Primary Plots
# re-organize data to plot vignette-by-vignette variability
# stranger vignettes
S3_vignettes_s <- S3_s %>%
select(c(ResponseId,
theft_hyp, cakehoard_hyp, smoking_hyp, playbook_hyp, officebonus_hyp,
steroids_hyp, revenge_hyp, envy_hyp, responsibility_hyp, insulting_hyp,
racism_hyp, criticizing_hyp, violence_hyp, speeding_hyp, pest_hyp,
lying_hyp, gossip_hyp, shoot_hyp, cheating_hyp, sexism_hyp,
theft_opp, cakehoard_opp, smoking_opp, playbook_opp, officebonus_opp,
steroids_opp, revenge_opp, envy_opp, responsibility_opp, insulting_opp,
racism_opp, criticizing_opp, violence_opp, speeding_opp, pest_opp,
lying_opp, gossip_opp, shoot_opp, cheating_opp, sexism_opp)) %>%
mutate(theft = case_when(
theft_hyp == 1 ~ "Yes",
theft_opp == 1 ~ "No - Opposite",
(theft_hyp == 0 & theft_opp == 0) ~ "No - Equal")) %>%
mutate(cakehoard = case_when(
cakehoard_hyp == 1 ~ "Yes",
cakehoard_opp == 1 ~ "No - Opposite",
(cakehoard_hyp == 0 & cakehoard_opp == 0) ~ "No - Equal")) %>%
mutate(smoking = case_when(
smoking_hyp == 1 ~ "Yes",
smoking_opp == 1 ~ "No - Opposite",
(smoking_hyp == 0 & smoking_opp == 0) ~ "No - Equal")) %>%
mutate(playbook = case_when(
playbook_hyp == 1 ~ "Yes",
playbook_opp == 1 ~ "No - Opposite",
(playbook_hyp == 0 & playbook_opp == 0) ~ "No - Equal")) %>%
mutate(bonus = case_when(
officebonus_hyp == 1 ~ "Yes",
officebonus_opp == 1 ~ "No - Opposite",
(officebonus_hyp == 0 & officebonus_opp == 0) ~ "No - Equal")) %>%
mutate(steroids = case_when(
steroids_hyp == 1 ~ "Yes",
steroids_opp == 1 ~ "No - Opposite",
(steroids_hyp == 0 & steroids_opp == 0) ~ "No - Equal")) %>%
mutate(revenge = case_when(
revenge_hyp == 1 ~ "Yes",
revenge_opp == 1 ~ "No - Opposite",
(revenge_hyp == 0 & revenge_opp == 0) ~ "No - Equal")) %>%
mutate(envy = case_when(
envy_hyp == 1 ~ "Yes",
envy_opp == 1 ~ "No - Opposite",
(envy_hyp == 0 & envy_opp == 0) ~ "No - Equal")) %>%
mutate(responsibility = case_when(
responsibility_hyp == 1 ~ "Yes",
responsibility_opp == 1 ~ "No - Opposite",
(responsibility_hyp == 0 & responsibility_opp == 0) ~ "No - Equal")) %>%
mutate(insulting = case_when(
insulting_hyp == 1 ~ "Yes",
insulting_opp == 1 ~ "No - Opposite",
(insulting_hyp == 0 & insulting_opp == 0) ~ "No - Equal")) %>%
mutate(racism = case_when(
racism_hyp == 1 ~ "Yes",
racism_opp == 1 ~ "No - Opposite",
(racism_hyp == 0 & racism_opp == 0) ~ "No - Equal")) %>%
mutate(criticizing = case_when(
criticizing_hyp == 1 ~ "Yes",
criticizing_opp == 1 ~ "No - Opposite",
(criticizing_hyp == 0 & criticizing_opp == 0) ~ "No - Equal")) %>%
mutate(violence = case_when(
violence_hyp == 1 ~ "Yes",
violence_opp == 1 ~ "No - Opposite",
(violence_hyp == 0 & violence_opp == 0) ~ "No - Equal")) %>%
mutate(speeding = case_when(
speeding_hyp == 1 ~ "Yes",
speeding_opp == 1 ~ "No - Opposite",
(speeding_hyp == 0 & speeding_opp == 0) ~ "No - Equal")) %>%
mutate(pest = case_when(
pest_hyp == 1 ~ "Yes",
pest_opp == 1 ~ "No - Opposite",
(pest_hyp == 0 & pest_opp == 0) ~ "No - Equal")) %>%
mutate(lying = case_when(
lying_hyp == 1 ~ "Yes",
lying_opp == 1 ~ "No - Opposite",
(lying_hyp == 0 & lying_opp == 0) ~ "No - Equal")) %>%
mutate(gossip = case_when(
gossip_hyp == 1 ~ "Yes",
gossip_opp == 1 ~ "No - Opposite",
(gossip_hyp == 0 & gossip_opp == 0) ~ "No - Equal")) %>%
mutate(shoot = case_when(
shoot_hyp == 1 ~ "Yes",
shoot_opp == 1 ~ "No - Opposite",
(shoot_hyp == 0 & shoot_opp == 0) ~ "No - Equal")) %>%
mutate(cheating = case_when(
cheating_hyp == 1 ~ "Yes",
cheating_opp == 1 ~ "No - Opposite",
(cheating_hyp == 0 & cheating_opp == 0) ~ "No - Equal")) %>%
mutate(sexism = case_when(
sexism_hyp == 1 ~ "Yes",
sexism_opp == 1 ~ "No - Opposite",
(sexism_hyp == 0 & sexism_opp == 0) ~ "No - Equal")) %>%
group_by(ResponseId) %>%
pivot_longer(cols = (c(theft, cakehoard, smoking, playbook, bonus,
steroids,revenge, envy, responsibility,
insulting, racism, criticizing,violence,
speeding, pest, lying, gossip, shoot,
cheating,sexism)),
names_to = "vignette_name",
values_to = "fits_hyp") %>%
drop_na(fits_hyp)
stranger_labs <- c("Theft", "Cake Hoarding", "Smoking", "Playbook", "Bonus", "Steroids", "Revenge",
"Envy", "Responsibility","Insulting", "Racism", "Criticizing", "Violence", "Speeding",
"Pest", "Lying", "Gossip", "Shooting", "Cheating","Sexism")
names(stranger_labs) <- c("theft", "cakehoard", "smoking", "playbook",
"bonus","steroids", "revenge", "envy",
"responsibility", "insulting","racism",
"criticizing","violence", "speeding", "pest",
"lying", "gossip", "shoot","cheating",
"sexism")
# close other vignettes
S3_vignettes_co <- S3_co %>%
select(c(ResponseId,
theft_hyp, cakehoard_hyp, smoking_hyp, playbook_hyp, officebonus_hyp,
steroids_hyp, revenge_hyp, envy_hyp, responsibility_hyp, insulting_hyp,
racism_hyp, criticizing_hyp, violence_hyp, speeding_hyp, pest_hyp,
lying_hyp, gossip_hyp, shoot_hyp, cheating_hyp, sexism_hyp,
theft_opp, cakehoard_opp, smoking_opp, playbook_opp, officebonus_opp,
steroids_opp, revenge_opp, envy_opp, responsibility_opp, insulting_opp,
racism_opp, criticizing_opp, violence_opp, speeding_opp, pest_opp,
lying_opp, gossip_opp, shoot_opp, cheating_opp, sexism_opp)) %>%
mutate(theft = case_when(
theft_hyp == 1 ~ "Yes",
theft_opp == 1 ~ "No - Opposite",
(theft_hyp == 0 & theft_opp == 0) ~ "No - Equal")) %>%
mutate(cakehoard = case_when(
cakehoard_hyp == 1 ~ "Yes",
cakehoard_opp == 1 ~ "No - Opposite",
(cakehoard_hyp == 0 & cakehoard_opp == 0) ~ "No - Equal")) %>%
mutate(smoking = case_when(
smoking_hyp == 1 ~ "Yes",
smoking_opp == 1 ~ "No - Opposite",
(smoking_hyp == 0 & smoking_opp == 0) ~ "No - Equal")) %>%
mutate(playbook = case_when(
playbook_hyp == 1 ~ "Yes",
playbook_opp == 1 ~ "No - Opposite",
(playbook_hyp == 0 & playbook_opp == 0) ~ "No - Equal")) %>%
mutate(bonus = case_when(
officebonus_hyp == 1 ~ "Yes",
officebonus_opp == 1 ~ "No - Opposite",
(officebonus_hyp == 0 & officebonus_opp == 0) ~ "No - Equal")) %>%
mutate(steroids = case_when(
steroids_hyp == 1 ~ "Yes",
steroids_opp == 1 ~ "No - Opposite",
(steroids_hyp == 0 & steroids_opp == 0) ~ "No - Equal")) %>%
mutate(revenge = case_when(
revenge_hyp == 1 ~ "Yes",
revenge_opp == 1 ~ "No - Opposite",
(revenge_hyp == 0 & revenge_opp == 0) ~ "No - Equal")) %>%
mutate(envy = case_when(
envy_hyp == 1 ~ "Yes",
envy_opp == 1 ~ "No - Opposite",
(envy_hyp == 0 & envy_opp == 0) ~ "No - Equal")) %>%
mutate(responsibility = case_when(
responsibility_hyp == 1 ~ "Yes",
responsibility_opp == 1 ~ "No - Opposite",
(responsibility_hyp == 0 & responsibility_opp == 0) ~ "No - Equal")) %>%
mutate(insulting = case_when(
insulting_hyp == 1 ~ "Yes",
insulting_opp == 1 ~ "No - Opposite",
(insulting_hyp == 0 & insulting_opp == 0) ~ "No - Equal")) %>%
mutate(racism = case_when(
racism_hyp == 1 ~ "Yes",
racism_opp == 1 ~ "No - Opposite",
(racism_hyp == 0 & racism_opp == 0) ~ "No - Equal")) %>%
mutate(criticizing = case_when(
criticizing_hyp == 1 ~ "Yes",
criticizing_opp == 1 ~ "No - Opposite",
(criticizing_hyp == 0 & criticizing_opp == 0) ~ "No - Equal")) %>%
mutate(violence = case_when(
violence_hyp == 1 ~ "Yes",
violence_opp == 1 ~ "No - Opposite",
(violence_hyp == 0 & violence_opp == 0) ~ "No - Equal")) %>%
mutate(speeding = case_when(
speeding_hyp == 1 ~ "Yes",
speeding_opp == 1 ~ "No - Opposite",
(speeding_hyp == 0 & speeding_opp == 0) ~ "No - Equal")) %>%
mutate(pest = case_when(
pest_hyp == 1 ~ "Yes",
pest_opp == 1 ~ "No - Opposite",
(pest_hyp == 0 & pest_opp == 0) ~ "No - Equal")) %>%
mutate(lying = case_when(
lying_hyp == 1 ~ "Yes",
lying_opp == 1 ~ "No - Opposite",
(lying_hyp == 0 & lying_opp == 0) ~ "No - Equal")) %>%
mutate(gossip = case_when(
gossip_hyp == 1 ~ "Yes",
gossip_opp == 1 ~ "No - Opposite",
(gossip_hyp == 0 & gossip_opp == 0) ~ "No - Equal")) %>%
mutate(shoot = case_when(
shoot_hyp == 1 ~ "Yes",
shoot_opp == 1 ~ "No - Opposite",
(shoot_hyp == 0 & shoot_opp == 0) ~ "No - Equal")) %>%
mutate(cheating = case_when(
cheating_hyp == 1 ~ "Yes",
cheating_opp == 1 ~ "No - Opposite",
(cheating_hyp == 0 & cheating_opp == 0) ~ "No - Equal")) %>%
mutate(sexism = case_when(
sexism_hyp == 1 ~ "Yes",
sexism_opp == 1 ~ "No - Opposite",
(sexism_hyp == 0 & sexism_opp == 0) ~ "No - Equal")) %>%
group_by(ResponseId) %>%
pivot_longer(cols = (c(theft, cakehoard, smoking, playbook, bonus,
steroids,revenge, envy, responsibility,
insulting, racism, criticizing,violence,
speeding, pest, lying, gossip, shoot,
cheating,sexism)),
names_to = "vignette_name",
values_to = "fits_hyp") %>%
drop_na(fits_hyp)
closeother_labs <- c("Theft", "Cake Hoarding", "Smoking", "Playbook", "Bonus", "Steroids", "Revenge",
"Envy", "Responsibility","Insulting", "Racism", "Criticizing", "Violence", "Speeding",
"Pest", "Lying", "Gossip", "Shooting", "Cheating","Sexism")
names(closeother_labs) <- c("theft", "cakehoard", "smoking", "playbook",
"bonus","steroids", "revenge", "envy",
"responsibility", "insulting","racism",
"criticizing","violence", "speeding", "pest",
"lying", "gossip", "shoot","cheating",
"sexism")Stranger Vignettes
print(S3_s_vigplot <- ggplot(S3_vignettes_s,
aes(x = as.character(fits_hyp),
fill = as.character(fits_hyp))) +
geom_bar() +
scale_fill_manual(values = c("grey30","#8b1616", "#CEA335"), name = "Fits Hypothesis")+
scale_y_continuous(limits = c(-0.1,100.1), breaks = c(0, 20, 40, 60, 80, 100)) +
ylab("Number of Participants\n") +
theme_classic() +
facet_wrap(~ vignette_name, ncol = 5, labeller = labeller(vignette_name = stranger_labs)) +
theme(axis.title.x = element_blank(),
axis.title.y = element_text(size = 18),
axis.text.x = element_blank(),
axis.text.y = element_text(color = "black", size = 16),
strip.text.x = element_text(color = "black", size = 16),
legend.position = "right",
legend.title = element_text(color = "black", size = 18),
legend.text = element_text(color = "black", size = 16)))
ggsave("S3_s_vigplot.png")Saving 14.1 x 9.04 in image
Close Other Vignettes
print(S3_co_vigplot <- ggplot(S3_vignettes_co,
aes(x = as.character(fits_hyp),
fill = as.character(fits_hyp))) +
geom_bar() +
scale_fill_manual(values = c("grey30","#8b1616", "#CEA335"), name = "Fits Hypothesis")+
scale_y_continuous(limits = c(-0.1,100.1), breaks = c(0, 20, 40, 60, 80, 100)) +
ylab("Number of Participants\n") +
theme_classic() +
facet_wrap(~ vignette_name, ncol = 5, labeller = labeller(vignette_name = closeother_labs)) +
theme(axis.title.x = element_blank(),
axis.title.y = element_text(size = 18),
axis.text.x = element_blank(),
axis.text.y = element_text(color = "black", size = 16),
strip.text.x = element_text(color = "black", size = 16),
legend.position = "right",
legend.title = element_text(color = "black", size = 18),
legend.text = element_text(color = "black", size = 16)))
ggsave("S3_co_vigplot.png")Saving 14.1 x 9.04 in image
Interaction
# Create a variable that determines which pattern out of every possible combination of results a particular participant followed
S3 <- S3 %>%
mutate("Interaction" = case_when(
(CloseOtherAverage == 0 & StrangerAverage == 0) ~ "Zero, Zero, Zero",
(CloseOtherAverage == 0 & StrangerAverage < 0) ~ "Zero, Neg, Pos",
(CloseOtherAverage == 0 & StrangerAverage > 0) ~ "Zero, Pos, Neg",
(CloseOtherAverage < 0 & StrangerAverage == 0) ~ "Neg, Zero, Neg",
(CloseOtherAverage < 0 & StrangerAverage < 0 & CloseOtherAverage == StrangerAverage) ~ "Neg, Neg, Zero",
(CloseOtherAverage < 0 & StrangerAverage > 0) ~ "Neg, Pos, Neg",
(CloseOtherAverage < 0 & StrangerAverage < 0 & CloseOtherAverage > StrangerAverage) ~ "Neg, Neg, Pos",
(CloseOtherAverage < 0 & StrangerAverage < 0 & CloseOtherAverage < StrangerAverage) ~ "Neg, Neg, Neg",
(CloseOtherAverage > 0 & StrangerAverage == 0) ~ "Pos, Zero, Pos",
(CloseOtherAverage > 0 & StrangerAverage < 0) ~ "Pos, Neg, Pos",
(CloseOtherAverage > 0 & StrangerAverage > 0 & CloseOtherAverage == StrangerAverage) ~ "Pos, Pos, Zero",
(CloseOtherAverage > 0 & StrangerAverage > 0 & CloseOtherAverage < StrangerAverage) ~ "Pos, Pos, Neg",
(CloseOtherAverage > 0 & StrangerAverage > 0 & CloseOtherAverage > StrangerAverage) ~ "Pos, Pos, Pos"))
# define levels
factor_levels <- c("Neg, Neg, Neg",
"Neg, Neg, Pos",
"Neg, Neg, Zero",
"Neg, Pos, Neg",
"Neg, Zero, Neg",
"Pos, Neg, Pos",
"Pos, Pos, Neg",
"Pos, Pos, Pos", # predicted pattern
"Pos, Pos, Zero",
"Pos, Zero, Pos",
"Zero, Neg, Pos",
"Zero, Pos, Neg",
"Zero, Zero, Zero")
# make variable a factor
S3$Interaction <- factor(S3$Interaction, levels = factor_levels)# Visualize the frequency of every pattern
print(S3_int_plot <- ggplot(data = S3, aes(x = Interaction, fill = Interaction)) +
geom_bar(position = "dodge", size = 0.5) +
coord_cartesian(ylim = c(-0.5, 100.5)) +
scale_x_discrete(drop = FALSE) +
scale_fill_manual(drop = FALSE, values = c(
"lightgrey",
"azure4",
"lightgrey",
"lightgrey",
"lightgrey",
"azure4",
"lightgrey",
"black", # group-level pattern based on factor_levels,
"lightgrey",
"azure4",
"azure4",
"lightgrey",
"lightgrey")) +
theme_classic() +
theme(legend.position = "none") +
xlab("\nInteraction Pattern (Stranger Judgment, Close Other Judgment, Close Other - Stranger)") +
ylab("Participant Count\n") +
theme(axis.title.x = element_text(size = 18),
axis.title.y = element_text(size = 20),
axis.text.x = element_text(color = "black", size = 14, angle = 60, vjust = 0.5, hjust=0.5),
axis.text.y = element_text(color = "black", size = 18),
strip.text.x = element_text(color = "black", size = 20),
legend.title = element_text(color = "black", size = 18),
legend.text = element_text(color = "black", size = 16)))
ggsave("S3_int_plot.png")Saving 14.1 x 9.04 in image