1 Setup

Libraries and functions

knitr::opts_chunk$set(warning = FALSE, message = FALSE) 

Mypackages <-
  c("lme4","tidyverse","effects","ggplot2","psych",
    "MASS","Rmisc","lmerTest","ggthemes", "knitr",
    "lsmeans","pastecs","sjstats","car","ordinal",
    "Rcpp","corrplot", "ggpubr", "EnvStats",
    "easyStats", "cowplot","see","datawizard", 
    "ggcorrplot", "lavaan")

# install.packages(Mypackages) #you must remove the # in this comment if you need to install the packages! 
lapply(Mypackages,
       require,
       character.only = TRUE)

options(knitr.kable.NA = '—')
set.seed(1)  

1.1 Load Data

# read in data files
setwd("~/Desktop")
gjg_raw <-read.csv("/Users/mtrenfield17/Desktop/Research/Boston College Research/SISC Lab Research/I:S Project/Study 1 (Texting While Driving)/Scope Project Study 1 (Text and Drive).csv")

1.2 Functions

plot_cooker <- function(data, iv, dv) {
  part1 <- ggplot(data, aes(x = {{iv}}, y = {{dv}}, fill = {{iv}})) +
    geom_violin(alpha = 0.3, scale = "count") + 
  stat_summary(fun = "mean", geom = "point", size = 3, color = "black") +
    stat_summary(fun.data = mean_cl_normal, geom = "errorbar", width = 0.2,
                 #change to make a data set from allEffects with mean, low CI, high CI
                 size = 1.5, color = "black") +
    theme_classic() +
    xlab("") +
    ylab("")
  ggpar(part1, legend = "none")
}
  
pol_line <- function(data, iv, dv) {
  ggplot(data, aes(x = {{iv}}, y = {{dv}}, color = condition)) +
  stat_summary(fun.data = "mean_cl_normal", geom = "line") +
  geom_point(position = position_jitter(width = 0.1, height = 0.1), alpha = 0.5) +
  labs(x = "Political Leaning", color = "Condition")
}

lizy_cooker <- function(dv, iv, Title, x_axis_labs, y_label, sample_size, coln, rown) {
  part1 <- ggviolin(gjg, x = dv, y = iv, color = dv,
                    alpha = 0.1, fill = dv, xlab = "Motive",
                    trim = TRUE, ylab = y_label) +
    stat_summary(fun.data = "mean_cl_normal", geom = "crossbar", fatten = 1) +
    scale_y_continuous(breaks = c(1:7)) +
    labs(title = paste0(Title, " (n = ", sample_size, ")")) +
    theme(panel.background = element_rect(fill = "transparent"), 
          legend.position = "right",  ## Consider “gray97” for fill
          plot.title = element_text(face = "bold", hjust = 0.5, size = 16), 
          plot.subtitle = element_text(hjust = 0.5),
          panel.grid.major.y = element_line(color='grey75'), 
          axis.text.x = element_text(face = "plain", size = 13, color = "black"),
          axis.text.y = element_text(face = "plain", size = 13, color = "black"),
          axis.title.y = element_text(face = "plain", size = 13, color = "black", 
                                       margin = margin(t = 0, r = 10, b = 0, l = 0)), ## lower X axis title
          panel.border = element_rect(color = "black", fill = NA, size = 1)) +
  scale_color_discrete(name = "Condition") +
  facet_wrap(~ vignette, ncol = coln, nrow = rown, scales = "free", as.table = TRUE)
  ggpar(part1, legend = "none")
}

#POL_gjg_long <- filter(gjg_long, political_overall %in% c("Democrat", "Republican"))
  
#gjg_long$political_overall
#ggplot(gjg_long, aes(x = condition, y = p_approve, color = condition)) +
  #geom_point(stat="summary", fun="mean", size = 2) +
  #facet_wrap(~political_overall) +
  #scale_x_discrete(labels = NULL)

1.3 Reshaping data

#### filtering people who failed the attn check ####
gjg <- gjg_raw %>% filter(attentionCheck == 4)

## changing condition to factor and reordering ##
gjg$condition <- as.factor(gjg$condition)
gjg$condition <- factor(gjg$condition, levels = c("individualScope", "populationScope", "mergedScope"))

# changing numeric DVs to numeric
gjg <- gjg %>% mutate_at(vars(policyDV, donation, helpDV_1, helpDV_2, helpDV_3, helpDV_4, preventDV_1, preventDV_2, preventDV_3, preventDV_4, feelingsMeasures_1, feelingsMeasures_2, feelingsMeasures_3, moral_1, moral_2, moral_3, blame_1, blame_2, efficacy_1, efficacy_2, efficacy_3, efficacy_4, age, pol, pid, edu, inc), as.numeric)

## renaming matrix variables
names(gjg)[names(gjg) == 'helpDV_1'] <-'usGovHelp'
names(gjg)[names(gjg) == 'helpDV_2'] <-'manufacturerHelp'
names(gjg)[names(gjg) == 'helpDV_3'] <-'driverHelp'
names(gjg)[names(gjg) == 'helpDV_4'] <-'youHelp'

names(gjg)[names(gjg) == 'preventDV_1'] <-'usGovPrevent'
names(gjg)[names(gjg) == 'preventDV_2'] <-'manufacturerPrevent'
names(gjg)[names(gjg) == 'preventDV_3'] <-'driverPrevent'
names(gjg)[names(gjg) == 'preventDV_4'] <-'youPrevent'

names(gjg)[names(gjg) == 'feelingsMeasures_1'] <-'upset'
names(gjg)[names(gjg) == 'feelingsMeasures_2'] <-'sympathetic'
names(gjg)[names(gjg) == 'feelingsMeasures_3'] <-'touched'

names(gjg)[names(gjg) == 'moral_1'] <-'donatingMoral'
names(gjg)[names(gjg) == 'moral_2'] <-'takingPrecautionsMoral'
names(gjg)[names(gjg) == 'moral_3'] <-'manufacturersMoral'

names(gjg)[names(gjg) == 'blame_1'] <-'manufacturerBlame'
names(gjg)[names(gjg) == 'blame_2'] <-'individualsBlame'

names(gjg)[names(gjg) == 'efficacy_1'] <-'studyDonationEfficacy'
names(gjg)[names(gjg) == 'efficacy_2'] <-'studyPolicyEfficacy'
names(gjg)[names(gjg) == 'efficacy_3'] <-'donationEfficacy'
names(gjg)[names(gjg) == 'efficacy_4'] <-'punishingIndividualsEfficacy'

2 Attention Check

gjg_raw <- gjg_raw %>% filter(consent == 8)

gjg_raw %>%
  group_by(attentionCheck) %>%
  dplyr::summarise(n = n()) %>%
  mutate(freq = n / sum(n))

1 participant failed the attention check.

3 Demographics

# Subset your data frame to include only the demographic columns
demo_gjg <- gjg[, c("gen", "race", "inc_TEXT", "edu_TEXT", "pol_TEXT", "pid_TEXT", "area")]

# Age
mean(gjg$age, na.rm=TRUE)
## [1] 43.47957
sd(gjg$age, na.rm=TRUE)
## [1] 13.88894
# Loop through each demographic column and calculate frequency counts
freq_tables <- list()

for (col in names(demo_gjg)) {
  {
    freq_table <- as.data.frame(table(demo_gjg[[col]]))
    freq_table$Percent <- round(freq_table$Freq / sum(freq_table$Freq) * 100, 2)
    freq_tables[[col]] <- freq_table
  }
}

# Print the frequency tables
for (i in seq_along(freq_tables)) {
  if (!is.null(freq_tables[[i]])) {
    cat("\nTable of frequencies for", names(freq_tables)[i], ":\n")
    print(freq_tables[[i]])
  }
}
## 
## Table of frequencies for gen :
##   Var1 Freq Percent
## 1    1  608   50.71
## 2    2  573   47.79
## 3    3   18    1.50
## 
## Table of frequencies for race :
##                 Var1 Freq Percent
## 1                       1    0.08
## 2                  1    1    0.08
## 3                1,2    2    0.17
## 4  1,2,3,4,9,7,5,6,8    1    0.08
## 5              1,2,5    1    0.08
## 6            1,2,5,8    1    0.08
## 7              1,2,8    1    0.08
## 8          1,2,9,6,8    1    0.08
## 9                1,5    1    0.08
## 10               1,8    6    0.50
## 11                 2  159   13.26
## 12               2,4    1    0.08
## 13               2,5    2    0.17
## 14             2,5,8    2    0.17
## 15               2,8   12    1.00
## 16               2,9    1    0.08
## 17             2,9,8    1    0.08
## 18                 3   29    2.42
## 19             3,4,8    1    0.08
## 20             3,6,8    1    0.08
## 21               3,8    5    0.42
## 22                 4   10    0.83
## 23               4,5    1    0.08
## 24               4,8    1    0.08
## 25                 5   46    3.84
## 26               5,8   22    1.83
## 27                 6    1    0.08
## 28               6,8    4    0.33
## 29                 7    1    0.08
## 30               7,8    2    0.17
## 31                 8  861   71.81
## 32                 9   18    1.50
## 33               9,8    2    0.17
## 
## Table of frequencies for inc_TEXT :
##                  Var1 Freq Percent
## 1 $100,000 - $149,999  216   18.02
## 2 $150,000 - $199,999   64    5.34
## 3   $25,000 - $49,999  260   21.68
## 4   $50,000 - $74,999  250   20.85
## 5   $75,000 - $99,999  205   17.10
## 6   less than $25,000  164   13.68
## 7  more than $200,000   40    3.34
## 
## Table of frequencies for edu_TEXT :
##                                                   Var1 Freq Percent
## 1                                                         1    0.08
## 2                                    Bachelor's degree  487   40.62
## 3                  Graduate degree (Masters, PhD, etc)  196   16.35
## 4                           High school diploma or GED  142   11.84
## 5 Some college, Technical degree, or Associates degree  362   30.19
## 6 Some schooling, but no high school diploma or degree   11    0.92
## 
## Table of frequencies for pol_TEXT :
##                    Var1 Freq Percent
## 1          Conservative  145   12.09
## 2               Liberal  273   22.77
## 3              Moderate  217   18.10
## 4 Somewhat Conservative  101    8.42
## 5      Somewhat Liberal  155   12.93
## 6     Very Conservative   81    6.76
## 7          Very Liberal  227   18.93
## 
## Table of frequencies for pid_TEXT :
##                  Var1 Freq Percent
## 1            Democrat  623   51.96
## 2 Independent / Other  299   24.94
## 3          Republican  277   23.10
## 
## Table of frequencies for area :
##   Var1 Freq Percent
## 1    1  352   29.36
## 2    2  638   53.21
## 3    3  209   17.43

4 Correlations

DVs <- gjg[c("policyDV", "donation", "usGovHelp", "manufacturerHelp", "driverHelp", "youHelp", "usGovPrevent", "manufacturerPrevent", "driverPrevent", "youPrevent", "upset", "sympathetic", "touched", "donatingMoral", "takingPrecautionsMoral", "manufacturersMoral", "manufacturerBlame", "individualsBlame", "studyDonationEfficacy", "studyPolicyEfficacy", "donationEfficacy", "punishingIndividualsEfficacy", "pol", "edu", "inc", "age")]

# Compute pairwise correlations
corr_DVs <- cor(DVs, use = "complete.obs")

# Plot the correlation matrix
corrplot(corr_DVs, is.corr = TRUE, type = "lower", lower = "circle", tl.cex = 0.7, insig = "label_sig", diag = TRUE)

5 EFA

5.1 Evaluating the correlation matrix

5.2 Determining number of factors

  • Scree plot suggests 3 or 5 factors

  • eigenvalue method suggests 6

  • Parallel Analysis suggests 8

5.3 5 Factors

6 CFA

7 Behavioral Outcomes

percep_plot_list <- list(plot_cooker(gjg, condition, donation),
                         plot_cooker(gjg, condition, policyDV))

# Adding titles to each plot
percep_plot_list[[1]] <- percep_plot_list[[1]] +
  ggtitle("Donations")
  
percep_plot_list[[2]] <- percep_plot_list[[2]] +
  ggtitle("Support for Policy")

percep_plot_arranged <- ggarrange(plotlist = percep_plot_list, ncol = 2, nrow = 1)

overall_percep_title <- ggdraw() +
  draw_label("Behavioral DVs", fontface = "bold")

plot_grid(overall_percep_title, percep_plot_arranged, ncol = 1, rel_heights = c(0.1, 0.9))

pol_line(gjg, pol, policyDV)

pol_line(gjg, pol, donation)

7.1 Inferential Stats

gjg$condition <- relevel(gjg$condition, ref = "mergedScope")
gjg_I <- gjg
gjg_I$condition <- relevel(gjg_I$condition, ref = "individualScope")


mod_donation<- lm(donation ~ condition, data = gjg)
summary(mod_donation)
## 
## Call:
## lm(formula = donation ~ condition, data = gjg)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.237 -3.005 -1.005  1.832  6.995 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.16790    0.15217  20.818   <2e-16 ***
## conditionindividualScope  0.06887    0.21628   0.318    0.750    
## conditionpopulationScope -0.16286    0.21628  -0.753    0.452    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.062 on 1196 degrees of freedom
## Multiple R-squared:  0.001002,   Adjusted R-squared:  -0.0006684 
## F-statistic: 0.5999 on 2 and 1196 DF,  p-value: 0.549
mod_policy<- lm(policyDV ~ condition + pol, data = gjg)
summary(mod_policy)
## 
## Call:
## lm(formula = policyDV ~ condition + pol, data = gjg)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.792 -1.663  0.341  1.599  2.663 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.340775   0.177270  24.487   <2e-16 ***
## conditionindividualScope -0.002155   0.142500  -0.015    0.988    
## conditionpopulationScope -0.068707   0.142654  -0.482    0.630    
## pol                       0.064492   0.031049   2.077    0.038 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.018 on 1195 degrees of freedom
## Multiple R-squared:  0.003949,   Adjusted R-squared:  0.001448 
## F-statistic: 1.579 on 3 and 1195 DF,  p-value: 0.1927
mod_donationI <- lm(donation ~ condition, data = gjg_I)
summary(mod_donationI)
## 
## Call:
## lm(formula = donation ~ condition, data = gjg_I)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.237 -3.005 -1.005  1.832  6.995 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.23678    0.15370  21.060   <2e-16 ***
## conditionmergedScope     -0.06887    0.21628  -0.318    0.750    
## conditionpopulationScope -0.23174    0.21736  -1.066    0.287    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.062 on 1196 degrees of freedom
## Multiple R-squared:  0.001002,   Adjusted R-squared:  -0.0006684 
## F-statistic: 0.5999 on 2 and 1196 DF,  p-value: 0.549
mod_policyI <- lm(policyDV ~ condition + pol, data = gjg_I)
summary(mod_policyI)
## 
## Call:
## lm(formula = policyDV ~ condition + pol, data = gjg_I)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.792 -1.663  0.341  1.599  2.663 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.338620   0.176856  24.532   <2e-16 ***
## conditionmergedScope      0.002155   0.142500   0.015    0.988    
## conditionpopulationScope -0.066552   0.143311  -0.464    0.642    
## pol                       0.064492   0.031049   2.077    0.038 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.018 on 1195 degrees of freedom
## Multiple R-squared:  0.003949,   Adjusted R-squared:  0.001448 
## F-statistic: 1.579 on 3 and 1195 DF,  p-value: 0.1927

8 Responsibility (Help and Prevent)

gjg_long<-gjg %>% gather(stim, resp, "usGovHelp":"punishingIndividualsEfficacy")  

gjg_long$condition <- factor(gjg_long$condition, levels = c("individualScope", "populationScope", "mergedScope"))


responsibilityHelpLong <- gjg_long %>%
  filter(grepl("Help", stim))

facet_cooker <- function(data, iv, dv, coln, rown) {
  part1 <- ggplot(data, aes(x = {{iv}}, y = {{dv}}, fill = {{iv}})) +
    geom_violin(alpha = 0.3, scale = "count") + 
  stat_summary(fun = "mean", geom = "point", size = 3, color = "black") +
    stat_summary(fun.data = mean_cl_normal, geom = "errorbar", width = 0.2,
                 #change to make a data set from allEffects with mean, low CI, high CI
                 size = 1.5, color = "black") +
    theme_classic() +
    xlab("") +
    ylab("") +
   facet_wrap(~ stim, ncol = coln, nrow = rown, scales = "free", as.table = TRUE)
  ggpar(part1, legend = "none")
}

facet_cooker(responsibilityHelpLong, condition, resp, coln = 2, rown = 2)

responsibilityPreventLong <- gjg_long %>%
  filter(grepl("Prevent", stim))

facet_cooker(responsibilityPreventLong, condition, resp, coln = 2, rown = 2)

8.1 Inferential Stats

  • merged vs individual marginal us gov help

  • merged vs pop individual you help

  • prevent significant

mod_usGovHelp <- lm(usGovHelp ~ condition + pol, data = gjg)
summary(mod_usGovHelp)
## 
## Call:
## lm(formula = usGovHelp ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.7855 -1.0986  0.2145  1.2145  2.4171 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.41115    0.11603  20.780   <2e-16 ***
## conditionindividualScope  0.17227    0.09327   1.847    0.065 .  
## conditionpopulationScope  0.02414    0.09337   0.259    0.796    
## pol                       0.17173    0.02032   8.450   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.321 on 1195 degrees of freedom
## Multiple R-squared:  0.05975,    Adjusted R-squared:  0.05739 
## F-statistic: 25.31 on 3 and 1195 DF,  p-value: 7.038e-16
mod_usGovHelpI <- lm(usGovHelp ~ condition + pol, data = gjg_I)
summary(mod_usGovHelpI)
## 
## Call:
## lm(formula = usGovHelp ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.7855 -1.0986  0.2145  1.2145  2.4171 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.58342    0.11576  22.317   <2e-16 ***
## conditionmergedScope     -0.17227    0.09327  -1.847    0.065 .  
## conditionpopulationScope -0.14813    0.09380  -1.579    0.115    
## pol                       0.17173    0.02032   8.450   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.321 on 1195 degrees of freedom
## Multiple R-squared:  0.05975,    Adjusted R-squared:  0.05739 
## F-statistic: 25.31 on 3 and 1195 DF,  p-value: 7.038e-16
mod_manufacturerHelp <- lm(manufacturerHelp ~ condition + pol, data = gjg)
summary(mod_manufacturerHelp)
## 
## Call:
## lm(formula = manufacturerHelp ~ condition + pol, data = gjg)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.31830 -1.16922 -0.04774  1.16761  2.45937 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.44035    0.12336  19.782  < 2e-16 ***
## conditionindividualScope  0.02761    0.09916   0.278    0.781    
## conditionpopulationScope -0.02119    0.09927  -0.213    0.831    
## pol                       0.12148    0.02161   5.622 2.34e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.404 on 1195 degrees of freedom
## Multiple R-squared:  0.02618,    Adjusted R-squared:  0.02374 
## F-statistic: 10.71 on 3 and 1195 DF,  p-value: 5.992e-07
mod_manufacturerHelpI <- lm(manufacturerHelp ~ condition + pol, data = gjg_I)
summary(mod_manufacturerHelpI)
## 
## Call:
## lm(formula = manufacturerHelp ~ condition + pol, data = gjg_I)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.31830 -1.16922 -0.04774  1.16761  2.45937 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.46796    0.12307  20.053  < 2e-16 ***
## conditionmergedScope     -0.02761    0.09916  -0.278    0.781    
## conditionpopulationScope -0.04880    0.09973  -0.489    0.625    
## pol                       0.12148    0.02161   5.622 2.34e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.404 on 1195 degrees of freedom
## Multiple R-squared:  0.02618,    Adjusted R-squared:  0.02374 
## F-statistic: 10.71 on 3 and 1195 DF,  p-value: 5.992e-07
mod_driverHelp <- lm(driverHelp ~ condition + pol, data = gjg)
summary(mod_driverHelp)
## 
## Call:
## lm(formula = driverHelp ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2532 -0.2771  0.7468  0.8284  0.9872 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.97762    0.10267  38.743   <2e-16 ***
## conditionindividualScope  0.02943    0.08253   0.357   0.7214    
## conditionpopulationScope  0.05335    0.08262   0.646   0.5185    
## pol                       0.03517    0.01798   1.956   0.0507 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.169 on 1195 degrees of freedom
## Multiple R-squared:  0.00345,    Adjusted R-squared:  0.0009484 
## F-statistic: 1.379 on 3 and 1195 DF,  p-value: 0.2476
mod_driverHelpI <- lm(driverHelp ~ condition + pol, data = gjg_I)
summary(mod_driverHelpI)
## 
## Call:
## lm(formula = driverHelp ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2532 -0.2771  0.7468  0.8284  0.9872 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.00705    0.10243  39.121   <2e-16 ***
## conditionmergedScope     -0.02943    0.08253  -0.357   0.7214    
## conditionpopulationScope  0.02392    0.08300   0.288   0.7732    
## pol                       0.03517    0.01798   1.956   0.0507 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.169 on 1195 degrees of freedom
## Multiple R-squared:  0.00345,    Adjusted R-squared:  0.0009484 
## F-statistic: 1.379 on 3 and 1195 DF,  p-value: 0.2476
mod_youHelp <- lm(youHelp ~ condition + pol, data = gjg)
summary(mod_youHelp)
## 
## Call:
## lm(formula = youHelp ~ condition + pol, data = gjg)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.06696 -1.01701 -0.03366  1.18496  2.25681 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.72654    0.12481  21.846   <2e-16 ***
## conditionindividualScope  0.02190    0.10033   0.218    0.827    
## conditionpopulationScope  0.22387    0.10043   2.229    0.026 *  
## pol                       0.01665    0.02186   0.762    0.446    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.42 on 1195 degrees of freedom
## Multiple R-squared:  0.005339,   Adjusted R-squared:  0.002842 
## F-statistic: 2.138 on 3 and 1195 DF,  p-value: 0.09371
mod_youHelpI <- lm(youHelp ~ condition + pol, data = gjg_I)
summary(mod_youHelpI)
## 
## Call:
## lm(formula = youHelp ~ condition + pol, data = gjg_I)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.06696 -1.01701 -0.03366  1.18496  2.25681 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.74844    0.12451  22.073   <2e-16 ***
## conditionmergedScope     -0.02190    0.10033  -0.218   0.8272    
## conditionpopulationScope  0.20197    0.10090   2.002   0.0455 *  
## pol                       0.01665    0.02186   0.762   0.4464    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.42 on 1195 degrees of freedom
## Multiple R-squared:  0.005339,   Adjusted R-squared:  0.002842 
## F-statistic: 2.138 on 3 and 1195 DF,  p-value: 0.09371
mod_usGovPrevent <- lm(usGovPrevent ~ condition + pol, data = gjg)
summary(mod_usGovPrevent)
## 
## Call:
## lm(formula = usGovPrevent ~ condition + pol, data = gjg)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3.11922 -0.93666  0.08875  0.97161  1.97161 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.877223   0.106051  27.130   <2e-16 ***
## conditionindividualScope  0.005985   0.085250   0.070    0.944    
## conditionpopulationScope -0.025408   0.085343  -0.298    0.766    
## pol                       0.176573   0.018575   9.506   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.207 on 1195 degrees of freedom
## Multiple R-squared:  0.07083,    Adjusted R-squared:  0.0685 
## F-statistic: 30.37 on 3 and 1195 DF,  p-value: < 2.2e-16
mod_usGovPreventI <- lm(usGovPrevent ~ condition + pol, data = gjg_I)
summary(mod_usGovPreventI)
## 
## Call:
## lm(formula = usGovPrevent ~ condition + pol, data = gjg_I)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3.11922 -0.93666  0.08875  0.97161  1.97161 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.883208   0.105804  27.251   <2e-16 ***
## conditionmergedScope     -0.005985   0.085250  -0.070    0.944    
## conditionpopulationScope -0.031394   0.085736  -0.366    0.714    
## pol                       0.176573   0.018575   9.506   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.207 on 1195 degrees of freedom
## Multiple R-squared:  0.07083,    Adjusted R-squared:  0.0685 
## F-statistic: 30.37 on 3 and 1195 DF,  p-value: < 2.2e-16
mod_manufacturerPrevent <- lm(manufacturerPrevent ~ condition + pol, data = gjg)
summary(mod_manufacturerPrevent)
## 
## Call:
## lm(formula = manufacturerPrevent ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.8020 -1.1588  0.2835  1.2835  1.9870 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.98126    0.11978  24.889  < 2e-16 ***
## conditionindividualScope -0.08548    0.09629  -0.888    0.375    
## conditionpopulationScope -0.05696    0.09639  -0.591    0.555    
## pol                       0.11725    0.02098   5.589 2.83e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.363 on 1195 degrees of freedom
## Multiple R-squared:  0.02633,    Adjusted R-squared:  0.02388 
## F-statistic: 10.77 on 3 and 1195 DF,  p-value: 5.507e-07
mod_manufacturerPreventI <- lm(manufacturerPrevent ~ condition + pol, data = gjg_I)
summary(mod_manufacturerPreventI)
## 
## Call:
## lm(formula = manufacturerPrevent ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.8020 -1.1588  0.2835  1.2835  1.9870 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.89578    0.11950  24.232  < 2e-16 ***
## conditionmergedScope      0.08548    0.09629   0.888    0.375    
## conditionpopulationScope  0.02853    0.09684   0.295    0.768    
## pol                       0.11725    0.02098   5.589 2.83e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.363 on 1195 degrees of freedom
## Multiple R-squared:  0.02633,    Adjusted R-squared:  0.02388 
## F-statistic: 10.77 on 3 and 1195 DF,  p-value: 5.507e-07
mod_driverPrevent <- lm(driverPrevent ~ condition + pol, data = gjg)
summary(mod_driverPrevent)
## 
## Call:
## lm(formula = driverPrevent ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.5536 -0.4669  0.4155  0.4774  0.6013 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.36775    0.07751  56.348   <2e-16 ***
## conditionindividualScope  0.03170    0.06231   0.509   0.6111    
## conditionpopulationScope  0.03724    0.06238   0.597   0.5507    
## pol                       0.03097    0.01358   2.281   0.0227 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8822 on 1195 degrees of freedom
## Multiple R-squared:  0.004602,   Adjusted R-squared:  0.002103 
## F-statistic: 1.842 on 3 and 1195 DF,  p-value: 0.1378
mod_driverPreventI <- lm(driverPrevent ~ condition + pol, data = gjg_I)
summary(mod_driverPreventI)
## 
## Call:
## lm(formula = driverPrevent ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.5536 -0.4669  0.4155  0.4774  0.6013 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.399442   0.077333  56.890   <2e-16 ***
## conditionmergedScope     -0.031696   0.062310  -0.509   0.6111    
## conditionpopulationScope  0.005539   0.062665   0.088   0.9296    
## pol                       0.030972   0.013576   2.281   0.0227 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8822 on 1195 degrees of freedom
## Multiple R-squared:  0.004602,   Adjusted R-squared:  0.002103 
## F-statistic: 1.842 on 3 and 1195 DF,  p-value: 0.1378
mod_youPrevent <- lm(youPrevent ~ condition + pol, data = gjg)
summary(mod_youPrevent)
## 
## Call:
## lm(formula = youPrevent ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.8447 -1.4308  0.3631  1.3115  1.6208 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.32769    0.12408  26.819   <2e-16 ***
## conditionindividualScope  0.06386    0.09974   0.640   0.5221    
## conditionpopulationScope  0.15620    0.09985   1.564   0.1180    
## pol                       0.05154    0.02173   2.372   0.0179 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.412 on 1195 degrees of freedom
## Multiple R-squared:  0.006444,   Adjusted R-squared:  0.00395 
## F-statistic: 2.584 on 3 and 1195 DF,  p-value: 0.05196
mod_youPreventI <- lm(youPrevent ~ condition + pol, data = gjg_I)
summary(mod_youPreventI)
## 
## Call:
## lm(formula = youPrevent ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.8447 -1.4308  0.3631  1.3115  1.6208 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.39155    0.12379  27.398   <2e-16 ***
## conditionmergedScope     -0.06386    0.09974  -0.640   0.5221    
## conditionpopulationScope  0.09234    0.10031   0.921   0.3575    
## pol                       0.05154    0.02173   2.372   0.0179 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.412 on 1195 degrees of freedom
## Multiple R-squared:  0.006444,   Adjusted R-squared:  0.00395 
## F-statistic: 2.584 on 3 and 1195 DF,  p-value: 0.05196

9 Affect Help

affectLong <- gjg_long %>%
  filter(stim %in% c("upset", "sympathetic", "touched"))


facet_cooker(affectLong, condition, resp, coln = 2, rown = 2)

9.1 Inferential Stats

  • merged vs pop all significant
mod_upset <- lm(upset ~ condition + pol, data = gjg)
summary(mod_upset)
## 
## Call:
## lm(formula = upset ~ condition + pol, data = gjg)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.45322 -1.02890 -0.00675  0.97110  2.05970 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.298175   0.110756  29.779  < 2e-16 ***
## conditionindividualScope -0.008667   0.089032  -0.097    0.922    
## conditionpopulationScope -0.380020   0.089129  -4.264 2.17e-05 ***
## pol                       0.022150   0.019399   1.142    0.254    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.261 on 1195 degrees of freedom
## Multiple R-squared:  0.02086,    Adjusted R-squared:  0.0184 
## F-statistic: 8.487 on 3 and 1195 DF,  p-value: 1.399e-05
mod_upsetI <- lm(upset ~ condition + pol, data = gjg_I)
summary(mod_upsetI)
## 
## Call:
## lm(formula = upset ~ condition + pol, data = gjg_I)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.45322 -1.02890 -0.00675  0.97110  2.05970 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.289508   0.110498  29.770  < 2e-16 ***
## conditionmergedScope      0.008667   0.089032   0.097    0.922    
## conditionpopulationScope -0.371354   0.089539  -4.147  3.6e-05 ***
## pol                       0.022150   0.019399   1.142    0.254    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.261 on 1195 degrees of freedom
## Multiple R-squared:  0.02086,    Adjusted R-squared:  0.0184 
## F-statistic: 8.487 on 3 and 1195 DF,  p-value: 1.399e-05
mod_sympathetic <- lm(sympathetic ~ condition + pol, data = gjg)
summary(mod_sympathetic)
## 
## Call:
## lm(formula = sympathetic ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0682 -0.8270  0.0799  0.9403  1.7746 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.733922   0.099241  37.625  < 2e-16 ***
## conditionindividualScope  0.008409   0.079776   0.105  0.91607    
## conditionpopulationScope -0.555055   0.079862  -6.950 5.99e-12 ***
## pol                       0.046545   0.017382   2.678  0.00751 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.13 on 1195 degrees of freedom
## Multiple R-squared:  0.05864,    Adjusted R-squared:  0.05627 
## F-statistic: 24.81 on 3 and 1195 DF,  p-value: 1.414e-15
mod_sympatheticI <- lm(sympathetic ~ condition + pol, data = gjg_I)
summary(mod_sympatheticI)
## 
## Call:
## lm(formula = sympathetic ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0682 -0.8270  0.0799  0.9403  1.7746 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.742331   0.099010  37.798  < 2e-16 ***
## conditionmergedScope     -0.008409   0.079776  -0.105  0.91607    
## conditionpopulationScope -0.563464   0.080230  -7.023 3.63e-12 ***
## pol                       0.046545   0.017382   2.678  0.00751 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.13 on 1195 degrees of freedom
## Multiple R-squared:  0.05864,    Adjusted R-squared:  0.05627 
## F-statistic: 24.81 on 3 and 1195 DF,  p-value: 1.414e-15
mod_touched <- lm(touched ~ condition + pol, data = gjg)
summary(mod_touched)
## 
## Call:
## lm(formula = touched ~ condition + pol, data = gjg)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.30222 -1.22125  0.06044  1.05376  2.12726 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.20869    0.11632  27.584  < 2e-16 ***
## conditionindividualScope -0.01416    0.09351  -0.151 0.879644    
## conditionpopulationScope -0.34930    0.09361  -3.732 0.000199 ***
## pol                       0.01336    0.02037   0.656 0.512038    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.324 on 1195 degrees of freedom
## Multiple R-squared:  0.01523,    Adjusted R-squared:  0.01276 
## F-statistic:  6.16 on 3 and 1195 DF,  p-value: 0.0003729
mod_touchedI <- lm(touched ~ condition + pol, data = gjg_I)
summary(mod_touchedI)
## 
## Call:
## lm(formula = touched ~ condition + pol, data = gjg_I)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.30222 -1.22125  0.06044  1.05376  2.12726 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.19452    0.11605  27.527  < 2e-16 ***
## conditionmergedScope      0.01416    0.09351   0.151  0.87964    
## conditionpopulationScope -0.33514    0.09404  -3.564  0.00038 ***
## pol                       0.01336    0.02037   0.656  0.51204    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.324 on 1195 degrees of freedom
## Multiple R-squared:  0.01523,    Adjusted R-squared:  0.01276 
## F-statistic:  6.16 on 3 and 1195 DF,  p-value: 0.0003729

10 Efficacy

efficacyHelpLong <- gjg_long %>%
  filter(grepl("Efficacy", stim))

facet_cooker(efficacyHelpLong, condition, resp, coln = 2, rown = 2)

10.1 Inferential Stats

  • merged vs pop donation efficacy

  • individual vs pop policy efficacy (ind higher)

  • individusl vs pop punishing individuals

mod_studyDonationEfficacy <- lm(studyDonationEfficacy ~ condition + pol, data = gjg)
summary(mod_studyDonationEfficacy)
## 
## Call:
## lm(formula = studyDonationEfficacy ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.9895 -0.7259  0.1556  1.0106  1.7560 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.48888    0.09530  36.610  < 2e-16 ***
## conditionindividualScope  0.08577    0.07661   1.120   0.2631    
## conditionpopulationScope -0.30413    0.07669  -3.966 7.75e-05 ***
## pol                       0.05926    0.01669   3.550   0.0004 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.085 on 1195 degrees of freedom
## Multiple R-squared:  0.03456,    Adjusted R-squared:  0.03213 
## F-statistic: 14.26 on 3 and 1195 DF,  p-value: 3.924e-09
mod_studyDonationEfficacyI <- lm(studyDonationEfficacy ~ condition + pol, data = gjg_I)
summary(mod_studyDonationEfficacyI)
## 
## Call:
## lm(formula = studyDonationEfficacy ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.9895 -0.7259  0.1556  1.0106  1.7560 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.57465    0.09508  37.597  < 2e-16 ***
## conditionmergedScope     -0.08577    0.07661  -1.120   0.2631    
## conditionpopulationScope -0.38991    0.07704  -5.061 4.83e-07 ***
## pol                       0.05926    0.01669   3.550   0.0004 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.085 on 1195 degrees of freedom
## Multiple R-squared:  0.03456,    Adjusted R-squared:  0.03213 
## F-statistic: 14.26 on 3 and 1195 DF,  p-value: 3.924e-09
mod_studyPolicyEfficacy <- lm(studyPolicyEfficacy ~ condition + pol, data = gjg)
summary(mod_studyPolicyEfficacy)
## 
## Call:
## lm(formula = studyPolicyEfficacy ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.5922 -0.5456 -0.2074  0.7460  1.8429 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.16075    0.10255  30.823  < 2e-16 ***
## conditionindividualScope  0.10518    0.08243   1.276  0.20221    
## conditionpopulationScope -0.05021    0.08252  -0.608  0.54300    
## pol                       0.04662    0.01796   2.595  0.00956 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.167 on 1195 degrees of freedom
## Multiple R-squared:  0.008903,   Adjusted R-squared:  0.006414 
## F-statistic: 3.578 on 3 and 1195 DF,  p-value: 0.01352
mod_studyPolicyEfficacyI <- lm(studyPolicyEfficacy ~ condition + pol, data = gjg_I)
summary(mod_studyPolicyEfficacyI)
## 
## Call:
## lm(formula = studyPolicyEfficacy ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.5922 -0.5456 -0.2074  0.7460  1.8429 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.26593    0.10231  31.923  < 2e-16 ***
## conditionmergedScope     -0.10518    0.08243  -1.276  0.20221    
## conditionpopulationScope -0.15539    0.08290  -1.874  0.06112 .  
## pol                       0.04662    0.01796   2.595  0.00956 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.167 on 1195 degrees of freedom
## Multiple R-squared:  0.008903,   Adjusted R-squared:  0.006414 
## F-statistic: 3.578 on 3 and 1195 DF,  p-value: 0.01352
mod_donationEfficacy <- lm(donationEfficacy ~ condition + pol, data = gjg)
summary(mod_donationEfficacy)
## 
## Call:
## lm(formula = donationEfficacy ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.3118 -1.1526 -0.2172  0.8474  2.9184 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.24718    0.11681  19.237   <2e-16 ***
## conditionindividualScope  0.02197    0.09390   0.234    0.815    
## conditionpopulationScope  0.08827    0.09400   0.939    0.348    
## pol                      -0.02365    0.02046  -1.156    0.248    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.33 on 1195 degrees of freedom
## Multiple R-squared:  0.002011,   Adjusted R-squared:  -0.0004941 
## F-statistic: 0.8028 on 3 and 1195 DF,  p-value: 0.4923
mod_donationEfficacyI <- lm(donationEfficacy ~ condition + pol, data = gjg_I)
summary(mod_donationEfficacyI)
## 
## Call:
## lm(formula = donationEfficacy ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.3118 -1.1526 -0.2172  0.8474  2.9184 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.26916    0.11654  19.471   <2e-16 ***
## conditionmergedScope     -0.02197    0.09390  -0.234    0.815    
## conditionpopulationScope  0.06630    0.09444   0.702    0.483    
## pol                      -0.02365    0.02046  -1.156    0.248    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.33 on 1195 degrees of freedom
## Multiple R-squared:  0.002011,   Adjusted R-squared:  -0.0004941 
## F-statistic: 0.8028 on 3 and 1195 DF,  p-value: 0.4923
mod_punishingIndividualsEfficacy <- lm(punishingIndividualsEfficacy ~ condition + pol, data = gjg)
summary(mod_punishingIndividualsEfficacy)
## 
## Call:
## lm(formula = punishingIndividualsEfficacy ~ condition + pol, 
##     data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.9437 -0.7803  0.1759  1.0862  1.3991 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.66663    0.09350  39.213   <2e-16 ***
## conditionindividualScope  0.06780    0.07516   0.902   0.3672    
## conditionpopulationScope -0.09562    0.07525  -1.271   0.2041    
## pol                       0.02990    0.01638   1.826   0.0682 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.064 on 1195 degrees of freedom
## Multiple R-squared:  0.006979,   Adjusted R-squared:  0.004486 
## F-statistic:   2.8 on 3 and 1195 DF,  p-value: 0.0389
mod_punishingIndividualsEfficacyI <- lm(punishingIndividualsEfficacy ~ condition + pol, data = gjg_I)
summary(mod_punishingIndividualsEfficacyI)
## 
## Call:
## lm(formula = punishingIndividualsEfficacy ~ condition + pol, 
##     data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.9437 -0.7803  0.1759  1.0862  1.3991 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.73444    0.09329  40.032   <2e-16 ***
## conditionmergedScope     -0.06780    0.07516  -0.902   0.3672    
## conditionpopulationScope -0.16342    0.07559  -2.162   0.0308 *  
## pol                       0.02990    0.01638   1.826   0.0682 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.064 on 1195 degrees of freedom
## Multiple R-squared:  0.006979,   Adjusted R-squared:  0.004486 
## F-statistic:   2.8 on 3 and 1195 DF,  p-value: 0.0389

11 Morality

moralIssueLong <- gjg_long %>%
  filter(grepl("Moral", stim))

facet_cooker(moralIssueLong, condition, resp, coln = 2, rown = 2)

blameLong <- gjg_long %>%
  filter(grepl("Blame", stim))

facet_cooker(blameLong, condition, resp, coln = 2, rown = 2)

11.1 Inferential Stats

  • Nothing
mod_donatingMoral <- lm(donatingMoral ~ condition + pol, data = gjg)
summary(mod_donatingMoral)
## 
## Call:
## lm(formula = donatingMoral ~ condition + pol, data = gjg)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.11258 -0.96637  0.03745  1.07979  2.31439 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.63946    0.11523  22.906   <2e-16 ***
## conditionindividualScope  0.15003    0.09263   1.620   0.1056    
## conditionpopulationScope  0.04997    0.09273   0.539   0.5901    
## pol                       0.04616    0.02018   2.287   0.0224 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.312 on 1195 degrees of freedom
## Multiple R-squared:  0.006621,   Adjusted R-squared:  0.004127 
## F-statistic: 2.655 on 3 and 1195 DF,  p-value: 0.04724
mod_donatingMoralI <- lm(donatingMoral ~ condition + pol, data = gjg_I)
summary(mod_donatingMoralI)
## 
## Call:
## lm(formula = donatingMoral ~ condition + pol, data = gjg_I)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.11258 -0.96637  0.03745  1.07979  2.31439 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.78949    0.11496  24.264   <2e-16 ***
## conditionmergedScope     -0.15003    0.09263  -1.620   0.1056    
## conditionpopulationScope -0.10006    0.09316  -1.074   0.2830    
## pol                       0.04616    0.02018   2.287   0.0224 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.312 on 1195 degrees of freedom
## Multiple R-squared:  0.006621,   Adjusted R-squared:  0.004127 
## F-statistic: 2.655 on 3 and 1195 DF,  p-value: 0.04724
mod_takingPrecautionsMoral <- lm(takingPrecautionsMoral ~ condition + pol, data = gjg)
summary(mod_takingPrecautionsMoral)
## 
## Call:
## lm(formula = takingPrecautionsMoral ~ condition + pol, data = gjg)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3.15604 -0.88322  0.05017  0.92945  1.15680 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.83775    0.09578  40.069  < 2e-16 ***
## conditionindividualScope -0.04002    0.07699  -0.520  0.60330    
## conditionpopulationScope -0.02433    0.07708  -0.316  0.75229    
## pol                       0.04547    0.01678   2.710  0.00681 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.09 on 1195 degrees of freedom
## Multiple R-squared:  0.006388,   Adjusted R-squared:  0.003893 
## F-statistic: 2.561 on 3 and 1195 DF,  p-value: 0.05357
mod_takingPrecautionsMoralI <- lm(takingPrecautionsMoral ~ condition + pol, data = gjg_I)
summary(mod_takingPrecautionsMoralI)
## 
## Call:
## lm(formula = takingPrecautionsMoral ~ condition + pol, data = gjg_I)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3.15604 -0.88322  0.05017  0.92945  1.15680 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.79773    0.09555  39.744  < 2e-16 ***
## conditionmergedScope      0.04002    0.07699   0.520  0.60330    
## conditionpopulationScope  0.01569    0.07743   0.203  0.83947    
## pol                       0.04547    0.01678   2.710  0.00681 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.09 on 1195 degrees of freedom
## Multiple R-squared:  0.006388,   Adjusted R-squared:  0.003893 
## F-statistic: 2.561 on 3 and 1195 DF,  p-value: 0.05357
mod_manufacturersMoral <- lm(manufacturersMoral ~ condition + pol, data = gjg)
summary(mod_manufacturersMoral)
## 
## Call:
## lm(formula = manufacturersMoral ~ condition + pol, data = gjg)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.34289 -1.07900 -0.03829  1.03244  2.33704 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.56143    0.11726  21.844  < 2e-16 ***
## conditionindividualScope  0.01983    0.09426   0.210    0.833    
## conditionpopulationScope  0.07073    0.09436   0.750    0.454    
## pol                       0.10153    0.02054   4.944 8.77e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.335 on 1195 degrees of freedom
## Multiple R-squared:  0.02026,    Adjusted R-squared:  0.0178 
## F-statistic: 8.238 on 3 and 1195 DF,  p-value: 1.99e-05
mod_manufacturersMoralI <- lm(manufacturersMoral ~ condition + pol, data = gjg_I)
summary(mod_manufacturersMoralI)
## 
## Call:
## lm(formula = manufacturersMoral ~ condition + pol, data = gjg_I)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.34289 -1.07900 -0.03829  1.03244  2.33704 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.58126    0.11699  22.064  < 2e-16 ***
## conditionmergedScope     -0.01983    0.09426  -0.210    0.833    
## conditionpopulationScope  0.05090    0.09480   0.537    0.591    
## pol                       0.10153    0.02054   4.944 8.77e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.335 on 1195 degrees of freedom
## Multiple R-squared:  0.02026,    Adjusted R-squared:  0.0178 
## F-statistic: 8.238 on 3 and 1195 DF,  p-value: 1.99e-05
mod_manufacturerBlame <- lm(manufacturerBlame ~ condition + pol, data = gjg)
summary(mod_manufacturerBlame)
## 
## Call:
## lm(formula = manufacturerBlame ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.2830 -1.0143 -0.1621  0.8379  3.2252 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               1.71875    0.10380  16.558  < 2e-16 ***
## conditionindividualScope  0.04702    0.08344   0.563    0.573    
## conditionpopulationScope -0.01785    0.08353  -0.214    0.831    
## pol                       0.07389    0.01818   4.064 5.14e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.181 on 1195 degrees of freedom
## Multiple R-squared:  0.01434,    Adjusted R-squared:  0.01187 
## F-statistic: 5.797 on 3 and 1195 DF,  p-value: 0.0006214
mod_manufacturerBlameI <- lm(manufacturerBlame ~ condition + pol, data = gjg_I)
summary(mod_manufacturerBlameI)
## 
## Call:
## lm(formula = manufacturerBlame ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.2830 -1.0143 -0.1621  0.8379  3.2252 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               1.76577    0.10356  17.051  < 2e-16 ***
## conditionmergedScope     -0.04702    0.08344  -0.563    0.573    
## conditionpopulationScope -0.06487    0.08392  -0.773    0.440    
## pol                       0.07389    0.01818   4.064 5.14e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.181 on 1195 degrees of freedom
## Multiple R-squared:  0.01434,    Adjusted R-squared:  0.01187 
## F-statistic: 5.797 on 3 and 1195 DF,  p-value: 0.0006214
mod_individualsBlame <- lm(individualsBlame ~ condition + pol, data = gjg)
summary(mod_individualsBlame)
## 
## Call:
## lm(formula = individualsBlame ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7753  0.2140  0.2245  0.2427  0.2701 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.730077   0.046744 101.190   <2e-16 ***
## conditionindividualScope -0.009265   0.037576  -0.247    0.805    
## conditionpopulationScope -0.007640   0.037617  -0.203    0.839    
## pol                       0.009082   0.008187   1.109    0.268    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.532 on 1195 degrees of freedom
## Multiple R-squared:  0.001102,   Adjusted R-squared:  -0.001406 
## F-statistic: 0.4394 on 3 and 1195 DF,  p-value: 0.7249
mod_individualsBlameI <- lm(individualsBlame ~ condition + pol, data = gjg_I)
summary(mod_manufacturerBlameI)
## 
## Call:
## lm(formula = manufacturerBlame ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.2830 -1.0143 -0.1621  0.8379  3.2252 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               1.76577    0.10356  17.051  < 2e-16 ***
## conditionmergedScope     -0.04702    0.08344  -0.563    0.573    
## conditionpopulationScope -0.06487    0.08392  -0.773    0.440    
## pol                       0.07389    0.01818   4.064 5.14e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.181 on 1195 degrees of freedom
## Multiple R-squared:  0.01434,    Adjusted R-squared:  0.01187 
## F-statistic: 5.797 on 3 and 1195 DF,  p-value: 0.0006214