] 0.488 0.470 0.508 0.490 0.496 0.496 0.486 0.534 0.490 0.456 0.488 0.484
## [229] 0.502 0.506 0.522 0.516 0.478 0.510 0.506 0.480 0.470 0.492 0.500 0.468
## [241] 0.510 0.498 0.506 0.502 0.492 0.502 0.492 0.498 0.512 0.496 0.498 0.492
## [253] 0.514 0.496 0.494 0.486 0.490 0.510 0.498 0.470 0.512 0.492 0.482 0.510
## [265] 0.494 0.504 0.498 0.490 0.492 0.492 0.488 0.502 0.484 0.490 0.506 0.456
## [277] 0.486 0.504 0.510 0.490 0.490 0.496 0.514 0.466 0.498 0.506 0.502 0.486
## [289] 0.486 0.516 0.510 0.490 0.522 0.508 0.500 0.528 0.472 0.470 0.492 0.486
## [301] 0.506 0.502 0.510 0.496 0.504 0.500 0.482 0.490 0.496 0.490 0.500 0.474
## [313] 0.494 0.500 0.510 0.512 0.522 0.496 0.508 0.496 0.506 0.474 0.500 0.476
## [325] 0.478 0.502 0.498 0.502 0.480 0.472 0.496 0.502 0.512 0.476 0.498 0.482
## [337] 0.502 0.512 0.506 0.502 0.506 0.522 0.542 0.528 0.504 0.504 0.486 0.498
## [349] 0.516 0.528 0.504 0.506 0.496 0.510 0.492 0.490 0.492 0.488 0.486 0.506
## [361] 0.496 0.532 0.524 0.512 0.472 0.482 0.504 0.500 0.526 0.512 0.498 0.494
## [373] 0.510 0.544 0.482 0.488 0.500 0.532 0.516 0.508 0.504 0.498 0.496 0.500
## [385] 0.500 0.498 0.492 0.484 0.514 0.512 0.468 0.510 0.494 0.498 0.482 0.514
## [397] 0.496 0.494 0.486 0.472 0.472 0.512 0.486 0.524 0.508 0.474 0.510 0.514
## [409] 0.476 0.494 0.512 0.516 0.478 0.496 0.514 0.520 0.518 0.502 0.490 0.466
## [421] 0.468 0.514 0.522 0.490 0.496 0.482 0.478 0.488 0.482 0.522 0.496 0.482
## [433] 0.502 0.472 0.502 0.478 0.498 0.486 0.476 0.504 0.472 0.478 0.494 0.514
## [445] 0.504 0.510 0.502 0.512 0.504 0.496 0.486 0.486 0.504 0.502 0.498 0.506
## [457] 0.506 0.476 0.484 0.506 0.512 0.514 0.524 0.488 0.518 0.488 0.502 0.526
## [469] 0.506 0.490 0.526 0.486 0.516 0.498 0.488 0.502 0.526 0.522 0.510 0.492
## [481] 0.512 0.522 0.486 0.496 0.520 0.486 0.468 0.530 0.480 0.498 0.502 0.504
## [493] 0.506 0.510 0.512 0.488 0.494 0.506 0.498 0.524
## 
## [1] 0.500036