Exercise 1:
What is Te for the Earth? 255 K
Calculate the surface temperature for the earth if the emissivity of the atmosphere is 0.5. \[ \begin{align*} T_s &= T_e\left[\frac{1}{1-\frac{\epsilon_{atmos}}{2}}\right]^{\frac{1}{4}} \\ &= 255\left[\frac{1}{1-\frac{0.5}{2}}\right]^{\frac{1}{4}} \\ &= 255\left[\frac{4}{3}\right]^{\frac{1}{4}} \\ &= 274.015... \\ &\approx 274\ K \end{align*} \]
Using R plot Ts over the full range of possible (atmospheric) emissivity values from \(\epsilon=0\) to \(\epsilon=1\). Insert the plot below.
# Set parameters
effective_temp <- 255
emissivity.atmos = seq(0,1, length=1000)
# Define function for surface temperature
surface_temperature = function(effective_temp, emissivity){
t.s = effective_temp * (1 / (1 - emissivity / 2))^0.25
return(t.s)
}
# Plot surface temp over range of emissivity values
plot(emissivity.atmos, surface_temperature(effective_temp, emissivity.atmos), type="l",
ylab = "Surface Temperature (K)", xlab = "Atmospheric Emmissivity",
col = "firebrick", ylim = c(250, 310),
main = "Surface temperature for 255 K with emissivity values from 0 to 1")
# Add axis ticks
axis(2, at = seq(255, 305, by=10), labels = FALSE, tcl = -0.25)
axis(1, at = seq(0.1, 0.9, by=0.2), labels = FALSE, tcl = -0.25)
# Add grid lines
abline(v = seq(0, 1, by = 0.1), col = "lightgray", lty = 2)
abline(h = seq(250, 310, by = 5), col = "lightgray", lty = 2)
For Ts to be 288, \(\epsilon_{atmos}\approx0.8\).
\[ \begin{align*} T_s &= T_e\left[\frac{1}{1-\frac{\epsilon_{atmos}}{2}}\right]^{\frac{1}{4}} \\ \left[\frac{T_s}{T_e}\right]^4 &= \frac{1}{1-\frac{\epsilon_{atmos}}{2}} \\ 1-\frac{\epsilon_{atmos}}{2} &= \left[\frac{T_e}{T_s}\right]^4 \\ \epsilon_{atmos} &= 2\left(1-\left[\frac{T_e}{T_s}\right]^4\right) \\ \\\ \epsilon_{atmos} &= 2\left(1-\left[\frac{255}{288}\right]^4\right) \\ &=0.770805... \\ &\approx 0.771 \end{align*} \]