Explore Data
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.3 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.3 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
ikea <- read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-11-03/ikea.csv")
## New names:
## Rows: 3694 Columns: 14
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (7): name, category, old_price, link, other_colors, short_description, d... dbl
## (6): ...1, item_id, price, depth, height, width lgl (1): sellable_online
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`
ikea %>%
select(...1, price, depth:width) %>%
pivot_longer(depth:width, names_to = "dim") %>%
ggplot(aes(value, price, color = dim)) +
geom_point(alpha = 0.4, show.legend = FALSE) +
scale_y_log10() +
facet_wrap(~ dim, scale = "free_x") +
labs(x = NULL)

ikea_df <- ikea %>%
select(price, name, category, depth, height, width) %>%
mutate(price = log10(price)) %>%
mutate_if(is.character, factor)
Build a model
library(tidymodels)
## ── Attaching packages ────────────────────────────────────── tidymodels 1.1.1 ──
## ✔ broom 1.0.5 ✔ rsample 1.2.0
## ✔ dials 1.2.0 ✔ tune 1.1.2
## ✔ infer 1.0.5 ✔ workflows 1.1.3
## ✔ modeldata 1.2.0 ✔ workflowsets 1.0.1
## ✔ parsnip 1.1.1 ✔ yardstick 1.2.0
## ✔ recipes 1.0.8
## ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
## ✖ scales::discard() masks purrr::discard()
## ✖ dplyr::filter() masks stats::filter()
## ✖ recipes::fixed() masks stringr::fixed()
## ✖ dplyr::lag() masks stats::lag()
## ✖ yardstick::spec() masks readr::spec()
## ✖ recipes::step() masks stats::step()
## • Use tidymodels_prefer() to resolve common conflicts.
set.seed(123)
ikea_split <- initial_split(ikea_df, strata = price)
ikea_train <- training(ikea_split)
ikea_test <- testing(ikea_split)
set.seed(234)
ikea_folds <- bootstraps(ikea_train, strata = price)
ikea_folds
## # Bootstrap sampling using stratification
## # A tibble: 25 × 2
## splits id
## <list> <chr>
## 1 <split [2770/994]> Bootstrap01
## 2 <split [2770/1003]> Bootstrap02
## 3 <split [2770/1037]> Bootstrap03
## 4 <split [2770/1010]> Bootstrap04
## 5 <split [2770/1014]> Bootstrap05
## 6 <split [2770/1007]> Bootstrap06
## 7 <split [2770/1036]> Bootstrap07
## 8 <split [2770/1016]> Bootstrap08
## 9 <split [2770/1021]> Bootstrap09
## 10 <split [2770/1043]> Bootstrap10
## # ℹ 15 more rows
library(usemodels)
use_ranger(price ~ ., data = ikea_train)
## ranger_recipe <-
## recipe(formula = price ~ ., data = ikea_train)
##
## ranger_spec <-
## rand_forest(mtry = tune(), min_n = tune(), trees = 1000) %>%
## set_mode("classification") %>%
## set_engine("ranger")
##
## ranger_workflow <-
## workflow() %>%
## add_recipe(ranger_recipe) %>%
## add_model(ranger_spec)
##
## set.seed(67013)
## ranger_tune <-
## tune_grid(ranger_workflow, resamples = stop("add your rsample object"), grid = stop("add number of candidate points"))
library(textrecipes)
ranger_recipe <-
recipe(formula = price ~ ., data = ikea_train) %>%
step_other(name, category, threshold = 0.01) %>%
step_clean_levels(name, category) %>%
step_impute_knn(depth, height, width)
ranger_spec <-
rand_forest(mtry = tune(), min_n = tune(), trees = 1000) %>%
set_mode("regression") %>%
set_engine("ranger")
ranger_workflow <-
workflow() %>%
add_recipe(ranger_recipe) %>%
add_model(ranger_spec)
set.seed(8577)
doParallel::registerDoParallel()
ranger_tune <-
tune_grid(ranger_workflow,
resamples = ikea_folds,
grid = 11)
## i Creating pre-processing data to finalize unknown parameter: mtry
Explore Results
show_best(ranger_tune, metric = "rmse")
## # A tibble: 5 × 8
## mtry min_n .metric .estimator mean n std_err .config
## <int> <int> <chr> <chr> <dbl> <int> <dbl> <chr>
## 1 2 4 rmse standard 0.340 25 0.00203 Preprocessor1_Model10
## 2 4 10 rmse standard 0.348 25 0.00226 Preprocessor1_Model05
## 3 5 6 rmse standard 0.349 25 0.00235 Preprocessor1_Model06
## 4 3 18 rmse standard 0.350 25 0.00218 Preprocessor1_Model01
## 5 2 21 rmse standard 0.352 25 0.00200 Preprocessor1_Model08
show_best(ranger_tune, metric = "rsq")
## # A tibble: 5 × 8
## mtry min_n .metric .estimator mean n std_err .config
## <int> <int> <chr> <chr> <dbl> <int> <dbl> <chr>
## 1 2 4 rsq standard 0.726 25 0.00332 Preprocessor1_Model10
## 2 4 10 rsq standard 0.713 25 0.00372 Preprocessor1_Model05
## 3 5 6 rsq standard 0.711 25 0.00385 Preprocessor1_Model06
## 4 3 18 rsq standard 0.709 25 0.00368 Preprocessor1_Model01
## 5 2 21 rsq standard 0.707 25 0.00347 Preprocessor1_Model08
autoplot(ranger_tune)

final_rf <- ranger_workflow %>%
finalize_workflow(select_best(ranger_tune))
final_rf
## ══ Workflow ════════════════════════════════════════════════════════════════════
## Preprocessor: Recipe
## Model: rand_forest()
##
## ── Preprocessor ────────────────────────────────────────────────────────────────
## 3 Recipe Steps
##
## • step_other()
## • step_clean_levels()
## • step_impute_knn()
##
## ── Model ───────────────────────────────────────────────────────────────────────
## Random Forest Model Specification (regression)
##
## Main Arguments:
## mtry = 2
## trees = 1000
## min_n = 4
##
## Computational engine: ranger
ikea_fit <- last_fit(final_rf, ikea_split)
ikea_fit
## # Resampling results
## # Manual resampling
## # A tibble: 1 × 6
## splits id .metrics .notes .predictions .workflow
## <list> <chr> <list> <list> <list> <list>
## 1 <split [2770/924]> train/test split <tibble> <tibble> <tibble> <workflow>
collect_metrics(ikea_fit)
## # A tibble: 2 × 4
## .metric .estimator .estimate .config
## <chr> <chr> <dbl> <chr>
## 1 rmse standard 0.318 Preprocessor1_Model1
## 2 rsq standard 0.753 Preprocessor1_Model1
collect_predictions(ikea_fit) %>%
ggplot(aes(price, .pred)) +
geom_abline(lty = 2, color = "gray50") +
geom_point(alpha = 0.5, color = "midnightblue") +
coord_fixed()

predict(ikea_fit$.workflow[[1]], ikea_test[15, ])
## # A tibble: 1 × 1
## .pred
## <dbl>
## 1 2.42
library(vip)
##
## Attaching package: 'vip'
## The following object is masked from 'package:utils':
##
## vi
imp_spec <- ranger_spec %>%
finalize_model(select_best(ranger_tune)) %>%
set_engine("ranger", importance = "permutation")
workflow() %>%
add_recipe(ranger_recipe) %>%
add_model(imp_spec) %>%
fit(ikea_train) %>%
pull_workflow_fit() %>%
vip(aesthetics = list(alpha = 0.8, fill = "midnightblue"))
