Questions:

1: Problem Set 1

1.1 What is the rank of the matrix A?

\[ A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ -2 & 0 & 1 & 3 \\ 0 & 1 & -2 & 1 \\ 5 & 4 & -2 & -3 \\ \end{bmatrix} \]

Solution

A <- matrix(c(1,-2,0,5,2,0,1,4,3,1,-2,-2,4,3,1,-3), ncol=4)
A
##      [,1] [,2] [,3] [,4]
## [1,]    1    2    3    4
## [2,]   -2    0    1    3
## [3,]    0    1   -2    1
## [4,]    5    4   -2   -3
# rank of the matrix, A
rankA <- qr(A)$rank
rankA
## [1] 4

Therefore the rank of the matrix is 4.

1.2 Given an \(m \times n\) matrix where \(m>n\), what can be the maximum rank?

The minimum rank, assuming that the matrix is non-zero?

Solution
For a non-zero matrix, the minimum and maximum rank is given by:

Minimum rank = 1
Maximum rank = n

1.3 What is the rank of matrix \(B\)?

\[ B = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 6 & 3 \\ 2 & 4 & 2 \\ \end{bmatrix} \]


Solution Looking at the matrix, the rank is 1 given than there is only one linearly independent row for the matrix, B. The rank of a matrix is simply the number of linearly independent rows of the matrix. Given that matrix B has rows 2 and 3 as multiples of row 1, it means that there is only one linearly independent row for the matrix and thus the rank is 1.

# checking the matrix using R code:
B <- matrix(c(1,3,2,2,6,4,1,3,2), nrow = 3)
B
##      [,1] [,2] [,3]
## [1,]    1    2    1
## [2,]    3    6    3
## [3,]    2    4    2
# rank of matrix B
rankB <- qr(B)$rank
rankB
## [1] 1

2: Problem Set 2

Compute the eigenvalues and eigenvectors of the matrix \(A\). You’ll need to show your work. You’ll need to write out the characteristic polynomial and show your solution.

\[ A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \\ \end{bmatrix} \]


Solution
The eigenvalue(s) is \(\lambda\) is defined as \(Ax = \lambda x\) where \(x\) is the eigen vector associated with the eigenvalue \(\lambda\).
\(|A-\lambda I| = 0\) where \(I\) is a \(3 \times 3\) identity square matrix.

Therefore: \[ \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \\ \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} = \begin{bmatrix} 1-\lambda & 2 & 3 \\ 0 & 4-\lambda & 5 \\ 0 & 0 & 6-\lambda \\ \end{bmatrix} \]

Find the determinant of the resulting matrix and set it equal to zero to find the values of \(\lambda\)

\[ det \begin{bmatrix} 1-\lambda & 2 & 3 \\ 0 & 4-\lambda & 5 \\ 0 & 0 & 6-\lambda \\ \end{bmatrix} = 0 \]

Multiplying along the first column to take advantage of the zeros in the first columns:
\((1-\lambda)[(4-\lambda)(6-\lambda) - 0] = 0\)
\(=> (1-\lambda)(4-\lambda)(6-\lambda) = 0\) This is the characteristic polynomial and it’s better to keep it unexpanded since it makes it a lot easier to see the values of \(\lambda\).

Therefore \(\lambda = 1, 4, 6\).
Thus, the eigenvalues are \(1, 4,\) and \(6\).

# verify using R
A <- matrix(c(1, 0, 0, 2, 4, 0, 3, 5, 6), nrow=3, ncol=3)
eigen_values <- eigen(A)
eigen_values$values
## [1] 6 4 1

Eigen-vectors.


Eigen-vector for \(\lambda = 1\);
\((A - \lambda I)x = 0\); \(x\) is the eigen-vector

For \(\lambda = 1\);
\[ \begin{bmatrix} 1-1 & 2 & 3 \\ 0 & 4-1 & 5 \\ 0 & 0 & 6-1 \\ \end{bmatrix} \times \begin{bmatrix} u \\ v \\ w \\ \end{bmatrix} = 0 \]

\[ \begin{bmatrix} 0 & 2 & 3 \\ 0 & 3 & 5 \\ 0 & 0 & 5 \\ \end{bmatrix} \times \begin{bmatrix} u \\ v \\ w \\ \end{bmatrix} = 0; \] \(5w = 0; w = 0\); \(3v + 5w = 0; 3v + 5(0) = 0; v = 0\); \(0u + 2v + 3w = 0; 0 + 0 + 0 = 0; 0=0\)
This gives a trivial solution for x;

Thus the eigen-vector associated with \(\lambda = 1\) is given by:
\[ x = u \begin{bmatrix} 1 \\ 0 \\ 0 \\ \end{bmatrix} \]

\(\forall\) \(u\) \(\epsilon\) \(\mathbb{C}\)

Eigen-vector For \(\lambda = 4\)
\[ \begin{bmatrix} 1-4 & 2 & 3 \\ 0 & 4-4 & 5 \\ 0 & 0 & 6-4 \\ \end{bmatrix} \times \begin{bmatrix} u \\ v \\ w \\ \end{bmatrix} = 0 \] \[ \begin{bmatrix} -3 & 2 & 3 \\ 0 & 0 & 5 \\ 0 & 0 & 2 \\ \end{bmatrix} \times \begin{bmatrix} u \\ v \\ w \\ \end{bmatrix} = 0; \]

\(2w = 0; w=0\); \(0v + 2w = 0; 0v + 0 + 0 = 0; 0 = 0\) => \(v\) appears to result in a trivial solution.
\(-3u + 2v + 3w = 0; -3u + 2v + 0 = 0\); \(u = \frac{2}{3}v\).
Thus the eigen-vector associated with \(\lambda = 4\) is given by:

\[ x = v \begin{bmatrix} \frac{2}{3} \\ 1 \\ 0 \\ \end{bmatrix} \]

\(\forall\) \(v\) \(\epsilon\) \(\mathbb{C}\)

Eigen-vector For \(\lambda = 6\)
\[ \begin{bmatrix} 1-6 & 2 & 3 \\ 0 & 4-6 & 5 \\ 0 & 0 & 6-6 \\ \end{bmatrix} \times \begin{bmatrix} u \\ v \\ w \\ \end{bmatrix} = 0 \]
\[ \begin{bmatrix} -5 & 2 & 3 \\ 0 & -2 & 5 \\ 0 & 0 & 0 \\ \end{bmatrix} \times \begin{bmatrix} u \\ v \\ w \\ \end{bmatrix} = 0; \]

Clearly, the last row provides a trivial solution.
\(-2v + 5w = 0; v = \frac{5}{2}w; -5u + 2v + 3w = 0\); \(-5u + 2\times\frac{5}{2}w + 3w = 0\); \(-5u + 5w + 3w = 0\); \(u = \frac{8}{5}w\)
Thus the eigen-vector associated with \(\lambda = 6\) is given by:

\[ x = w \begin{bmatrix} \frac{8}{5} \\ \frac{5}{2} \\ 1 \\ \end{bmatrix} \]

\(\forall\) \(w\) \(\epsilon\) \(\mathbb{C}\)

Hence, the eigen vectors corresponding to \(\lambda = 1, 4, 6\) are:

\[ x = u \begin{bmatrix} 1 \\ 0 \\ 0 \\ \end{bmatrix}; v \begin{bmatrix} \frac{2}{3} \\ 1 \\ 0 \\ \end{bmatrix}; w \begin{bmatrix} \frac{8}{5} \\ \frac{5}{2} \\ 1 \\ \end{bmatrix} \] \(\forall\) \(u, v, w\) \(\epsilon\) \(\mathbb{C}\) respectively.