# Load packages
pacman::p_load(pacman, tidyverse, GGally, ggthemes, ggplot2, ggvis, httr, plotly, rio, rmarkdown, shiny, rgl)

# Import data
X1 <- read.csv("dc0512a8-eb49-43b9-84f1-17ef95365d57.csv")
ggplot(data=X1) +
  geom_col(mapping = aes(x = Year, y = NumberOfDeaths, color = Sex)) +
  facet_wrap(~Sex)
## Warning: Removed 761 rows containing missing values (`position_stack()`).

ggplot(data=X1) +
  geom_col(mapping = aes(x = Year, y = NumberOfDeaths)) 
## Warning: Removed 761 rows containing missing values (`position_stack()`).

ggplot(data=X1,aes(x=Year,y=NumberOfDeaths)) + geom_point(color="red")
## Warning: Removed 761 rows containing missing values (`geom_point()`).

ggplot(data=X1,aes(x=Year,y=NumberOfDeaths)) + geom_point(aes(color=Sex))
## Warning: Removed 761 rows containing missing values (`geom_point()`).

ggplot(data=X1,aes(x=Year,y=NumberOfDeaths)) + geom_point(aes(color=Sex,shape=Sex)) +
  facet_wrap(~Sex) + labs(title="Scottish Deaths from Heart Disease - 2012-2021 by Year and Sex")
## Warning: Removed 761 rows containing missing values (`geom_point()`).