Title: JohannaLuke- HW1

setwd("/Users/johannaluke/Documents/0310/")
df <- read.csv("mtcars-3.csv")

Using the head() function, we can see the first few rows of our data set print out.

head(df)
##               model  mpg cyl disp  hp drat    wt  qsec vs am gear carb
## 1         Mazda RX4 21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
## 2     Mazda RX4 Wag 21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
## 3        Datsun 710 22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
## 4    Hornet 4 Drive 21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
## 5 Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
## 6           Valiant 18.1   6  225 105 2.76 3.460 20.22  1  0    3    1

The function dim, prints out the dimensions of the data set i.e the number of rows and columns.

dim(df)
## [1] 32 12

Using the str() function, we were able to print the structure of the data set and see the data types of all the columns.

str(df)
## 'data.frame':    32 obs. of  12 variables:
##  $ model: chr  "Mazda RX4" "Mazda RX4 Wag" "Datsun 710" "Hornet 4 Drive" ...
##  $ mpg  : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
##  $ cyl  : int  6 6 4 6 8 6 8 4 4 6 ...
##  $ disp : num  160 160 108 258 360 ...
##  $ hp   : int  110 110 93 110 175 105 245 62 95 123 ...
##  $ drat : num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
##  $ wt   : num  2.62 2.88 2.32 3.21 3.44 ...
##  $ qsec : num  16.5 17 18.6 19.4 17 ...
##  $ vs   : int  0 0 1 1 0 1 0 1 1 1 ...
##  $ am   : int  1 1 1 0 0 0 0 0 0 0 ...
##  $ gear : int  4 4 4 3 3 3 3 4 4 4 ...
##  $ carb : int  4 4 1 1 2 1 4 2 2 4 ...

Using the summary() function, we were able to see averages, medians, and quartile values for each variable.

summary(df)
##     model                mpg             cyl             disp      
##  Length:32          Min.   :10.40   Min.   :4.000   Min.   : 71.1  
##  Class :character   1st Qu.:15.43   1st Qu.:4.000   1st Qu.:120.8  
##  Mode  :character   Median :19.20   Median :6.000   Median :196.3  
##                     Mean   :20.09   Mean   :6.188   Mean   :230.7  
##                     3rd Qu.:22.80   3rd Qu.:8.000   3rd Qu.:326.0  
##                     Max.   :33.90   Max.   :8.000   Max.   :472.0  
##        hp             drat             wt             qsec      
##  Min.   : 52.0   Min.   :2.760   Min.   :1.513   Min.   :14.50  
##  1st Qu.: 96.5   1st Qu.:3.080   1st Qu.:2.581   1st Qu.:16.89  
##  Median :123.0   Median :3.695   Median :3.325   Median :17.71  
##  Mean   :146.7   Mean   :3.597   Mean   :3.217   Mean   :17.85  
##  3rd Qu.:180.0   3rd Qu.:3.920   3rd Qu.:3.610   3rd Qu.:18.90  
##  Max.   :335.0   Max.   :4.930   Max.   :5.424   Max.   :22.90  
##        vs               am              gear            carb      
##  Min.   :0.0000   Min.   :0.0000   Min.   :3.000   Min.   :1.000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:3.000   1st Qu.:2.000  
##  Median :0.0000   Median :0.0000   Median :4.000   Median :2.000  
##  Mean   :0.4375   Mean   :0.4062   Mean   :3.688   Mean   :2.812  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:4.000   3rd Qu.:4.000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :5.000   Max.   :8.000

Using the command as.logical, we were able to change the data type of the column ‘am’ from integer to logical.

z<- mtcars$am
as.logical(z)
##  [1]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [13] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
## [25] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE

We can make a scatter plot to see how hp and mpg relate to each other:

x <- mtcars$hp
y <- mtcars$mpg
plot(x,y)

We can see that as the horsepower increases, the miles per gallon decreases. This happens because horsepower requires more fuel to have more power. So when the power increases, the more fuel is used which lowers the overall mpg ratio.

We can make a bar plot to see how many cylinders the models have.

barplot(mtcars$cyl,xlab="Models of Cars", ylab="Number of Cylinders")

This bar graph displays all the models of the cars and how many cylinders each model has.

And finally, we can see the frequencies of mpg using a histogram:

hist(mtcars$mpg)

We can see from this histogram the frequency of the different mpg’s. We can also see that this is a right skewed histogram which means that the mean is greater than the median.