Because airquality is a pre-built dataset, we can write it to our data directory to store it for later use.
The source for this dataset is the New York State Department of Conservation and the National Weather Service of 1973 for five months from May to September recorded daily.
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.3 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.3 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
data("airquality")
the function, head, will only disply the first 6 rows of the dataset. Notice in the global environment to the right, there are 153 observations (rows)
head(airquality)
## Ozone Solar.R Wind Temp Month Day
## 1 41 190 7.4 67 5 1
## 2 36 118 8.0 72 5 2
## 3 12 149 12.6 74 5 3
## 4 18 313 11.5 62 5 4
## 5 NA NA 14.3 56 5 5
## 6 28 NA 14.9 66 5 6
If you want to look at specific statistics, here are some variations on coding. Here are 2 different ways to calculate “mean.”
mean(airquality$Temp)
## [1] 77.88235
mean(airquality[,4])
## [1] 77.88235
median(airquality$Temp)
## [1] 79
sd(airquality$Wind)
## [1] 3.523001
var(airquality$Wind)
## [1] 12.41154
Number 5 - 9 to May through September
airquality$Month[airquality$Month == 5]<- "May"
airquality$Month[airquality$Month == 6]<- "June"
airquality$Month[airquality$Month == 7]<- "July"
airquality$Month[airquality$Month == 8]<- "August"
airquality$Month[airquality$Month == 9]<- "September"
See how Month has changed to have characters instead of numbers
summary(airquality$Month)
## Length Class Mode
## 153 character character
This is one way to reorder the Months so they do not default to alphabetical (you will see another way to reorder DIRECTLY in the chunk that creates the plot below in Plot 1)
airquality$Month<-factor(airquality$Month, levels=c("May", "June","July", "August", "September"))
Here is a first attempt at viewing a histogram of temperature by the months May through September. We will see that temperatures increase over these months. The median temperature appears to be about 75 degrees.
Reorder the legend so that it is not the default (alphabetical), but rather in chronological order.
fill = Month colors the histogram by months between May - Sept.
scale_fill_discrete(name = “Month”…) provides the month names on the right side as a legend.
p1 <- airquality |>
ggplot(aes(x=Temp, fill=Month)) +
geom_histogram(position="identity")+
scale_fill_discrete(name = "Month",
labels = c("May", "June","July", "August", "September")) +
labs(x = "Monthly Temperatures from May - Sept",
y = "Frequency of Temps",
title = "Histogram of Monthly Temperatures from May - Sept, 1973",
caption = "New York State Department of Conservation and the National Weather Service") #provide the data source
p1
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Is this plot useful in answering questions about monthly temperature values?
Outline the bars in white using the color = “white” command
Use alpha to add some transparency (values between 0 and 1)
Change the binwidth
Add some transparency and white borders around the histogram bars. Here July stands out for having high frequency of 85 degree temperatures. The dark purple color indicates overlaps of months due to the transparency.
p2 <- airquality |>
ggplot(aes(x=Temp, fill=Month)) +
geom_histogram(position="identity", alpha=0.5, binwidth = 5, color = "white")+
scale_fill_discrete(name = "Month", labels = c("May", "June","July", "August", "September")) +
labs(x = "Monthly Temperatures from May - Sept",
y = "Frequency of Temps",
title = "Histogram of Monthly Temperatures from May - Sept, 1973",
caption = "New York State Department of Conservation and the National Weather Service")
p2
Did this improve the readability of the plot?
We can see that August has the highest temperatures based on the boxplot distribution.
p3 <- airquality |>
ggplot(aes(Month, Temp, fill = Month)) +
labs(x = "Months from May through September", y = "Temperatures",
title = "Side-by-Side Boxplot of Monthly Temperatures",
caption = "New York State Department of Conservation and the National Weather Service") +
geom_boxplot() +
scale_fill_discrete(name = "Month", labels = c("May", "June","July", "August", "September"))
p3
Notice that the points above and below the boxplots in June and July are outliers.
Use the scale_fill_grey command for the grey-scale legend, and again, use fill=Month in the aesthetics
Here we just changed the color palette to gray scale using scale_fill_grey
p4 <- airquality |>
ggplot(aes(Month, Temp, fill = Month)) +
labs(x = "Monthly Temperatures", y = "Temperatures",
title = "Side-by-Side Boxplot of Monthly Temperatures",
caption = "New York State Department of Conservation and the National Weather Service") +
geom_boxplot()+
scale_fill_grey(name = "Month", labels = c("May", "June","July", "August", "September"))
p4
airquality |> filter(Month == "August") |> ggplot(aes(x = Temp, y = Wind)) +
geom_point(alpha = 1.0, col = "orange") +
geom_smooth(method = "lm", col = "lightblue") +
labs(x = "Temperature",
y = "Wind Speed",
title = "Daily Temperature and Wind Speed, August 1973",
caption = "New York State Department of Conservation and the National Weather Service") #provide the data source
## `geom_smooth()` using formula = 'y ~ x'