This is an R Markdown
Notebook that shows the analysis for this homework.
Plots

ggplot(data = t) +
geom_smooth(mapping = aes(x = actual_yearly_income, y = monthly_payment,
color = CONTROL))

ggplot(data = t) +
geom_histogram(mapping = aes(x = actual_yearly_income))

ggplot(data = t) +
geom_density(mapping = aes(x = actual_yearly_income, color = CONTROL))

ggplot(data = t) +
geom_boxplot(mapping = aes(x = actual_yearly_income, y = CONTROL))

LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpUaGlzIGlzIGFuIFtSIE1hcmtkb3duXShodHRwOi8vcm1hcmtkb3duLnJzdHVkaW8uY29tKSBOb3RlYm9vayB0aGF0IHNob3dzIHRoZSBhbmFseXNpcyBmb3IgdGhpcyBob21ld29yay4NCg0KYGBge3J9DQojIEFuYWx5c2lzIG9mIERlYnQgYnkgTWFqb3IgRmlsZQ0KIw0KbGlicmFyeSh0aWR5dmVyc2UpDQoNCnQucmF3IDwtIHJlYWRfY3N2KCdNb3N0LVJlY2VudC1Db2hvcnRzLUZpZWxkLW9mLVN0dWR5LmNzdicsDQogICAgICAgICAgICAgICAgICBuYSA9IGMoJycsICdOQScsICdQcml2YWN5U3VwcHJlc3NlZCcsICdOVUxMJykpDQoNCnQgPC0gdC5yYXcgJT4lDQogIGZpbHRlcihDUkVETEVWID09IDMpICU+JSAgIyBiYWNoZWxvcnMNCiAgZmlsdGVyKENJUERFU0MgPT0gJ0FjY291bnRpbmcgYW5kIFJlbGF0ZWQgU2VydmljZXMuJykgJT4lICAjIEFjY291bnRpbmcNCiAgc2VsZWN0KFVOSVRJRCwgSU5TVE5NLCBDT05UUk9MLCBDSVBDT0RFLCBDSVBERVNDLA0KICAgICAgICAgRUFSTl9DT1VOVF9ORV8zWVIsIEVBUk5fTkVfTUROXzNZUiwNCiAgICAgICAgIERFQlRfQUxMX1BQX0FOWV9NRE4xMFlSUEFZLCANCiAgICAgICAgIERFQlRfQUxMX1NUR1BfQU5ZX01ETjEwWVJQQVkpICU+JQ0KICBtdXRhdGUobW9udGhseV9wYXltZW50ID0NCiAgICAgICAgICAgaWZlbHNlKGlzLm5hKERFQlRfQUxMX1BQX0FOWV9NRE4xMFlSUEFZKSwgMCwgREVCVF9BTExfUFBfQU5ZX01ETjEwWVJQQVkpICsNCiAgICAgICAgICAgaWZlbHNlKGlzLm5hKERFQlRfQUxMX1NUR1BfQU5ZX01ETjEwWVJQQVkpLCAwLCBERUJUX0FMTF9TVEdQX0FOWV9NRE4xMFlSUEFZKSkgJT4lDQogIGZpbHRlcighaXMubmEoRUFSTl9DT1VOVF9ORV8zWVIpKSAlPiUNCiAgbXV0YXRlKHRvdGFsX3llYXJseV9wYXltZW50ID0gMTIgKiBtb250aGx5X3BheW1lbnQpICU+JQ0KICBtdXRhdGUoYWN0dWFsX3llYXJseV9pbmNvbWUgPSBFQVJOX05FX01ETl8zWVIgLSB0b3RhbF95ZWFybHlfcGF5bWVudCkNCg0KcHJpbnQodCkNCmBgYA0KDQojIyBQbG90cw0KDQpgYGB7cn0NCiMgUGxvdHMNCmdncGxvdChkYXRhID0gdCkgKw0KICBnZW9tX3BvaW50KG1hcHBpbmcgPSBhZXMoeCA9IGFjdHVhbF95ZWFybHlfaW5jb21lLCB5ID0gbW9udGhseV9wYXltZW50LA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgY29sb3IgPSBDT05UUk9MKSkNCmBgYA0KDQpgYGAge3J9DQpnZ3Bsb3QoZGF0YSA9IHQpICsNCiAgZ2VvbV9zbW9vdGgobWFwcGluZyA9IGFlcyh4ID0gYWN0dWFsX3llYXJseV9pbmNvbWUsIHkgPSBtb250aGx5X3BheW1lbnQsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgY29sb3IgPSBDT05UUk9MKSkNCg0KZ2dwbG90KGRhdGEgPSB0KSArDQogIGdlb21faGlzdG9ncmFtKG1hcHBpbmcgPSBhZXMoeCA9IGFjdHVhbF95ZWFybHlfaW5jb21lKSkNCg0KZ2dwbG90KGRhdGEgPSB0KSArDQogIGdlb21fZGVuc2l0eShtYXBwaW5nID0gYWVzKHggPSBhY3R1YWxfeWVhcmx5X2luY29tZSwgY29sb3IgPSBDT05UUk9MKSkNCg0KZ2dwbG90KGRhdGEgPSB0KSArDQogIGdlb21fYm94cGxvdChtYXBwaW5nID0gYWVzKHggPSBhY3R1YWxfeWVhcmx5X2luY29tZSwgeSA9IENPTlRST0wpKQ0KDQpgYGANCg0K