(No image at path
c:/cloud/project/math.gif)
Impresion de resultados
## [1] 3
## [1] 2
Operaciones aritmeticas
## [1] 5
## [1] 1
multiplicacion <- x*y
multiplicacion
## [1] 6
## [1] 1.5
division_entera <- x%/%y
division_entera
## [1] 1
## [1] 1
## [1] 9
Funciones Matematicas
raiz_cuadrada <- sqrt(x)
raiz_cuadrada
## [1] 1.732051
raiz_cubica <- x^(1/3)
raiz_cubica
## [1] 1.44225
exponencial <-exp(1)
exponencial
## [1] 2.718282
absoluto <- abs(x)
absoluto
## [1] 3
## [1] 1
redondeo_arriba <- ceiling(division)
redondeo_arriba
## [1] 2
redondeo_abajo <- floor(division)
redondeo_abajo
## [1] 1
truncar <- trunc(division)
truncar
## [1] 1
Constantes
## [1] 3.141593
radio <- 5
area_circulo <- pi*radio^2
area_circulo
## [1] 78.53982
Vectores
## [1] 1 2 3 4 5
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
## [19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
## [37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
## [55] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
## [73] 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
## [91] 91 92 93 94 95 96 97 98 99 100
c <- c("pera", "mango", "manzana", "kiwi", "fresa")
longitud <- length(a)
longitud
## [1] 5
promedio <-mean(a)
promedio
## [1] 3
resumen <- summary(a)
resumen
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1 2 3 3 4 5
orden_ascendente <- sort(a)
orden_ascendente
## [1] 1 2 3 4 5
orden_descendente <- sort(a, decreasing = TRUE)
orden_descendente
## [1] 5 4 3 2 1
## [1] 1 2 3 4 5
suma_vectores <- a+d
suma_vectores
## [1] 2 4 6 8 10
Graficar
plot(a,d, main= "ventas por Mes", xlab="Mes", ylab="Millones USD")

## function (x, y, ...)
## UseMethod("plot")
## <bytecode: 0x5578a842de20>
## <environment: namespace:base>
LS0tCnRpdGxlOiAiQ29tYW5kb3MgQsOhc2ljb3MiCmF1dGhvcjogIkxhemFybyBSb2RyaWd1ZXogQTAwODM4MTcxIgpkYXRlOiAiMjAyMy0wOS0xMiIKb3V0cHV0OiAKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiBUUlVFCiAgICB0b2NfZmxvYXQ6IFRSVUUKICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUKICAgIHRoZW1lOiAic2FuZHN0b25lIgogICAgaGlnaGxpZ2h0OiAidGFuZ28iCi0tLQoKCiFbXShjOi9jbG91ZC9wcm9qZWN0L21hdGguZ2lmKQooTm8gaW1hZ2UgYXQgcGF0aCBjOi9jbG91ZC9wcm9qZWN0L21hdGguZ2lmKQoKIyMjIEFzaWduYWNpb24gZGUgVmFyaWFibGVzCgpgYGB7cn0KIHggPC0gMwogeSA8LSAyCmBgYAoKIyMjIEltcHJlc2lvbiBkZSByZXN1bHRhZG9zCgpgYGB7cn0KIHgKIHkKYGBgCgojIyMgT3BlcmFjaW9uZXMgYXJpdG1ldGljYXMKCmBgYHtyfQpzdW1hIDwtIHgreQpzdW1hCgpyZXN0YSA8LSB4LXkKcmVzdGEKCm11bHRpcGxpY2FjaW9uIDwtIHgqeQptdWx0aXBsaWNhY2lvbgoKZGl2aXNpb24gPC0geC95CmRpdmlzaW9uCgpkaXZpc2lvbl9lbnRlcmEgPC0geCUvJXkKZGl2aXNpb25fZW50ZXJhCgpyZXNpZHVvIDwtIHglJXkKcmVzaWR1bwoKcG90ZW5jaWEgPC0geF55CnBvdGVuY2lhCmBgYAoKIyMjIEZ1bmNpb25lcyBNYXRlbWF0aWNhcwoKYGBge3J9CnJhaXpfY3VhZHJhZGEgPC0gc3FydCh4KQpyYWl6X2N1YWRyYWRhCgpyYWl6X2N1YmljYSA8LSB4XigxLzMpCnJhaXpfY3ViaWNhCgpleHBvbmVuY2lhbCA8LWV4cCgxKQpleHBvbmVuY2lhbAoKYWJzb2x1dG8gPC0gYWJzKHgpCmFic29sdXRvCgpzaWdubyA8LSBzaWduKHgpCnNpZ25vCgpyZWRvbmRlb19hcnJpYmEgPC0gY2VpbGluZyhkaXZpc2lvbikKcmVkb25kZW9fYXJyaWJhCgpyZWRvbmRlb19hYmFqbyA8LSBmbG9vcihkaXZpc2lvbikKcmVkb25kZW9fYWJham8KCnRydW5jYXIgPC0gdHJ1bmMoZGl2aXNpb24pCnRydW5jYXIKYGBgCgojIyMgQ29uc3RhbnRlcwoKYGBge3J9CnBpCnJhZGlvIDwtIDUKYXJlYV9jaXJjdWxvIDwtIHBpKnJhZGlvXjIKYXJlYV9jaXJjdWxvCmBgYAoKIyMjIFZlY3RvcmVzCgpgYGB7cn0KYSA8LSBjKDEsMiwzLDQsNSkKYQoKYiA8LSAoMToxMDApCmIKCmMgPC0gYygicGVyYSIsICJtYW5nbyIsICJtYW56YW5hIiwgImtpd2kiLCAiZnJlc2EiKQoKbG9uZ2l0dWQgPC0gbGVuZ3RoKGEpCmxvbmdpdHVkCgpwcm9tZWRpbyA8LW1lYW4oYSkKcHJvbWVkaW8KCnJlc3VtZW4gPC0gc3VtbWFyeShhKQpyZXN1bWVuCgpvcmRlbl9hc2NlbmRlbnRlIDwtIHNvcnQoYSkKb3JkZW5fYXNjZW5kZW50ZQoKb3JkZW5fZGVzY2VuZGVudGUgPC0gc29ydChhLCBkZWNyZWFzaW5nID0gVFJVRSkKb3JkZW5fZGVzY2VuZGVudGUKCmQgPC0gYygxLDIsMyw0LDUpCmQKc3VtYV92ZWN0b3JlcyA8LSBhK2QKc3VtYV92ZWN0b3JlcwoKYGBgCgoKIyMjIEdyYWZpY2FyCgpgYGB7cn0KcGxvdChhLGQsIG1haW49ICJ2ZW50YXMgcG9yIE1lcyIsIHhsYWI9Ik1lcyIsIHlsYWI9Ik1pbGxvbmVzIFVTRCIpCnBsb3QKYGBgCgo=