Primary Plots
# set breaks for histograms
breaks_seezero <- c(-4, -3.5, -3, -2.5, -2, -1.5, -1, -0.5, -0.01, 0.01, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4)Non-Moral Vignettes
print(S1a_nonmoral <- ggplot(Study_1a_plvl, aes(x = NonmoralAverage)) +
geom_histogram(breaks = breaks_seezero,
color = "grey30", fill = c("#CEA335", "#CEA335", "#CEA335", "#CEA335",
"#CEA335", "#CEA335", "#CEA335", "#CEA335",
"black",
"#CEA335", "#CEA335", "#CEA335", "#CEA335",
"#CEA335", "#CEA335", "#CEA335", "#CEA335")) +
scale_x_continuous(limits = c(-4.1,4.1), breaks = c(-4,-3,-2,-1,0,1,2,3,4)) +
scale_y_continuous(limits = c(-0.1,50.1), breaks = c(0, 10, 20, 30, 40, 50)) +
xlab("\nGlobal Virtuosity Judgment") +
ylab("Number of Participants\n") +
theme_classic() +
theme(axis.title.x = element_text(size = 18),
axis.title.y = element_text(size = 18),
axis.text.x = element_text(color = "black", size = 16),
axis.text.y = element_text(color = "black", size = 16),
strip.text.x = element_text(color = "black", size = 16),
legend.position = "right",
legend.title = element_text(color = "black", size = 18),
legend.text = element_text(color = "black", size = 16)))
ggsave("S1a_nonmoral_plot.png")Saving 14.1 x 9.04 in image
Moral Vignettes
print(S1a_moral <- ggplot(Study_1a_plvl, aes(x = MoralAverage)) +
geom_histogram(breaks = breaks_seezero,
color = "grey30", fill = c("#CEA335", "#CEA335", "#CEA335", "#CEA335",
"#CEA335", "#CEA335", "#CEA335", "#CEA335",
"black",
"#CEA335", "#CEA335", "#CEA335", "#CEA335",
"#CEA335", "#CEA335", "#CEA335", "#CEA335")) +
scale_x_continuous(limits = c(-4.1,4.1), breaks = c(-4,-3,-2,-1,0,1,2,3,4)) +
scale_y_continuous(limits = c(-0.1,50.1), breaks = c(0, 10, 20, 30, 40, 50)) +
xlab("\nGlobal Virtuosity Judgment") +
ylab("Number of Participants\n") +
theme_classic() +
theme(axis.title.x = element_text(size = 18),
axis.title.y = element_text(size = 18),
axis.text.x = element_text(color = "black", size = 16),
axis.text.y = element_text(color = "black", size = 16),
strip.text.x = element_text(color = "black", size = 16),
legend.position = "right",
legend.title = element_text(color = "black", size = 18),
legend.text = element_text(color = "black", size = 16)))
ggsave("S1a_moral_plot.png")Saving 14.1 x 9.04 in image
Interaction
Berman & Small predicted an interaction such that tempted agents would be judged as more virtuous in non-moral contexts, but less virtuous in moral contexts. Therefore, this interaction plot shows how many participants’ responses mirrored that nuanced prediction.
print(S1a_int <- ggplot(Study_1a_plvl, aes(x = fits_complex)) +
geom_bar(fill = "#CEA335") +
scale_y_continuous(limits = c(-0.1,151.1), breaks = c(0, 25, 50, 75, 100, 125, 150)) +
xlab("\nMatched Predicted Interaction Pattern") +
ylab("Number of Participants\n") +
theme_classic() +
theme(axis.title.x = element_text(size = 18),
axis.title.y = element_text(size = 18),
axis.text.x = element_text(color = "black", size = 16),
axis.text.y = element_text(color = "black", size = 16),
strip.text.x = element_text(color = "black", size = 16),
legend.position = "right",
legend.title = element_text(color = "black", size = 18),
legend.text = element_text(color = "black", size = 16)))
ggsave("S1a_int_plot.png")Saving 14.1 x 9.04 in image