Contexto

Explorar distintas formas de graficar.

#file.choose()
df<-read.csv("C:\\Users\\rtorr\\OneDrive\\Escritorio\\TEC\\Semestre 3\\Rstudio\\abarrotes_limpia.csv")

Realizar graficas

#install.packages("ggplot2")
library(ggplot2)
ggplot(df, aes(x=Subtotal)) +
  geom_histogram() +
  labs(
    title = "Histograma de Subtotales",
    subtitle = "Caso Abarrotes",
    y ="Cantidad"
  )
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(df, aes(x=Precio, y=Unidades, colour=NombreDepartamento)) +
  geom_point() +
  labs(
    title = "Grafica de Puntos",
    subtitle = "Caso Abarrotes",
  )

ggplot(df, aes(x="", y=Subtotal, fill=vcClaveTienda)) +
  geom_bar(stat="identity")

  coord_polar("y", start=0)
## <ggproto object: Class CoordPolar, Coord, gg>
##     aspect: function
##     backtransform_range: function
##     clip: on
##     default: FALSE
##     direction: 1
##     distance: function
##     is_free: function
##     is_linear: function
##     labels: function
##     modify_scales: function
##     r: x
##     range: function
##     render_axis_h: function
##     render_axis_v: function
##     render_bg: function
##     render_fg: function
##     setup_data: function
##     setup_layout: function
##     setup_panel_guides: function
##     setup_panel_params: function
##     setup_params: function
##     start: 0
##     theta: y
##     train_panel_guides: function
##     transform: function
##     super:  <ggproto object: Class CoordPolar, Coord, gg>
LS0tDQp0aXRsZTogIkdyYWZpY2FzIg0KYXV0aG9yOiAiUm9sYW5kbyBUb3JyZXMgQmVuYXZpZGVzIEEwMTI4NjE2MCINCmRhdGU6ICIyMDIzLTA5LTEzIg0Kb3V0cHV0OiANCiAgaHRtbF9kb2N1bWVudDoNCiAgICB0b2M6IFRSVUUNCiAgICB0b2NfZmxvYXQ6IFRSVUUNCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFDQogICAgdGhlbWU6ICJsdW1lbiINCiAgICBoaWdobGlnaHQ6ICJtb25vY2hyb21lIg0KLS0tDQoNCiFbXShDOlxcVXNlcnNcXHJ0b3JyXFxEb3dubG9hZHNcXEltYWdlbi1hbmltYWRhLUdyYWZpY28tMDYuZ2lmKQ0KDQojIyMgQ29udGV4dG8NCkV4cGxvcmFyIGRpc3RpbnRhcyBmb3JtYXMgZGUgZ3JhZmljYXIuDQpgYGB7cn0NCiNmaWxlLmNob29zZSgpDQpkZjwtcmVhZC5jc3YoIkM6XFxVc2Vyc1xccnRvcnJcXE9uZURyaXZlXFxFc2NyaXRvcmlvXFxURUNcXFNlbWVzdHJlIDNcXFJzdHVkaW9cXGFiYXJyb3Rlc19saW1waWEuY3N2IikNCmBgYA0KDQojIyMgUmVhbGl6YXIgZ3JhZmljYXMNCmBgYHtyfQ0KI2luc3RhbGwucGFja2FnZXMoImdncGxvdDIiKQ0KbGlicmFyeShnZ3Bsb3QyKQ0KZ2dwbG90KGRmLCBhZXMoeD1TdWJ0b3RhbCkpICsNCiAgZ2VvbV9oaXN0b2dyYW0oKSArDQogIGxhYnMoDQogICAgdGl0bGUgPSAiSGlzdG9ncmFtYSBkZSBTdWJ0b3RhbGVzIiwNCiAgICBzdWJ0aXRsZSA9ICJDYXNvIEFiYXJyb3RlcyIsDQogICAgeSA9IkNhbnRpZGFkIg0KICApDQpnZ3Bsb3QoZGYsIGFlcyh4PVByZWNpbywgeT1VbmlkYWRlcywgY29sb3VyPU5vbWJyZURlcGFydGFtZW50bykpICsNCiAgZ2VvbV9wb2ludCgpICsNCiAgbGFicygNCiAgICB0aXRsZSA9ICJHcmFmaWNhIGRlIFB1bnRvcyIsDQogICAgc3VidGl0bGUgPSAiQ2FzbyBBYmFycm90ZXMiLA0KICApDQpgYGANCmBgYHtyfQ0KZ2dwbG90KGRmLCBhZXMoeD0iIiwgeT1TdWJ0b3RhbCwgZmlsbD12Y0NsYXZlVGllbmRhKSkgKw0KICBnZW9tX2JhcihzdGF0PSJpZGVudGl0eSIpDQogIGNvb3JkX3BvbGFyKCJ5Iiwgc3RhcnQ9MCkNCmBgYA0KDQo=