Más aplicaciones estadísticas en:
https://orlandomoscote.blogspot.com
datos<-matrix(c(20,20,20,30,30,40,10,40,20,20,20,10,40,50,50,10,10,15,15,60),
byrow=TRUE,nrow=4)
dimnames(datos)<-list(edad=c("niño","joven","adulto","mayor"),sabor=c("A","B","C","D","E"))
tabla1<-as.table(datos);tabla1
## sabor
## edad A B C D E
## niño 20 20 20 30 30
## joven 40 10 40 20 20
## adulto 20 10 40 50 50
## mayor 10 10 15 15 60
balloonplot(t(tabla1),main="Compras",xlab="",ylab="",label=FALSE,show.margins=FALSE)
tabla2<-addmargins(tabla1);tabla2
## sabor
## edad A B C D E Sum
## niño 20 20 20 30 30 120
## joven 40 10 40 20 20 130
## adulto 20 10 40 50 50 170
## mayor 10 10 15 15 60 110
## Sum 90 50 115 115 160 530
tabla3<-round(addmargins(prop.table(tabla1))*100,2);tabla3
## sabor
## edad A B C D E Sum
## niño 3.77 3.77 3.77 5.66 5.66 22.64
## joven 7.55 1.89 7.55 3.77 3.77 24.53
## adulto 3.77 1.89 7.55 9.43 9.43 32.08
## mayor 1.89 1.89 2.83 2.83 11.32 20.75
## Sum 16.98 9.43 21.70 21.70 30.19 100.00
tabla4<-round(addmargins(prop.table(tabla1,1),2),2);tabla4
## sabor
## edad A B C D E Sum
## niño 0.17 0.17 0.17 0.25 0.25 1.00
## joven 0.31 0.08 0.31 0.15 0.15 1.00
## adulto 0.12 0.06 0.24 0.29 0.29 1.00
## mayor 0.09 0.09 0.14 0.14 0.55 1.00
tabla5<-round(addmargins(prop.table(tabla1,2),1),2);tabla5
## sabor
## edad A B C D E
## niño 0.22 0.40 0.17 0.26 0.19
## joven 0.44 0.20 0.35 0.17 0.12
## adulto 0.22 0.20 0.35 0.43 0.31
## mayor 0.11 0.20 0.13 0.13 0.38
## Sum 1.00 1.00 1.00 1.00 1.00
barplot(t(tabla4),col=rainbow(4),beside=TRUE,legend.text=TRUE,
args.legend=list(x = "topleft"))
barplot(t(tabla5),col=rainbow(4),beside=TRUE,legend.text=TRUE,
args.legend=list(x = "top"))
chi<-chisq.test(datos)
chi
##
## Pearson's Chi-squared test
##
## data: datos
## X-squared = 83.67, df = 12, p-value = 8.194e-13
mosaicplot(datos,shade=T)
corre <-CA(datos, graph=TRUE);corre
## **Results of the Correspondence Analysis (CA)**
## The row variable has 4 categories; the column variable has 5 categories
## The chi square of independence between the two variables is equal to 83.67042 (p-value = 8.194037e-13 ).
## *The results are available in the following objects:
##
## name description
## 1 "$eig" "eigenvalues"
## 2 "$col" "results for the columns"
## 3 "$col$coord" "coord. for the columns"
## 4 "$col$cos2" "cos2 for the columns"
## 5 "$col$contrib" "contributions of the columns"
## 6 "$row" "results for the rows"
## 7 "$row$coord" "coord. for the rows"
## 8 "$row$cos2" "cos2 for the rows"
## 9 "$row$contrib" "contributions of the rows"
## 10 "$call" "summary called parameters"
## 11 "$call$marge.col" "weights of the columns"
## 12 "$call$marge.row" "weights of the rows"
get_eigenvalue(corre)
## eigenvalue variance.percent cumulative.variance.percent
## Dim.1 0.10446839 66.17422 66.17422
## Dim.2 0.03080587 19.51360 85.68782
## Dim.3 0.02259446 14.31218 100.00000
fviz_eig(corre)
get_ca_row(corre)
## Correspondence Analysis - Results for rows
## ===================================================
## Name Description
## 1 "$coord" "Coordinates for the rows"
## 2 "$cos2" "Cos2 for the rows"
## 3 "$contrib" "contributions of the rows"
## 4 "$inertia" "Inertia of the rows"
get_ca_col(corre)
## Correspondence Analysis - Results for columns
## ===================================================
## Name Description
## 1 "$coord" "Coordinates for the columns"
## 2 "$cos2" "Cos2 for the columns"
## 3 "$contrib" "contributions of the columns"
## 4 "$inertia" "Inertia of the columns"
fviz_ca_biplot(corre)