In this handout, I use Google Bard to discuss the concepts from the chapter in the textbooks, give examples, and create R code. All prompts are exact, but some of the output may be modified for correctness.

Hanck, Arnold, Gerber, and Schmelzer (2023). Introduction to Econometrics with R. https://www.econometrics-with-r.org/index.html. This book is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Prompt

What is discussed in this webpage?

https://www.econometrics-with-r.org/4.3-measures-of-fit.html

Response

The webpage you linked discusses the use of the coefficient of determination and standard error of the regression to measure the fit of a linear regression model.

The coefficient of determination, denoted \(R^2\), is a measure of how well the independent variable(s) explain the variation in the dependent variable. It is calculated as the square of the correlation coefficient between the dependent and independent variables. A value of \(R^2\) close to 1 indicates a strong linear relationship between the variables, while a value close to 0 indicates a weak relationship.

The standard error of the regression, denoted \(s_e\), is a measure of the typical distance between the observed data points and the regression line. A lower value of \(s_e\) indicates a better fit of the regression line to the data.

The webpage also provides an example of how to use these measures in R.

Here is a summary of the main points discussed in the webpage:

Prompt

Act as a professor of econometrics. You are creating a handout which summarizes the use of the coefficient of determination and standard error of the regression to measure the fit of a linear regression model. Summarize the main ideas of this topic a bulleted list with the sections: 1) Overview, 2) Relevant formulas and Equations, and 3) Examples Using R. Format the handout using markdown language with equations using LaTeX and sections using #.

Response

Overview

The coefficient of determination, denoted \(R^2\), is a measure of how well the independent variable(s) explain the variation in the dependent variable. It is calculated as the square of the correlation coefficient between the dependent and independent variables. A value of \(R^2\) close to 1 indicates a strong linear relationship between the variables, while a value close to 0 indicates a weak relationship.

The standard error of the regression, denoted \(s_e\), is a measure of the typical distance between the observed data points and the regression line. A lower value of \(s_e\) indicates a better fit of the regression line to the data.

Relevant Definitions, Formulas, and Equations

  • Explained Sum of Squares (ESS): The sum of squared differences from the predicted value of Y (\(\hat{y_i}\)) and to average value of Y (\(\bar{y}\)).
  • Total Sum of Squares (TSS): The sum of squared differences from the actual value of Y (\(y_i\)) and the average value of Y (\(\bar{y}\)).
  • Sum of Squared Residuals (SSR): The sum of squared differences of the actual value of Y (\(y_i\)) and the predicted value of Y (\(\hat{y_i}\)).
  • The Coefficient of Determination (\(R^2\)): the percent of the total residuals explained by the model.

\[R^2 = \frac{ESS}{TSS} =\dfrac{\sum_i (\hat{y}_i - \bar{y})^2}{\sum_i (y_i - \bar{y})^2} = 1- \frac{SSR}{TSS}\]

  • The Standard Error of the Regression (SER): the standard deviation of the the residual error.

\[SER = \sqrt{\dfrac{\sum_i (y_i - \hat{y}_i)^2}{n - 2}} = \frac{SSR}{n-2}\]

Examples Using R

# Load the `datasets` package
library(datasets)

# Fit a linear regression model to the `mtcars` dataset
fit <- lm(mpg ~ hp, data = mtcars)

# Calculate the coefficient of determination
(R2 <- summary(fit)$r.squared)
[1] 0.6024373
# Calculate the standard error of the regression
(SER <- summary(fit)$sigma)
[1] 3.862962

Interpretation

  • A value of \(R^2\) close to 1 indicates that the independent variable(s) explain a large proportion of the variation in the dependent variable.
  • A value of \(s_e\) close to 0 indicates that the regression line fits the data closely.

In general, a higher value of \(R^2\) and a lower value of \(s_e\) indicate a better fit of the linear regression model to the data. However, it is important to note that these measures are only one way to assess the fit of a model. Other factors, such as the number of observations and the presence of outliers, should also be considered.

LS0tDQp0aXRsZTogIklFUiBDaGFwdGVycyA0LjEgU3VtbWFyeSINCmF1dGhvcjogIkRyLiBTZWxieS1MZWFjaCINCmRhdGU6ICJgciBTeXMuRGF0ZSgpYCINCm91dHB1dDogaHRtbF9ub3RlYm9vayANCi0tLQ0KDQo8c3R5bGU+DQogICAgLyogU3R5bGluZyBmb3IgaDEgaGVhZGVycyAqLw0KICAgIGgxIHsNCiAgICAgICAgZm9udC13ZWlnaHQ6IGJvbGQ7ICAgICAgIC8qIEJvbGQgKi8NCiAgICAgICAgY29sb3I6IGRhcmtibHVlOyAgICAgICAgLyogRGFyayBibHVlIGNvbG9yICovDQogICAgfQ0KICAgIC8qIFN0eWxpbmcgZm9yIGgyIGhlYWRlcnMgKi8NCiAgICBoMiB7DQogICAgICAgIGZvbnQtd2VpZ2h0OiBib2xkOyANCiAgICB9DQoNCiAgICAvKiBTdHlsaW5nIGZvciBoMyBoZWFkZXJzICovDQogICAgaDMgew0KICAgICAgICBmb250LXN0eWxlOiBpdGFsaWM7ICAgICAvKiBJdGFsaWMgKi8NCiAgICB9DQo8L3N0eWxlPg0KDQoNCkluIHRoaXMgaGFuZG91dCwgSSB1c2UgR29vZ2xlIEJhcmQgdG8gZGlzY3VzcyB0aGUgY29uY2VwdHMgZnJvbSB0aGUgY2hhcHRlciBpbiB0aGUgdGV4dGJvb2tzLCBnaXZlIGV4YW1wbGVzLCBhbmQgY3JlYXRlIFIgY29kZS4gQWxsIHByb21wdHMgYXJlIGV4YWN0LCBidXQgc29tZSBvZiB0aGUgb3V0cHV0IG1heSBiZSBtb2RpZmllZCBmb3IgY29ycmVjdG5lc3MuIA0KDQpIYW5jaywgQXJub2xkLCBHZXJiZXIsIGFuZCBTY2htZWx6ZXIgKDIwMjMpLiBJbnRyb2R1Y3Rpb24gdG8gRWNvbm9tZXRyaWNzIHdpdGggUi4gaHR0cHM6Ly93d3cuZWNvbm9tZXRyaWNzLXdpdGgtci5vcmcvaW5kZXguaHRtbC4gVGhpcyBib29rIGlzIGxpY2Vuc2VkIHVuZGVyIHRoZSBDcmVhdGl2ZSBDb21tb25zIEF0dHJpYnV0aW9uLU5vbkNvbW1lcmNpYWwtU2hhcmVBbGlrZSA0LjAgSW50ZXJuYXRpb25hbCBMaWNlbnNlLg0KDQojIyBQcm9tcHQNCldoYXQgaXMgZGlzY3Vzc2VkIGluIHRoaXMgd2VicGFnZT8gDQoNCmh0dHBzOi8vd3d3LmVjb25vbWV0cmljcy13aXRoLXIub3JnLzQuMy1tZWFzdXJlcy1vZi1maXQuaHRtbA0KDQojIyBSZXNwb25zZQ0KDQpUaGUgd2VicGFnZSB5b3UgbGlua2VkIGRpc2N1c3NlcyB0aGUgdXNlIG9mIHRoZSBjb2VmZmljaWVudCBvZiBkZXRlcm1pbmF0aW9uIGFuZCBzdGFuZGFyZCBlcnJvciBvZiB0aGUgcmVncmVzc2lvbiB0byBtZWFzdXJlIHRoZSBmaXQgb2YgYSBsaW5lYXIgcmVncmVzc2lvbiBtb2RlbC4NCg0KVGhlIGNvZWZmaWNpZW50IG9mIGRldGVybWluYXRpb24sIGRlbm90ZWQgJFJeMiQsIGlzIGEgbWVhc3VyZSBvZiBob3cgd2VsbCB0aGUgaW5kZXBlbmRlbnQgdmFyaWFibGUocykgZXhwbGFpbiB0aGUgdmFyaWF0aW9uIGluIHRoZSBkZXBlbmRlbnQgdmFyaWFibGUuIEl0IGlzIGNhbGN1bGF0ZWQgYXMgdGhlIHNxdWFyZSBvZiB0aGUgY29ycmVsYXRpb24gY29lZmZpY2llbnQgYmV0d2VlbiB0aGUgZGVwZW5kZW50IGFuZCBpbmRlcGVuZGVudCB2YXJpYWJsZXMuIEEgdmFsdWUgb2YgJFJeMiQgY2xvc2UgdG8gMSBpbmRpY2F0ZXMgYSBzdHJvbmcgbGluZWFyIHJlbGF0aW9uc2hpcCBiZXR3ZWVuIHRoZSB2YXJpYWJsZXMsIHdoaWxlIGEgdmFsdWUgY2xvc2UgdG8gMCBpbmRpY2F0ZXMgYSB3ZWFrIHJlbGF0aW9uc2hpcC4NCg0KVGhlIHN0YW5kYXJkIGVycm9yIG9mIHRoZSByZWdyZXNzaW9uLCBkZW5vdGVkICRzX2UkLCBpcyBhIG1lYXN1cmUgb2YgdGhlIHR5cGljYWwgZGlzdGFuY2UgYmV0d2VlbiB0aGUgb2JzZXJ2ZWQgZGF0YSBwb2ludHMgYW5kIHRoZSByZWdyZXNzaW9uIGxpbmUuIEEgbG93ZXIgdmFsdWUgb2YgJHNfZSQgaW5kaWNhdGVzIGEgYmV0dGVyIGZpdCBvZiB0aGUgcmVncmVzc2lvbiBsaW5lIHRvIHRoZSBkYXRhLg0KDQpUaGUgd2VicGFnZSBhbHNvIHByb3ZpZGVzIGFuIGV4YW1wbGUgb2YgaG93IHRvIHVzZSB0aGVzZSBtZWFzdXJlcyBpbiBSLg0KDQpIZXJlIGlzIGEgc3VtbWFyeSBvZiB0aGUgbWFpbiBwb2ludHMgZGlzY3Vzc2VkIGluIHRoZSB3ZWJwYWdlOg0KDQoqIFRoZSBjb2VmZmljaWVudCBvZiBkZXRlcm1pbmF0aW9uIGFuZCBzdGFuZGFyZCBlcnJvciBvZiB0aGUgcmVncmVzc2lvbiBhcmUgdHdvIG1lYXN1cmVzIG9mIHRoZSBmaXQgb2YgYSBsaW5lYXIgcmVncmVzc2lvbiBtb2RlbC4NCiogVGhlIGNvZWZmaWNpZW50IG9mIGRldGVybWluYXRpb24sICRSXjIkLCBpcyBhIG1lYXN1cmUgb2YgaG93IHdlbGwgdGhlIGluZGVwZW5kZW50IHZhcmlhYmxlKHMpIGV4cGxhaW4gdGhlIHZhcmlhdGlvbiBpbiB0aGUgZGVwZW5kZW50IHZhcmlhYmxlLg0KKiBUaGUgc3RhbmRhcmQgZXJyb3Igb2YgdGhlIHJlZ3Jlc3Npb24sICRzX2UkLCBpcyBhIG1lYXN1cmUgb2YgdGhlIHR5cGljYWwgZGlzdGFuY2UgYmV0d2VlbiB0aGUgb2JzZXJ2ZWQgZGF0YSBwb2ludHMgYW5kIHRoZSByZWdyZXNzaW9uIGxpbmUuDQoqIEEgaGlnaGVyIHZhbHVlIG9mICRSXjIkIGFuZCBhIGxvd2VyIHZhbHVlIG9mICRzX2UkIGluZGljYXRlIGEgYmV0dGVyIGZpdCBvZiB0aGUgbGluZWFyIHJlZ3Jlc3Npb24gbW9kZWwgdG8gdGhlIGRhdGEuDQoqIFRoZXNlIG1lYXN1cmVzIHNob3VsZCBiZSBpbnRlcnByZXRlZCBpbiBjb25qdW5jdGlvbiB3aXRoIG90aGVyIGZhY3RvcnMsIHN1Y2ggYXMgdGhlIG51bWJlciBvZiBvYnNlcnZhdGlvbnMgYW5kIHRoZSBwcmVzZW5jZSBvZiBvdXRsaWVycy4NCg0KIyMgUHJvbXB0DQoNCkFjdCBhcyBhIHByb2Zlc3NvciBvZiBlY29ub21ldHJpY3MuIFlvdSBhcmUgY3JlYXRpbmcgYSBoYW5kb3V0IHdoaWNoIHN1bW1hcml6ZXMgdGhlIHVzZSBvZiB0aGUgY29lZmZpY2llbnQgb2YgZGV0ZXJtaW5hdGlvbiBhbmQgc3RhbmRhcmQgZXJyb3Igb2YgdGhlIHJlZ3Jlc3Npb24gdG8gbWVhc3VyZSB0aGUgZml0IG9mIGEgbGluZWFyIHJlZ3Jlc3Npb24gbW9kZWwuIFN1bW1hcml6ZSB0aGUgbWFpbiBpZGVhcyBvZiB0aGlzIHRvcGljIGEgYnVsbGV0ZWQgbGlzdCB3aXRoIHRoZSBzZWN0aW9uczogMSkgT3ZlcnZpZXcsIDIpIFJlbGV2YW50IGZvcm11bGFzIGFuZCBFcXVhdGlvbnMsIGFuZCAzKSBFeGFtcGxlcyBVc2luZyBSLiBGb3JtYXQgdGhlIGhhbmRvdXQgdXNpbmcgbWFya2Rvd24gbGFuZ3VhZ2Ugd2l0aCBlcXVhdGlvbnMgdXNpbmcgTGFUZVggYW5kIHNlY3Rpb25zIHVzaW5nICMuDQoNCiMjIFJlc3BvbnNlIA0KDQojIyMgT3ZlcnZpZXcNCg0KVGhlIGNvZWZmaWNpZW50IG9mIGRldGVybWluYXRpb24sIGRlbm90ZWQgJFJeMiQsIGlzIGEgbWVhc3VyZSBvZiBob3cgd2VsbCB0aGUgaW5kZXBlbmRlbnQgdmFyaWFibGUocykgZXhwbGFpbiB0aGUgdmFyaWF0aW9uIGluIHRoZSBkZXBlbmRlbnQgdmFyaWFibGUuIEl0IGlzIGNhbGN1bGF0ZWQgYXMgdGhlIHNxdWFyZSBvZiB0aGUgY29ycmVsYXRpb24gY29lZmZpY2llbnQgYmV0d2VlbiB0aGUgZGVwZW5kZW50IGFuZCBpbmRlcGVuZGVudCB2YXJpYWJsZXMuIEEgdmFsdWUgb2YgJFJeMiQgY2xvc2UgdG8gMSBpbmRpY2F0ZXMgYSBzdHJvbmcgbGluZWFyIHJlbGF0aW9uc2hpcCBiZXR3ZWVuIHRoZSB2YXJpYWJsZXMsIHdoaWxlIGEgdmFsdWUgY2xvc2UgdG8gMCBpbmRpY2F0ZXMgYSB3ZWFrIHJlbGF0aW9uc2hpcC4NCg0KVGhlIHN0YW5kYXJkIGVycm9yIG9mIHRoZSByZWdyZXNzaW9uLCBkZW5vdGVkICRzX2UkLCBpcyBhIG1lYXN1cmUgb2YgdGhlIHR5cGljYWwgZGlzdGFuY2UgYmV0d2VlbiB0aGUgb2JzZXJ2ZWQgZGF0YSBwb2ludHMgYW5kIHRoZSByZWdyZXNzaW9uIGxpbmUuIEEgbG93ZXIgdmFsdWUgb2YgJHNfZSQgaW5kaWNhdGVzIGEgYmV0dGVyIGZpdCBvZiB0aGUgcmVncmVzc2lvbiBsaW5lIHRvIHRoZSBkYXRhLg0KDQojIyMgUmVsZXZhbnQgRGVmaW5pdGlvbnMsIEZvcm11bGFzLCBhbmQgRXF1YXRpb25zDQoqIEV4cGxhaW5lZCBTdW0gb2YgU3F1YXJlcyAoRVNTKTogVGhlIHN1bSBvZiBzcXVhcmVkIGRpZmZlcmVuY2VzIGZyb20gdGhlIHByZWRpY3RlZCB2YWx1ZSBvZiBZICgkXGhhdHt5X2l9JCkgYW5kIHRvIGF2ZXJhZ2UgdmFsdWUgb2YgWSAoJFxiYXJ7eX0kKS4gDQoqIFRvdGFsIFN1bSBvZiBTcXVhcmVzIChUU1MpOiBUaGUgc3VtIG9mIHNxdWFyZWQgZGlmZmVyZW5jZXMgZnJvbSB0aGUgYWN0dWFsIHZhbHVlIG9mIFkgKCR5X2kkKSBhbmQgdGhlIGF2ZXJhZ2UgdmFsdWUgb2YgWSAoJFxiYXJ7eX0kKS4gDQoqIFN1bSBvZiBTcXVhcmVkIFJlc2lkdWFscyAoU1NSKTogVGhlIHN1bSBvZiBzcXVhcmVkIGRpZmZlcmVuY2VzIG9mIHRoZSBhY3R1YWwgdmFsdWUgb2YgWSAoJHlfaSQpIGFuZCB0aGUgcHJlZGljdGVkIHZhbHVlIG9mIFkgKCRcaGF0e3lfaX0kKS4gDQoqIFRoZSBDb2VmZmljaWVudCBvZiBEZXRlcm1pbmF0aW9uICgkUl4yJCk6IHRoZSBwZXJjZW50IG9mIHRoZSB0b3RhbCByZXNpZHVhbHMgZXhwbGFpbmVkIGJ5IHRoZSBtb2RlbC4NCiANCiQkUl4yID0gXGZyYWN7RVNTfXtUU1N9ID1cZGZyYWN7XHN1bV9pIChcaGF0e3l9X2kgLSBcYmFye3l9KV4yfXtcc3VtX2kgKHlfaSAtIFxiYXJ7eX0pXjJ9ID0gMS0gXGZyYWN7U1NSfXtUU1N9JCQNCg0KKiBUaGUgU3RhbmRhcmQgRXJyb3Igb2YgdGhlIFJlZ3Jlc3Npb24gKFNFUik6IHRoZSBzdGFuZGFyZCBkZXZpYXRpb24gb2YgdGhlIHRoZSByZXNpZHVhbCBlcnJvci4gDQoNCiQkU0VSID0gXHNxcnR7XGRmcmFje1xzdW1faSAoeV9pIC0gXGhhdHt5fV9pKV4yfXtuIC0gMn19ID0gXGZyYWN7U1NSfXtuLTJ9JCQNCg0KIyMjIEV4YW1wbGVzIFVzaW5nIFINCg0KYGBgIHtyfQ0KIyBMb2FkIHRoZSBgZGF0YXNldHNgIHBhY2thZ2UNCmxpYnJhcnkoZGF0YXNldHMpDQoNCiMgRml0IGEgbGluZWFyIHJlZ3Jlc3Npb24gbW9kZWwgdG8gdGhlIGBtdGNhcnNgIGRhdGFzZXQNCmZpdCA8LSBsbShtcGcgfiBocCwgZGF0YSA9IG10Y2FycykNCg0KIyBDYWxjdWxhdGUgdGhlIGNvZWZmaWNpZW50IG9mIGRldGVybWluYXRpb24NCihSMiA8LSBzdW1tYXJ5KGZpdCkkci5zcXVhcmVkKQ0KDQojIENhbGN1bGF0ZSB0aGUgc3RhbmRhcmQgZXJyb3Igb2YgdGhlIHJlZ3Jlc3Npb24NCihTRVIgPC0gc3VtbWFyeShmaXQpJHNpZ21hKQ0KYGBgDQoNCiMjIyBJbnRlcnByZXRhdGlvbg0KDQoqIEEgdmFsdWUgb2YgJFJeMiQgY2xvc2UgdG8gMSBpbmRpY2F0ZXMgdGhhdCB0aGUgaW5kZXBlbmRlbnQgdmFyaWFibGUocykgZXhwbGFpbiBhIGxhcmdlIHByb3BvcnRpb24gb2YgdGhlIHZhcmlhdGlvbiBpbiB0aGUgZGVwZW5kZW50IHZhcmlhYmxlLg0KKiBBIHZhbHVlIG9mICRzX2UkIGNsb3NlIHRvIDAgaW5kaWNhdGVzIHRoYXQgdGhlIHJlZ3Jlc3Npb24gbGluZSBmaXRzIHRoZSBkYXRhIGNsb3NlbHkuDQoNCkluIGdlbmVyYWwsIGEgaGlnaGVyIHZhbHVlIG9mICRSXjIkIGFuZCBhIGxvd2VyIHZhbHVlIG9mICRzX2UkIGluZGljYXRlIGEgYmV0dGVyIGZpdCBvZiB0aGUgbGluZWFyIHJlZ3Jlc3Npb24gbW9kZWwgdG8gdGhlIGRhdGEuIEhvd2V2ZXIsIGl0IGlzIGltcG9ydGFudCB0byBub3RlIHRoYXQgdGhlc2UgbWVhc3VyZXMgYXJlIG9ubHkgb25lIHdheSB0byBhc3Nlc3MgdGhlIGZpdCBvZiBhIG1vZGVsLiBPdGhlciBmYWN0b3JzLCBzdWNoIGFzIHRoZSBudW1iZXIgb2Ygb2JzZXJ2YXRpb25zIGFuZCB0aGUgcHJlc2VuY2Ugb2Ygb3V0bGllcnMsIHNob3VsZCBhbHNvIGJlIGNvbnNpZGVyZWQuDQoNCg==