
Contexto
Explorar distintas formas de graficar.
#file.choose()
df<-read.csv("C:\\Users\\rtorr\\OneDrive\\Escritorio\\TEC\\Semestre 3\\Rstudio\\abarrotes_limpia.csv")
Realizar graficas
#install.packages("ggplot2")
library(ggplot2)
ggplot(df, aes(x=Subtotal)) +
geom_histogram() +
labs(
title = "Histograma de Subtotales",
subtitle = "Caso Abarrotes",
y ="Cantidad"
)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(df, aes(x=Precio, y=Unidades, colour=NombreDepartamento)) +
geom_point() +
labs(
title = "Grafica de Puntos",
subtitle = "Caso Abarrotes",
)

ggplot(df, aes(x="", y=Subtotal, fill=vcClaveTienda)) +
geom_bar(stat="identity")

coord_polar("y", start=0)
## <ggproto object: Class CoordPolar, Coord, gg>
## aspect: function
## backtransform_range: function
## clip: on
## default: FALSE
## direction: 1
## distance: function
## is_free: function
## is_linear: function
## labels: function
## modify_scales: function
## r: x
## range: function
## render_axis_h: function
## render_axis_v: function
## render_bg: function
## render_fg: function
## setup_data: function
## setup_layout: function
## setup_panel_guides: function
## setup_panel_params: function
## setup_params: function
## start: 0
## theta: y
## train_panel_guides: function
## transform: function
## super: <ggproto object: Class CoordPolar, Coord, gg>
LS0tDQp0aXRsZTogIkdyYWZpY2FzIg0KYXV0aG9yOiAiUm9sYW5kbyBUb3JyZXMgQmVuYXZpZGVzIEEwMTI4NjE2MCINCmRhdGU6ICIyMDIzLTA5LTEzIg0Kb3V0cHV0OiANCiAgaHRtbF9kb2N1bWVudDoNCiAgICB0b2M6IFRSVUUNCiAgICB0b2NfZmxvYXQ6IFRSVUUNCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFDQogICAgdGhlbWU6ICJsdW1lbiINCiAgICBoaWdobGlnaHQ6ICJtb25vY2hyb21lIg0KLS0tDQoNCiFbXShDOlxcVXNlcnNcXHJ0b3JyXFxEb3dubG9hZHNcXEltYWdlbi1hbmltYWRhLUdyYWZpY28tMDYuZ2lmKQ0KDQojIyMgQ29udGV4dG8NCkV4cGxvcmFyIGRpc3RpbnRhcyBmb3JtYXMgZGUgZ3JhZmljYXIuDQpgYGB7cn0NCiNmaWxlLmNob29zZSgpDQpkZjwtcmVhZC5jc3YoIkM6XFxVc2Vyc1xccnRvcnJcXE9uZURyaXZlXFxFc2NyaXRvcmlvXFxURUNcXFNlbWVzdHJlIDNcXFJzdHVkaW9cXGFiYXJyb3Rlc19saW1waWEuY3N2IikNCmBgYA0KDQojIyMgUmVhbGl6YXIgZ3JhZmljYXMNCmBgYHtyfQ0KI2luc3RhbGwucGFja2FnZXMoImdncGxvdDIiKQ0KbGlicmFyeShnZ3Bsb3QyKQ0KZ2dwbG90KGRmLCBhZXMoeD1TdWJ0b3RhbCkpICsNCiAgZ2VvbV9oaXN0b2dyYW0oKSArDQogIGxhYnMoDQogICAgdGl0bGUgPSAiSGlzdG9ncmFtYSBkZSBTdWJ0b3RhbGVzIiwNCiAgICBzdWJ0aXRsZSA9ICJDYXNvIEFiYXJyb3RlcyIsDQogICAgeSA9IkNhbnRpZGFkIg0KICApDQpnZ3Bsb3QoZGYsIGFlcyh4PVByZWNpbywgeT1VbmlkYWRlcywgY29sb3VyPU5vbWJyZURlcGFydGFtZW50bykpICsNCiAgZ2VvbV9wb2ludCgpICsNCiAgbGFicygNCiAgICB0aXRsZSA9ICJHcmFmaWNhIGRlIFB1bnRvcyIsDQogICAgc3VidGl0bGUgPSAiQ2FzbyBBYmFycm90ZXMiLA0KICApDQpgYGANCmBgYHtyfQ0KZ2dwbG90KGRmLCBhZXMoeD0iIiwgeT1TdWJ0b3RhbCwgZmlsbD12Y0NsYXZlVGllbmRhKSkgKw0KICBnZW9tX2JhcihzdGF0PSJpZGVudGl0eSIpDQogIGNvb3JkX3BvbGFyKCJ5Iiwgc3RhcnQ9MCkNCmBgYA0KDQo=