1. Generación de los datos.
set.seed(123)
rto = rexp(120,0.8)+rnorm(120,2,0.01)
sim_1=replicate(1000,expr =rexp(120,0.8)+rnorm(120,2,0.01)) # simulando datos
dim(sim_1)
## [1]  120 1000
  1. Generando la función del coeficiente de variación, de acuerdo a la formula.

\[ CV = \frac{\sigma}{\mu} \times 100 \]

CV_f<-function(x){
  sd(x)/mean(x)
}
  1. Calcular el coeficiente de variación para cada una de la 1000 simulaciones.
dtf<-as.data.frame(sim_1)

Nota uso la función sapply para guardar los resultados en un vector

cvc <- sapply(dtf,CV_f)
hist(cvc)
abline(v=(mean(cvc)),col="green",lwd=2)

4. Halló el error estandar del coeficiente de variación

ee1<-sd(cvc)
ee1
## [1] 0.0406684

Segundo histograma

hist(cvc)
abline(v=(mean(cvc)),col="green",lwd=2)
abline(v=(mean(cvc))+ee1,col="red",lwd=2)
abline(v=(mean(cvc))-ee1,col="blue",lwd=2)

otra

hist(cvc)
abline(v=(mean(cvc)),col="green",lwd=2)
abline(v=(mean(cvc))+ee1*3,col="red",lwd=2)
abline(v=(mean(cvc))-ee1*3,col="blue",lwd=2)

  1. Comparación del coeficiente de variación
set.seed(123)
rto = rexp(120,0.8)+rnorm(120,2,0.01)
(ve<-CV_f(rto))
## [1] 0.3797318

El coeficiente de variación por formula coincide con la media de los coeficientes de variación obetenidos por simulación.