- General context and particularities of Switzerland
- Data sets and Swiss popular votes
- Political and geographical features
- Quantitative treatments
- Spatial treatments
14-17 sept 2023
Let \(f_i>0\) with \(\sum_{i=1}^n f_i=1\)
## noMuni municipality sumVotes marriageAll capitalTax polTerrorism ## 1 1 Aeugst am Albis 196982 65.8 27.8 53.6 ## 2 2 Affoltern am Albis 954228 64.8 33.7 60.9 ## 3 3 Bonstetten 499275 70.2 33.7 59.5 ## 4 4 Hausen am Albis 366969 68.1 31.7 52.0 ## 5 5 Hedingen 350420 67.4 29.3 58.2 ## 6 6 Kappel am Albis 111520 61.6 26.5 50.2
We consider two types of distances:
Note: All distances are represented as dissimilarity matrices \(\textbf{D} = (d_{ij} ) ∈ \mathbb{R}^{n×n}\) with the following properties: \({d_{ij} ≥ 0, d_{ij}=d_{ji}, d_{ii}=0}\)
\(2158 \times 2158\) relations
Averege distance [km] to reach a commune \(j\) from a commune \(i\) by road
\[ \mathbf{K}_{\mathbb{D}}=-\frac12\sqrt{\bf{\Pi}}\,\mathbf{H}\, \mathbb{D} \mathbf{H}^\top\sqrt{\bf{\Pi}} \] where \(\mathbf{\Pi = diag(f)}\) and \(\mathbf{H=I_n-1_n f^\top}\), and which defines a perfectly valid index of spatial autocorrelation
\[ \delta=\frac{\mbox{Tr}(\mathbf{K}_{\mathbb{D}}\, \mathbf{K_X})}{\mbox{Tr}(\mathbf{K_X})} \] without needing to construct the spatial weights matrix \(\mathbf{W}\).
From the kernels \(\mathbf{K_\mathbb{D}}\), one extracts the regional coordinates \(\mathbf{\tilde{X}}\) by weighted MDS:
\[\mathbf{\tilde{X}=-\frac{1}{\sqrt{f}}U\sqrt{\Lambda}}\] where \(\Lambda\) contains the Eigenvalues and \(U\) the Eigenvectors of \(\mathbf{K_\mathbb{D}}\).
–>
With a feature kernel \(K_X\) and a spatial kernel \(K_W\), we can express:
\[\mathbf{ \delta = \frac{Tr(K_W K_X)}{Tr(K_X)} }\] and the \(RV\) index:
\[ \mathbf{ RV=\frac{Tr(K_W K_X)}{\sqrt{Tr(K_W^2)Tr(K_X^2)}} \in [-1,1] } \]
\[\mathbf{ \delta = \frac{Tr(K_W K_X)}{Tr(K_X)} }\]
\[ z=\frac{\delta-\mathbb{E}(\delta) }{\sqrt{\mathbb{V}\mbox{ar}(\delta)}} = \frac{\mbox{RV}-\mathbb{E}(\mbox{RV}) }{\sqrt{\mathbb{V}\mbox{ar}(\mbox{RV})}} \]
DX: Political configuration, \(\tilde{\chi}^2\) distances
DY: Road distance
DZ: Road time
DW: Euclidean distance
DV: Diff. of elevation distance
Df: Kernel with weights themselves
\[ \small{Note: \alpha=0.001\%: z > 4.26} \]
