1 Setup

Libraries and functions

knitr::opts_chunk$set(warning = FALSE, message = FALSE) 

Mypackages <-
  c("lme4","tidyverse","effects","ggplot2","psych",
    "MASS","Rmisc","lmerTest","ggthemes", "knitr",
    "lsmeans","pastecs","sjstats","car","ordinal",
    "Rcpp","corrplot", "ggpubr", "EnvStats",
    "easyStats", "cowplot","see","datawizard", 
    "ggcorrplot", "lavaan")

# install.packages(Mypackages) #you must remove the # in this comment if you need to install the packages! 
lapply(Mypackages,
       require,
       character.only = TRUE)

options(knitr.kable.NA = '—')
set.seed(1)  

1.1 Load Data

# read in data files
setwd("~/Desktop")
gjg_raw <-read.csv("/Users/mtrenfield17/Desktop/Research/Boston College Research/SISC Lab Research/I:S Project/Study 1 (Wildfire)/Scope Project Study 1 (Wildfire).csv")

1.2 Functions

plot_cooker <- function(data, iv, dv) {
  part1 <- ggplot(data, aes(x = {{iv}}, y = {{dv}}, fill = {{iv}})) +
    geom_violin(alpha = 0.3, scale = "count") + 
  stat_summary(fun = "mean", geom = "point", size = 3, color = "black") +
    stat_summary(fun.data = mean_cl_normal, geom = "errorbar", width = 0.2,
                 #change to make a data set from allEffects with mean, low CI, high CI
                 size = 1.5, color = "black") +
    theme_classic() +
    xlab("") +
    ylab("")
  ggpar(part1, legend = "none")
}
  
pol_line <- function(data, iv, dv) {
  ggplot(data, aes(x = {{iv}}, y = {{dv}}, color = condition)) +
  stat_summary(fun.data = "mean_cl_normal", geom = "line") +
  geom_point(position = position_jitter(width = 0.1, height = 0.1), alpha = 0.5) +
  labs(x = "Political Leaning", color = "Condition")
}

lizy_cooker <- function(dv, iv, Title, x_axis_labs, y_label, sample_size, coln, rown) {
  part1 <- ggviolin(gjg, x = dv, y = iv, color = dv,
                    alpha = 0.1, fill = dv, xlab = "Motive",
                    trim = TRUE, ylab = y_label) +
    stat_summary(fun.data = "mean_cl_normal", geom = "crossbar", fatten = 1) +
    scale_y_continuous(breaks = c(1:7)) +
    labs(title = paste0(Title, " (n = ", sample_size, ")")) +
    theme(panel.background = element_rect(fill = "transparent"), 
          legend.position = "right",  ## Consider “gray97” for fill
          plot.title = element_text(face = "bold", hjust = 0.5, size = 16), 
          plot.subtitle = element_text(hjust = 0.5),
          panel.grid.major.y = element_line(color='grey75'), 
          axis.text.x = element_text(face = "plain", size = 13, color = "black"),
          axis.text.y = element_text(face = "plain", size = 13, color = "black"),
          axis.title.y = element_text(face = "plain", size = 13, color = "black", 
                                       margin = margin(t = 0, r = 10, b = 0, l = 0)), ## lower X axis title
          panel.border = element_rect(color = "black", fill = NA, size = 1)) +
  scale_color_discrete(name = "Condition") +
  facet_wrap(~ vignette, ncol = coln, nrow = rown, scales = "free", as.table = TRUE)
  ggpar(part1, legend = "none")
}

#POL_gjg_long <- filter(gjg_long, political_overall %in% c("Democrat", "Republican"))
  
#gjg_long$political_overall
#ggplot(gjg_long, aes(x = condition, y = p_approve, color = condition)) +
  #geom_point(stat="summary", fun="mean", size = 2) +
  #facet_wrap(~political_overall) +
  #scale_x_discrete(labels = NULL)

1.3 Reshaping data

#### filtering people who failed the attn check ####
gjg <- gjg_raw %>% filter(attentionCheck == 3)

## changing condition to factor and reordering ##
gjg$condition <- as.factor(gjg$condition)
gjg$condition <- factor(gjg$condition, levels = c("individualScope", "populationScope", "mergedScope"))

# changing numeric DVs to numeric
gjg <- gjg %>% mutate_at(vars(policyDV, donation, helpDV_1, helpDV_2, helpDV_3, helpDV_4, helpDV_5, preventDV_1, preventDV_2, preventDV_3, preventDV_4, preventDV_5, feelingsMeasures_1, feelingsMeasures_2, feelingsMeasures_3, moral_1, moral_2, moral_3, blame_1, blame_2, efficacy_1, efficacy_2, efficacy_3, efficacy_4, age, pol, pid, edu, inc), as.numeric)

## renaming matrix variables
names(gjg)[names(gjg) == 'helpDV_1'] <-'usGovHelp'
names(gjg)[names(gjg) == 'helpDV_2'] <-'otherCountriesGovHelp'
names(gjg)[names(gjg) == 'helpDV_3'] <-'companiesHelp'
names(gjg)[names(gjg) == 'helpDV_4'] <-'homeownersHelp'
names(gjg)[names(gjg) == 'helpDV_5'] <-'youHelp'

names(gjg)[names(gjg) == 'preventDV_1'] <-'usGovPrevent'
names(gjg)[names(gjg) == 'preventDV_2'] <-'otherCountriesGovPrevent'
names(gjg)[names(gjg) == 'preventDV_3'] <-'companiesPrevent'
names(gjg)[names(gjg) == 'preventDV_4'] <-'homeownersPrevent'
names(gjg)[names(gjg) == 'preventDV_5'] <-'youPrevent'

names(gjg)[names(gjg) == 'feelingsMeasures_1'] <-'upset'
names(gjg)[names(gjg) == 'feelingsMeasures_2'] <-'sympathetic'
names(gjg)[names(gjg) == 'feelingsMeasures_3'] <-'touched'

names(gjg)[names(gjg) == 'moral_1'] <-'donatingMoral'
names(gjg)[names(gjg) == 'moral_2'] <-'takingPrecautionsMoral'
names(gjg)[names(gjg) == 'moral_3'] <-'companiesEmissionReductionMoral'

names(gjg)[names(gjg) == 'blame_1'] <-'companiesBlame'
names(gjg)[names(gjg) == 'blame_2'] <-'individualsBlame'

names(gjg)[names(gjg) == 'efficacy_1'] <-'studyDonationEfficacy'
names(gjg)[names(gjg) == 'efficacy_2'] <-'studyPolicyEfficacy'
names(gjg)[names(gjg) == 'efficacy_3'] <-'donationEfficacy'
names(gjg)[names(gjg) == 'efficacy_4'] <-'punishingIndividualsEfficacy'

2 Attention Check

gjg_raw <- gjg_raw %>% filter(consent == 5)

gjg_raw %>%
  group_by(attentionCheck) %>%
  dplyr::summarise(n = n()) %>%
  mutate(freq = n / sum(n))

0 participants failed the attention check.

3 Demographics

# Subset your data frame to include only the demographic columns
demo_gjg <- gjg[, c("gen", "race", "inc_TEXT", "edu_TEXT", "pol_TEXT", "pid_TEXT", "area")]

# Age
mean(gjg$age, na.rm=TRUE)
## [1] 39.40787
sd(gjg$age, na.rm=TRUE)
## [1] 13.36321
# Loop through each demographic column and calculate frequency counts
freq_tables <- list()

for (col in names(demo_gjg)) {
  {
    freq_table <- as.data.frame(table(demo_gjg[[col]]))
    freq_table$Percent <- round(freq_table$Freq / sum(freq_table$Freq) * 100, 2)
    freq_tables[[col]] <- freq_table
  }
}

# Print the frequency tables
for (i in seq_along(freq_tables)) {
  if (!is.null(freq_tables[[i]])) {
    cat("\nTable of frequencies for", names(freq_tables)[i], ":\n")
    print(freq_tables[[i]])
  }
}
## 
## Table of frequencies for gen :
##   Var1 Freq Percent
## 1    1  589   49.33
## 2    2  586   49.08
## 3    3   19    1.59
## 
## Table of frequencies for race :
##       Var1 Freq Percent
## 1             3    0.25
## 2        1    2    0.17
## 3      1,2    3    0.25
## 4    1,3,8    1    0.08
## 5      1,5    3    0.25
## 6    1,5,8    1    0.08
## 7    1,6,8    1    0.08
## 8      1,8   11    0.92
## 9        2  132   11.06
## 10 2,3,5,8    1    0.08
## 11     2,5    6    0.50
## 12   2,5,8    3    0.25
## 13     2,8   12    1.01
## 14 2,9,5,8    1    0.08
## 15       3   51    4.27
## 16     3,5    1    0.08
## 17     3,7    1    0.08
## 18   3,7,8    2    0.17
## 19     3,8   21    1.76
## 20       4   12    1.01
## 21     4,5    3    0.25
## 22     4,8    3    0.25
## 23       5   72    6.03
## 24     5,8   42    3.52
## 25       6    4    0.34
## 26     6,8    3    0.25
## 27       8  769   64.41
## 28       9   24    2.01
## 29     9,5    1    0.08
## 30   9,7,5    1    0.08
## 31   9,7,8    1    0.08
## 32     9,8    3    0.25
## 
## Table of frequencies for inc_TEXT :
##                  Var1 Freq Percent
## 1 $100,000 - $149,999  152   12.73
## 2 $150,000 - $199,999   57    4.77
## 3   $25,000 - $49,999  299   25.04
## 4   $50,000 - $74,999  270   22.61
## 5   $75,000 - $99,999  183   15.33
## 6   less than $25,000  194   16.25
## 7  more than $200,000   39    3.27
## 
## Table of frequencies for edu_TEXT :
##                                                   Var1 Freq Percent
## 1                                    Bachelor's degree  464   38.86
## 2                  Graduate degree (Masters, PhD, etc)  160   13.40
## 3                           High school diploma or GED  173   14.49
## 4 Some college, Technical degree, or Associates degree  388   32.50
## 5 Some schooling, but no high school diploma or degree    9    0.75
## 
## Table of frequencies for pol_TEXT :
##                    Var1 Freq Percent
## 1                          2    0.17
## 2          Conservative  102    8.54
## 3               Liberal  325   27.22
## 4              Moderate  244   20.44
## 5 Somewhat Conservative  107    8.96
## 6      Somewhat Liberal  137   11.47
## 7     Very Conservative   38    3.18
## 8          Very Liberal  239   20.02
## 
## Table of frequencies for pid_TEXT :
##                  Var1 Freq Percent
## 1            Democrat  612   51.26
## 2 Independent / Other  377   31.57
## 3          Republican  205   17.17
## 
## Table of frequencies for area :
##   Var1 Freq Percent
## 1    1  385   32.24
## 2    2  597   50.00
## 3    3  212   17.76

4 Correlations

DVs <- gjg[c("policyDV", "donation", "usGovHelp", "otherCountriesGovHelp", "companiesHelp", "homeownersHelp", "youHelp", "usGovPrevent", "otherCountriesGovPrevent", "companiesPrevent", "homeownersPrevent", "youPrevent", "upset", "sympathetic", "touched", "donatingMoral", "takingPrecautionsMoral", "companiesEmissionReductionMoral", "companiesBlame", "individualsBlame", "studyDonationEfficacy", "studyPolicyEfficacy", "donationEfficacy", "punishingIndividualsEfficacy", "pol", "edu", "inc", "age")]

# Compute pairwise correlations
corr_DVs <- cor(DVs, use = "complete.obs")

# Plot the correlation matrix
corrplot(corr_DVs, is.corr = TRUE, type = "lower", lower = "circle", tl.cex = 0.7, insig = "label_sig", diag = TRUE)

5 EFA

5.1 Evaluating the correlation matrix

5.2 Determining number of factors

  • Scree plot suggests 3 or 5 factors

  • eigenvalue method suggests 6

  • Parallel Analysis suggests 8

5.3 5 Factors

6 CFA

7 Behavioral Outcomes

percep_plot_list <- list(plot_cooker(gjg, condition, donation),
                         plot_cooker(gjg, condition, policyDV))

# Adding titles to each plot
percep_plot_list[[1]] <- percep_plot_list[[1]] +
  ggtitle("Donations")
  
percep_plot_list[[2]] <- percep_plot_list[[2]] +
  ggtitle("Support for Policy")

percep_plot_arranged <- ggarrange(plotlist = percep_plot_list, ncol = 2, nrow = 1)

overall_percep_title <- ggdraw() +
  draw_label("Behavioral DVs", fontface = "bold")

plot_grid(overall_percep_title, percep_plot_arranged, ncol = 1, rel_heights = c(0.1, 0.9))

pol_line(gjg, pol, policyDV)

pol_line(gjg, pol, donation)

7.1 Inferential Stats

gjg$condition <- relevel(gjg$condition, ref = "mergedScope")
gjg_I <- gjg
gjg_I$condition <- relevel(gjg_I$condition, ref = "individualScope")


mod_donation<- lm(donation ~ condition + pol, data = gjg)
summary(mod_donation)
## 
## Call:
## lm(formula = donation ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.4049 -2.6948 -0.9789  2.0211  7.7955 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.38159    0.30147   7.900 6.32e-15 ***
## conditionindividualScope  0.02921    0.22232   0.131  0.89548    
## conditionpopulationScope -0.31911    0.22173  -1.439  0.15036    
## pol                       0.14202    0.05325   2.667  0.00775 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.134 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.008208,   Adjusted R-squared:  0.005703 
## F-statistic: 3.277 on 3 and 1188 DF,  p-value: 0.02039
mod_policy<- lm(policyDV ~ condition + pol, data = gjg)
summary(mod_policy)
## 
## Call:
## lm(formula = policyDV ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.7659 -0.7778  0.2110  0.8493  3.9969 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.39908    0.13023  18.422   <2e-16 ***
## conditionindividualScope -0.01124    0.09604  -0.117    0.907    
## conditionpopulationScope -0.02309    0.09578  -0.241    0.810    
## pol                       0.62714    0.02300  27.266   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.354 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.3851, Adjusted R-squared:  0.3835 
## F-statistic:   248 on 3 and 1188 DF,  p-value: < 2.2e-16
mod_donationI <- lm(donation ~ condition + pol, data = gjg_I)
summary(mod_donationI)
## 
## Call:
## lm(formula = donation ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.4049 -2.6948 -0.9789  2.0211  7.7955 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.41081    0.30449   7.918 5.53e-15 ***
## conditionmergedScope     -0.02921    0.22232  -0.131  0.89548    
## conditionpopulationScope -0.34833    0.22320  -1.561  0.11889    
## pol                       0.14202    0.05325   2.667  0.00775 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.134 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.008208,   Adjusted R-squared:  0.005703 
## F-statistic: 3.277 on 3 and 1188 DF,  p-value: 0.02039
mod_policyI <- lm(policyDV ~ condition + pol, data = gjg_I)
summary(mod_policyI)
## 
## Call:
## lm(formula = policyDV ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.7659 -0.7778  0.2110  0.8493  3.9969 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.38784    0.13153  18.154   <2e-16 ***
## conditionmergedScope      0.01124    0.09604   0.117    0.907    
## conditionpopulationScope -0.01185    0.09642  -0.123    0.902    
## pol                       0.62714    0.02300  27.266   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.354 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.3851, Adjusted R-squared:  0.3835 
## F-statistic:   248 on 3 and 1188 DF,  p-value: < 2.2e-16

8 Responsibility (Help and Prevent)

gjg_long<-gjg %>% gather(stim, resp, "usGovHelp":"punishingIndividualsEfficacy")           

responsibilityHelpLong <- gjg_long %>%
  filter(grepl("Help", stim))

facet_cooker <- function(data, iv, dv, coln, rown) {
  part1 <- ggplot(data, aes(x = {{iv}}, y = {{dv}}, fill = {{iv}})) +
    geom_violin(alpha = 0.3, scale = "count") + 
  stat_summary(fun = "mean", geom = "point", size = 3, color = "black") +
    stat_summary(fun.data = mean_cl_normal, geom = "errorbar", width = 0.2,
                 #change to make a data set from allEffects with mean, low CI, high CI
                 size = 1.5, color = "black") +
    theme_classic() +
    xlab("") +
    ylab("") +
   facet_wrap(~ stim, ncol = coln, nrow = rown, scales = "free", as.table = TRUE)
  ggpar(part1, legend = "none")
}

facet_cooker(responsibilityHelpLong, condition, resp, coln = 3, rown = 2)

responsibilityPreventLong <- gjg_long %>%
  filter(grepl("Prevent", stim))

facet_cooker(responsibilityPreventLong, condition, resp, coln = 3, rown = 2)

8.1 Inferential Stats

  • pop v merged v individuals other countries help

  • pop v merged v individuals companies help

  • merged v pop you help marginal

  • pop v merged v individuals other countries prevent

  • pop v merged v individuals other countries help

mod_usGovHelp <- lm(usGovHelp ~ condition + pol, data = gjg)
summary(mod_usGovHelp)
## 
## Call:
## lm(formula = usGovHelp ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7967 -0.5786  0.2033  0.4214  1.5122 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.30063    0.08123  40.632   <2e-16 ***
## conditionindividualScope -0.02454    0.05991  -0.410    0.682    
## conditionpopulationScope -0.03099    0.05975  -0.519    0.604    
## pol                       0.21816    0.01435  15.205   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8444 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.163,  Adjusted R-squared:  0.1609 
## F-statistic:  77.1 on 3 and 1188 DF,  p-value: < 2.2e-16
mod_usGovHelpI <- lm(usGovHelp ~ condition + pol, data = gjg_I)
summary(mod_usGovHelpI)
## 
## Call:
## lm(formula = usGovHelp ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7967 -0.5786  0.2033  0.4214  1.5122 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.27609    0.08205  39.930   <2e-16 ***
## conditionmergedScope      0.02454    0.05990   0.410    0.682    
## conditionpopulationScope -0.00645    0.06014  -0.107    0.915    
## pol                       0.21816    0.01435  15.205   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8444 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.163,  Adjusted R-squared:  0.1609 
## F-statistic:  77.1 on 3 and 1188 DF,  p-value: < 2.2e-16
mod_otherCountriesGovHelp <- lm(otherCountriesGovHelp ~ condition + pol, data = gjg)
summary(mod_otherCountriesGovHelp)
## 
## Call:
## lm(formula = otherCountriesGovHelp ~ condition + pol, data = gjg)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.757 -1.312  0.243  1.286  2.770 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.30732    0.13888  16.613  < 2e-16 ***
## conditionindividualScope -0.27854    0.10242  -2.720  0.00663 ** 
## conditionpopulationScope  0.04337    0.10215   0.425  0.67120    
## pol                       0.20090    0.02453   8.190 6.69e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.444 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.06265,    Adjusted R-squared:  0.06028 
## F-statistic: 26.47 on 3 and 1188 DF,  p-value: < 2.2e-16
mod_otherCountriesGovHelpI <- lm(otherCountriesGovHelp ~ condition + pol, data = gjg_I)
summary(mod_otherCountriesGovHelpI)
## 
## Call:
## lm(formula = otherCountriesGovHelp ~ condition + pol, data = gjg_I)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.757 -1.312  0.243  1.286  2.770 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.02879    0.14027  14.463  < 2e-16 ***
## conditionmergedScope      0.27854    0.10242   2.720  0.00663 ** 
## conditionpopulationScope  0.32191    0.10283   3.131  0.00179 ** 
## pol                       0.20090    0.02453   8.190 6.69e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.444 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.06265,    Adjusted R-squared:  0.06028 
## F-statistic: 26.47 on 3 and 1188 DF,  p-value: < 2.2e-16
mod_companiesHelp <- lm(companiesHelp ~ condition + pol, data = gjg)
summary(mod_companiesHelp)
## 
## Call:
## lm(formula = companiesHelp ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7248 -0.7075  0.2752  0.6689  2.5511 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.07250    0.10793  19.202   <2e-16 ***
## conditionindividualScope -0.16397    0.07959  -2.060   0.0396 *  
## conditionpopulationScope  0.01737    0.07938   0.219   0.8269    
## pol                       0.37642    0.01906  19.747   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.122 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.2509, Adjusted R-squared:  0.249 
## F-statistic: 132.6 on 3 and 1188 DF,  p-value: < 2.2e-16
mod_companiesHelpI <- lm(companiesHelp ~ condition + pol, data = gjg_I)
summary(mod_companiesHelpI)
## 
## Call:
## lm(formula = companiesHelp ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7248 -0.7075  0.2752  0.6689  2.5511 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               1.90854    0.10901  17.508   <2e-16 ***
## conditionmergedScope      0.16397    0.07959   2.060   0.0396 *  
## conditionpopulationScope  0.18133    0.07991   2.269   0.0234 *  
## pol                       0.37642    0.01906  19.747   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.122 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.2509, Adjusted R-squared:  0.249 
## F-statistic: 132.6 on 3 and 1188 DF,  p-value: < 2.2e-16
mod_homeownersHelp <- lm(homeownersHelp ~ condition + pol, data = gjg)
summary(mod_homeownersHelp)
## 
## Call:
## lm(formula = homeownersHelp ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.6100 -0.5711 -0.4587  0.5025  2.5996 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.45182    0.10336  23.722   <2e-16 ***
## conditionindividualScope  0.02217    0.07622   0.291    0.771    
## conditionpopulationScope -0.09026    0.07602  -1.187    0.235    
## pol                       0.01942    0.01825   1.064    0.288    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.074 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.002906,   Adjusted R-squared:  0.0003877 
## F-statistic: 1.154 on 3 and 1188 DF,  p-value: 0.3262
mod_homeownersHelpI <- lm(homeownersHelp ~ condition + pol, data = gjg_I)
summary(mod_homeownersHelpI)
## 
## Call:
## lm(formula = homeownersHelp ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.6100 -0.5711 -0.4587  0.5025  2.5996 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.47399    0.10439  23.699   <2e-16 ***
## conditionmergedScope     -0.02217    0.07622  -0.291    0.771    
## conditionpopulationScope -0.11242    0.07652  -1.469    0.142    
## pol                       0.01942    0.01825   1.064    0.288    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.074 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.002906,   Adjusted R-squared:  0.0003877 
## F-statistic: 1.154 on 3 and 1188 DF,  p-value: 0.3262
mod_youHelp <- lm(youHelp ~ condition + pol, data = gjg)
summary(mod_youHelp)
## 
## Call:
## lm(formula = youHelp ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.4936 -0.4534 -0.3184  0.6414  2.8681 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.21228    0.09947  22.240   <2e-16 ***
## conditionindividualScope -0.09484    0.07336  -1.293   0.1963    
## conditionpopulationScope -0.12053    0.07316  -1.648   0.0997 .  
## pol                       0.04019    0.01757   2.288   0.0223 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.034 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.006705,   Adjusted R-squared:  0.004197 
## F-statistic: 2.673 on 3 and 1188 DF,  p-value: 0.0461
mod_youHelpI <- lm(youHelp ~ condition + pol, data = gjg_I)
summary(mod_youHelpI)
## 
## Call:
## lm(formula = youHelp ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.4936 -0.4534 -0.3184  0.6414  2.8681 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.11743    0.10047  21.076   <2e-16 ***
## conditionmergedScope      0.09484    0.07336   1.293   0.1963    
## conditionpopulationScope -0.02569    0.07365  -0.349   0.7273    
## pol                       0.04019    0.01757   2.288   0.0223 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.034 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.006705,   Adjusted R-squared:  0.004197 
## F-statistic: 2.673 on 3 and 1188 DF,  p-value: 0.0461
mod_usGovPrevent <- lm(usGovPrevent ~ condition + pol, data = gjg)
summary(mod_usGovPrevent)
## 
## Call:
## lm(formula = usGovPrevent ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3652 -0.5725  0.1705  0.4506  1.7123 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.08038    0.08363  36.834   <2e-16 ***
## conditionindividualScope -0.04492    0.06167  -0.728    0.467    
## conditionpopulationScope -0.04965    0.06151  -0.807    0.420    
## pol                       0.25697    0.01477  17.398   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8693 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.2032, Adjusted R-squared:  0.2012 
## F-statistic:   101 on 3 and 1188 DF,  p-value: < 2.2e-16
mod_usGovPreventI <- lm(usGovPrevent ~ condition + pol, data = gjg_I)
summary(mod_usGovPreventI)
## 
## Call:
## lm(formula = usGovPrevent ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3652 -0.5725  0.1705  0.4506  1.7123 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.035461   0.084466  35.937   <2e-16 ***
## conditionmergedScope      0.044918   0.061672   0.728    0.467    
## conditionpopulationScope -0.004737   0.061917  -0.076    0.939    
## pol                       0.256971   0.014771  17.398   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8693 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.2032, Adjusted R-squared:  0.2012 
## F-statistic:   101 on 3 and 1188 DF,  p-value: < 2.2e-16
mod_otherCountriesGovPrevent <- lm(otherCountriesGovPrevent ~ condition + pol, data = gjg)
summary(mod_otherCountriesGovPrevent)
## 
## Call:
## lm(formula = otherCountriesGovPrevent ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2497 -0.9642  0.2634  1.0358  2.6909 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.23249    0.12561  17.773   <2e-16 ***
## conditionindividualScope -0.20887    0.09263  -2.255   0.0243 *  
## conditionpopulationScope  0.01864    0.09239   0.202   0.8401    
## pol                       0.28551    0.02219  12.869   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.306 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.1277, Adjusted R-squared:  0.1255 
## F-statistic: 57.98 on 3 and 1188 DF,  p-value: < 2.2e-16
mod_otherCountriesGovPreventI <- lm(otherCountriesGovPrevent ~ condition + pol, data = gjg_I)
summary(mod_otherCountriesGovPreventI)
## 
## Call:
## lm(formula = otherCountriesGovPrevent ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2497 -0.9642  0.2634  1.0358  2.6909 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.02361    0.12687  15.950   <2e-16 ***
## conditionmergedScope      0.20887    0.09263   2.255   0.0243 *  
## conditionpopulationScope  0.22752    0.09300   2.446   0.0146 *  
## pol                       0.28551    0.02219  12.869   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.306 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.1277, Adjusted R-squared:  0.1255 
## F-statistic: 57.98 on 3 and 1188 DF,  p-value: < 2.2e-16
mod_companiesPrevent <- lm(companiesPrevent ~ condition + pol, data = gjg)
summary(mod_companiesPrevent)
## 
## Call:
## lm(formula = companiesPrevent ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.8824 -0.5128  0.1265  0.4961  2.3442 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.36101    0.09941  23.750   <2e-16 ***
## conditionindividualScope -0.07488    0.07331  -1.021    0.307    
## conditionpopulationScope -0.06595    0.07312  -0.902    0.367    
## pol                       0.36963    0.01756  21.052   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.033 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.272,  Adjusted R-squared:  0.2702 
## F-statistic:   148 on 3 and 1188 DF,  p-value: < 2.2e-16
mod_companiesPreventI <- lm(companiesPrevent ~ condition + pol, data = gjg_I)
summary(mod_companiesPreventI)
## 
## Call:
## lm(formula = companiesPrevent ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.8824 -0.5128  0.1265  0.4961  2.3442 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              2.286131   0.100404  22.769   <2e-16 ***
## conditionmergedScope     0.074879   0.073310   1.021    0.307    
## conditionpopulationScope 0.008926   0.073600   0.121    0.903    
## pol                      0.369628   0.017558  21.052   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.033 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.272,  Adjusted R-squared:  0.2702 
## F-statistic:   148 on 3 and 1188 DF,  p-value: < 2.2e-16
mod_homeownersPrevent <- lm(homeownersPrevent ~ condition + pol, data = gjg)
summary(mod_homeownersPrevent)
## 
## Call:
## lm(formula = homeownersPrevent ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.4247 -0.9668 -0.1479  0.8587  2.3397 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.56804    0.11050  23.240  < 2e-16 ***
## conditionindividualScope  0.21087    0.08149   2.588  0.00978 ** 
## conditionpopulationScope  0.02979    0.08127   0.366  0.71406    
## pol                       0.09225    0.01952   4.727 2.55e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.149 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.02469,    Adjusted R-squared:  0.02223 
## F-statistic: 10.03 on 3 and 1188 DF,  p-value: 1.583e-06
mod_homeownersPreventI <- lm(homeownersPrevent ~ condition + pol, data = gjg_I)
summary(mod_homeownersPreventI)
## 
## Call:
## lm(formula = homeownersPrevent ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.4247 -0.9668 -0.1479  0.8587  2.3397 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.77891    0.11161  24.899  < 2e-16 ***
## conditionmergedScope     -0.21087    0.08149  -2.588  0.00978 ** 
## conditionpopulationScope -0.18109    0.08181  -2.213  0.02706 *  
## pol                       0.09225    0.01952   4.727 2.55e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.149 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.02469,    Adjusted R-squared:  0.02223 
## F-statistic: 10.03 on 3 and 1188 DF,  p-value: 1.583e-06
mod_youPrevent <- lm(youPrevent ~ condition + pol, data = gjg)
summary(mod_youPrevent)
## 
## Call:
## lm(formula = youPrevent ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.1962 -0.9895 -0.1221  0.9917  2.6734 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.19403    0.11703  18.747  < 2e-16 ***
## conditionindividualScope  0.07408    0.08631   0.858    0.391    
## conditionpopulationScope  0.01877    0.08608   0.218    0.827    
## pol                       0.13259    0.02067   6.414 2.04e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.217 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.03414,    Adjusted R-squared:  0.0317 
## F-statistic:    14 on 3 and 1188 DF,  p-value: 5.686e-09
mod_youPreventI <- lm(youPrevent ~ condition + pol, data = gjg_I)
summary(mod_youPreventI)
## 
## Call:
## lm(formula = youPrevent ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.1962 -0.9895 -0.1221  0.9917  2.6734 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.26811    0.11820  19.188  < 2e-16 ***
## conditionmergedScope     -0.07408    0.08631  -0.858    0.391    
## conditionpopulationScope -0.05531    0.08665  -0.638    0.523    
## pol                       0.13259    0.02067   6.414 2.04e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.217 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.03414,    Adjusted R-squared:  0.0317 
## F-statistic:    14 on 3 and 1188 DF,  p-value: 5.686e-09

9 Affect Help

affectLong <- gjg_long %>%
  filter(stim %in% c("upset", "sympathetic", "touched"))


facet_cooker(affectLong, condition, resp, coln = 2, rown = 2)

9.1 Inferential Stats

  • merged v pop Sympathetic, touched significant
mod_upset <- lm(upset ~ condition + pol, data = gjg)
summary(mod_upset)
## 
## Call:
## lm(formula = upset ~ condition + pol, data = gjg)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.33857 -0.98112  0.01888  0.81120  2.60550 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.311984   0.116328  19.875  < 2e-16 ***
## conditionindividualScope -0.064138   0.085787  -0.748    0.455    
## conditionpopulationScope -0.003109   0.085559  -0.036    0.971    
## pol                       0.146655   0.020546   7.138 1.65e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.209 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.04178,    Adjusted R-squared:  0.03936 
## F-statistic: 17.27 on 3 and 1188 DF,  p-value: 5.601e-11
mod_upsetI <- lm(upset ~ condition + pol, data = gjg_I)
summary(mod_upsetI)
## 
## Call:
## lm(formula = upset ~ condition + pol, data = gjg_I)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.33857 -0.98112  0.01888  0.81120  2.60550 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.24785    0.11749  19.132  < 2e-16 ***
## conditionmergedScope      0.06414    0.08579   0.748    0.455    
## conditionpopulationScope  0.06103    0.08613   0.709    0.479    
## pol                       0.14665    0.02055   7.138 1.65e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.209 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.04178,    Adjusted R-squared:  0.03936 
## F-statistic: 17.27 on 3 and 1188 DF,  p-value: 5.601e-11
mod_sympathetic <- lm(sympathetic ~ condition + pol, data = gjg)
summary(mod_sympathetic)
## 
## Call:
## lm(formula = sympathetic ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.9735 -0.6966  0.1373  0.8576  1.9684 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.19765    0.10192  31.375  < 2e-16 ***
## conditionindividualScope  0.22264    0.07516   2.962 0.003115 ** 
## conditionpopulationScope -0.27687    0.07496  -3.694 0.000231 ***
## pol                       0.11083    0.01800   6.157 1.01e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.059 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.063,  Adjusted R-squared:  0.06063 
## F-statistic: 26.62 on 3 and 1188 DF,  p-value: < 2.2e-16
mod_sympatheticI <- lm(sympathetic ~ condition + pol, data = gjg_I)
summary(mod_sympatheticI)
## 
## Call:
## lm(formula = sympathetic ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.9735 -0.6966  0.1373  0.8576  1.9684 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.42029    0.10294  33.226  < 2e-16 ***
## conditionmergedScope     -0.22264    0.07516  -2.962  0.00312 ** 
## conditionpopulationScope -0.49951    0.07546  -6.620 5.44e-11 ***
## pol                       0.11083    0.01800   6.157 1.01e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.059 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.063,  Adjusted R-squared:  0.06063 
## F-statistic: 26.62 on 3 and 1188 DF,  p-value: < 2.2e-16
mod_touched <- lm(touched ~ condition + pol, data = gjg)
summary(mod_touched)
## 
## Call:
## lm(formula = touched ~ condition + pol, data = gjg)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.32744 -1.02778 -0.02778  0.97222  2.53098 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.71243    0.12041  22.527  < 2e-16 ***
## conditionindividualScope  0.06315    0.08880   0.711 0.477128    
## conditionpopulationScope -0.32225    0.08856  -3.639 0.000286 ***
## pol                       0.07884    0.02127   3.707 0.000219 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.252 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.02803,    Adjusted R-squared:  0.02558 
## F-statistic: 11.42 on 3 and 1188 DF,  p-value: 2.19e-07
mod_touchedI <- lm(touched ~ condition + pol, data = gjg_I)
summary(mod_touchedI)
## 
## Call:
## lm(formula = touched ~ condition + pol, data = gjg_I)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.32744 -1.02778 -0.02778  0.97222  2.53098 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.77557    0.12161  22.823  < 2e-16 ***
## conditionmergedScope     -0.06315    0.08880  -0.711 0.477128    
## conditionpopulationScope -0.38540    0.08915  -4.323 1.67e-05 ***
## pol                       0.07884    0.02127   3.707 0.000219 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.252 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.02803,    Adjusted R-squared:  0.02558 
## F-statistic: 11.42 on 3 and 1188 DF,  p-value: 2.19e-07

10 Efficacy

efficacyHelpLong <- gjg_long %>%
  filter(grepl("Efficacy", stim))

facet_cooker(efficacyHelpLong, condition, resp, coln = 2, rown = 2)

10.1 Inferential Stats

  • merged v pop study donation efficacy marginal

  • merged v ind. punishing individuals significant

mod_studyDonationEfficacy <- lm(studyDonationEfficacy ~ condition + pol, data = gjg)
summary(mod_studyDonationEfficacy)
## 
## Call:
## lm(formula = studyDonationEfficacy ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.8851 -0.6513  0.2740  0.6670  1.8261 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.23243    0.10745  30.084  < 2e-16 ***
## conditionindividualScope  0.09567    0.07924   1.207   0.2275    
## conditionpopulationScope -0.13812    0.07903  -1.748   0.0808 .  
## pol                       0.07957    0.01898   4.193 2.96e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.117 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.02116,    Adjusted R-squared:  0.01869 
## F-statistic:  8.56 on 3 and 1188 DF,  p-value: 1.264e-05
mod_studyDonationEfficacyI <- lm(studyDonationEfficacy ~ condition + pol, data = gjg_I)
summary(mod_studyDonationEfficacyI)
## 
## Call:
## lm(formula = studyDonationEfficacy ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.8851 -0.6513  0.2740  0.6670  1.8261 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.32810    0.10852  30.667  < 2e-16 ***
## conditionmergedScope     -0.09567    0.07924  -1.207  0.22754    
## conditionpopulationScope -0.23379    0.07955  -2.939  0.00336 ** 
## pol                       0.07957    0.01898   4.193 2.96e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.117 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.02116,    Adjusted R-squared:  0.01869 
## F-statistic:  8.56 on 3 and 1188 DF,  p-value: 1.264e-05
mod_studyPolicyEfficacy <- lm(studyPolicyEfficacy ~ condition + pol, data = gjg)
summary(mod_studyPolicyEfficacy)
## 
## Call:
## lm(formula = studyPolicyEfficacy ~ condition + pol, data = gjg)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.35469 -0.78194 -0.09137  0.74875  2.69772 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.23550    0.10403  21.490   <2e-16 ***
## conditionindividualScope -0.09310    0.07671  -1.214    0.225    
## conditionpopulationScope -0.10344    0.07651  -1.352    0.177    
## pol                       0.15988    0.01837   8.702   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.081 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.06111,    Adjusted R-squared:  0.05874 
## F-statistic: 25.77 on 3 and 1188 DF,  p-value: 3.731e-16
mod_studyPolicyEfficacyI <- lm(studyPolicyEfficacy ~ condition + pol, data = gjg_I)
summary(mod_studyPolicyEfficacyI)
## 
## Call:
## lm(formula = studyPolicyEfficacy ~ condition + pol, data = gjg_I)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.35469 -0.78194 -0.09137  0.74875  2.69772 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.14240    0.10507  20.391   <2e-16 ***
## conditionmergedScope      0.09310    0.07671   1.214    0.225    
## conditionpopulationScope -0.01034    0.07702  -0.134    0.893    
## pol                       0.15988    0.01837   8.702   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.081 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.06111,    Adjusted R-squared:  0.05874 
## F-statistic: 25.77 on 3 and 1188 DF,  p-value: 3.731e-16
mod_donationEfficacy <- lm(donationEfficacy ~ condition + pol, data = gjg)
summary(mod_donationEfficacy)
## 
## Call:
## lm(formula = donationEfficacy ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.3004 -1.2127 -0.2198  0.7802  2.8320 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.29337    0.11835  19.378   <2e-16 ***
## conditionindividualScope -0.03130    0.08728  -0.359    0.720    
## conditionpopulationScope  0.02049    0.08705   0.235    0.814    
## pol                      -0.01344    0.02090  -0.643    0.520    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.23 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.0006326,  Adjusted R-squared:  -0.001891 
## F-statistic: 0.2507 on 3 and 1188 DF,  p-value: 0.8609
mod_donationEfficacyI <- lm(donationEfficacy ~ condition + pol, data = gjg_I)
summary(mod_donationEfficacyI)
## 
## Call:
## lm(formula = donationEfficacy ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.3004 -1.2127 -0.2198  0.7802  2.8320 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.26207    0.11953  18.924   <2e-16 ***
## conditionmergedScope      0.03130    0.08728   0.359    0.720    
## conditionpopulationScope  0.05180    0.08762   0.591    0.555    
## pol                      -0.01344    0.02090  -0.643    0.520    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.23 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.0006326,  Adjusted R-squared:  -0.001891 
## F-statistic: 0.2507 on 3 and 1188 DF,  p-value: 0.8609
mod_punishingIndividualsEfficacy <- lm(punishingIndividualsEfficacy ~ condition + pol, data = gjg)
summary(mod_punishingIndividualsEfficacy)
## 
## Call:
## lm(formula = punishingIndividualsEfficacy ~ condition + pol, 
##     data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.4277 -1.1229 -0.1727  0.8024  1.9519 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.02322    0.11469  26.361  < 2e-16 ***
## conditionindividualScope  0.23004    0.08458   2.720  0.00662 ** 
## conditionpopulationScope  0.12706    0.08435   1.506  0.13226    
## pol                       0.02492    0.02026   1.230  0.21888    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.192 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.007545,   Adjusted R-squared:  0.005038 
## F-statistic:  3.01 on 3 and 1188 DF,  p-value: 0.02928
mod_punishingIndividualsEfficacyI <- lm(punishingIndividualsEfficacy ~ condition + pol, data = gjg_I)
summary(mod_punishingIndividualsEfficacyI)
## 
## Call:
## lm(formula = punishingIndividualsEfficacy ~ condition + pol, 
##     data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.4277 -1.1229 -0.1727  0.8024  1.9519 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.25327    0.11583  28.086  < 2e-16 ***
## conditionmergedScope     -0.23004    0.08458  -2.720  0.00662 ** 
## conditionpopulationScope -0.10299    0.08491  -1.213  0.22542    
## pol                       0.02492    0.02026   1.230  0.21888    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.192 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.007545,   Adjusted R-squared:  0.005038 
## F-statistic:  3.01 on 3 and 1188 DF,  p-value: 0.02928

11 Morality

moralIssueLong <- gjg_long %>%
  filter(grepl("Moral", stim))

facet_cooker(moralIssueLong, condition, resp, coln = 2, rown = 2)

blameLong <- gjg_long %>%
  filter(grepl("Blame", stim))

facet_cooker(blameLong, condition, resp, coln = 2, rown = 2)

11.1 Inferential Stats

  • ind. v pop. Company emission reduction marginal

  • pop v merged v ind. company blame

  • pop v merged v ind. individual blame significant

mod_donatingMoral <- lm(donatingMoral ~ condition + pol, data = gjg)
summary(mod_donatingMoral)
## 
## Call:
## lm(formula = donatingMoral ~ condition + pol, data = gjg)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.11391 -0.95447 -0.00135  0.97882  2.16543 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.80121    0.11595  24.159   <2e-16 ***
## conditionindividualScope  0.07920    0.08551   0.926    0.354    
## conditionpopulationScope  0.01983    0.08528   0.233    0.816    
## pol                       0.03336    0.02048   1.629    0.104    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.205 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.003007,   Adjusted R-squared:  0.0004893 
## F-statistic: 1.194 on 3 and 1188 DF,  p-value: 0.3106
mod_donatingMoralI <- lm(donatingMoral ~ condition + pol, data = gjg_I)
summary(mod_donatingMoralI)
## 
## Call:
## lm(formula = donatingMoral ~ condition + pol, data = gjg_I)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.11391 -0.95447 -0.00135  0.97882  2.16543 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.88042    0.11711  24.596   <2e-16 ***
## conditionmergedScope     -0.07920    0.08551  -0.926    0.354    
## conditionpopulationScope -0.05937    0.08584  -0.692    0.489    
## pol                       0.03336    0.02048   1.629    0.104    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.205 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.003007,   Adjusted R-squared:  0.0004893 
## F-statistic: 1.194 on 3 and 1188 DF,  p-value: 0.3106
mod_takingPrecautionsMoral <- lm(takingPrecautionsMoral ~ condition + pol, data = gjg)
summary(mod_takingPrecautionsMoral)
## 
## Call:
## lm(formula = takingPrecautionsMoral ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0134 -0.8207  0.1793  1.0724  1.4578 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.47794    0.11025  31.547  < 2e-16 ***
## conditionindividualScope  0.08580    0.08130   1.055 0.291486    
## conditionpopulationScope  0.06315    0.08109   0.779 0.436282    
## pol                       0.06424    0.01947   3.299 0.000999 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.146 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.01019,    Adjusted R-squared:  0.007693 
## F-statistic: 4.078 on 3 and 1188 DF,  p-value: 0.006803
mod_takingPrecautionsMoralI <- lm(takingPrecautionsMoral ~ condition + pol, data = gjg_I)
summary(mod_takingPrecautionsMoralI)
## 
## Call:
## lm(formula = takingPrecautionsMoral ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0134 -0.8207  0.1793  1.0724  1.4578 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.56374    0.11135  32.005  < 2e-16 ***
## conditionmergedScope     -0.08580    0.08130  -1.055 0.291486    
## conditionpopulationScope -0.02266    0.08162  -0.278 0.781405    
## pol                       0.06424    0.01947   3.299 0.000999 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.146 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.01019,    Adjusted R-squared:  0.007693 
## F-statistic: 4.078 on 3 and 1188 DF,  p-value: 0.006803
mod_companiesEmissionReductionMoral <- lm(companiesEmissionReductionMoral ~ condition + pol, data = gjg)
summary(mod_companiesEmissionReductionMoral)
## 
## Call:
## lm(formula = companiesEmissionReductionMoral ~ condition + pol, 
##     data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.4122 -0.7122  0.0894  0.7894  2.8393 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               1.86563    0.11209  16.644   <2e-16 ***
## conditionindividualScope -0.05492    0.08266  -0.664    0.507    
## conditionpopulationScope  0.09671    0.08244   1.173    0.241    
## pol                       0.34998    0.01980  17.678   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.165 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.2112, Adjusted R-squared:  0.2093 
## F-statistic: 106.1 on 3 and 1188 DF,  p-value: < 2.2e-16
mod_companiesEmissionReductionMoralI <- lm(companiesEmissionReductionMoral ~ condition + pol, data = gjg_I)
summary(mod_companiesEmissionReductionMoralI)
## 
## Call:
## lm(formula = companiesEmissionReductionMoral ~ condition + pol, 
##     data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.4122 -0.7122  0.0894  0.7894  2.8393 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               1.81071    0.11321  15.994   <2e-16 ***
## conditionmergedScope      0.05492    0.08266   0.664   0.5066    
## conditionpopulationScope  0.15163    0.08299   1.827   0.0679 .  
## pol                       0.34998    0.01980  17.678   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.165 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.2112, Adjusted R-squared:  0.2093 
## F-statistic: 106.1 on 3 and 1188 DF,  p-value: < 2.2e-16
mod_companiesBlame <- lm(companiesBlame ~ condition + pol, data = gjg)
summary(mod_companiesBlame)
## 
## Call:
## lm(formula = companiesBlame ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6430 -0.6434  0.1716  0.7516  3.0177 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               1.85561    0.10583  17.535  < 2e-16 ***
## conditionindividualScope -0.26783    0.07804  -3.432  0.00062 ***
## conditionpopulationScope  0.02541    0.07783   0.326  0.74418    
## pol                       0.39456    0.01869  21.110  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.1 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.2814, Adjusted R-squared:  0.2796 
## F-statistic: 155.1 on 3 and 1188 DF,  p-value: < 2.2e-16
mod_companiesBlameI <- lm(companiesBlame ~ condition + pol, data = gjg_I)
summary(mod_companiesBlameI)
## 
## Call:
## lm(formula = companiesBlame ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6430 -0.6434  0.1716  0.7516  3.0177 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               1.58778    0.10689  14.855  < 2e-16 ***
## conditionmergedScope      0.26783    0.07804   3.432 0.000620 ***
## conditionpopulationScope  0.29324    0.07835   3.743 0.000191 ***
## pol                       0.39456    0.01869  21.110  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.1 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.2814, Adjusted R-squared:  0.2796 
## F-statistic: 155.1 on 3 and 1188 DF,  p-value: < 2.2e-16
mod_individualsBlame <- lm(individualsBlame ~ condition + pol, data = gjg)
summary(mod_individualsBlame)
## 
## Call:
## lm(formula = individualsBlame ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.6999 -0.6175  0.3619  0.6442  1.6647 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.47936    0.10798  32.223  < 2e-16 ***
## conditionindividualScope  0.24110    0.07963   3.028  0.00252 ** 
## conditionpopulationScope  0.20013    0.07942   2.520  0.01187 *  
## pol                      -0.02058    0.01907  -1.079  0.28066    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.122 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.009646,   Adjusted R-squared:  0.007145 
## F-statistic: 3.857 on 3 and 1188 DF,  p-value: 0.009224
mod_individualsBlameI <- lm(individualsBlame ~ condition + pol, data = gjg_I)
summary(mod_companiesBlameI)
## 
## Call:
## lm(formula = companiesBlame ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6430 -0.6434  0.1716  0.7516  3.0177 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               1.58778    0.10689  14.855  < 2e-16 ***
## conditionmergedScope      0.26783    0.07804   3.432 0.000620 ***
## conditionpopulationScope  0.29324    0.07835   3.743 0.000191 ***
## pol                       0.39456    0.01869  21.110  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.1 on 1188 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.2814, Adjusted R-squared:  0.2796 
## F-statistic: 155.1 on 3 and 1188 DF,  p-value: < 2.2e-16