Domingo 24 de noviembre

Alteracion gastrica vs sexo

library(survey)
## 
## Attaching package: 'survey'
## 
## The following object(s) are masked from 'package:graphics':
## 
##     dotchart
options(OutDec = ",")
library(car)
## Loading required package: MASS
## Loading required package: nnet

load("~/Dropbox/odontologia/maestria licet/octubre 2013/datos_licet_10112013.RData")
summary(diseniopost1$variables[, c(432, 447)])
##  Sexo.rec  AlterGastrica.rec
##  1-F:603   1-No :1062       
##  2-M:551   2-Yes:  63       
##            NA's :  29



tabla.alter1 <- svyby(~AlterGastrica.rec, ~Sexo.rec, diseniopost1, svymean, 
    na.rm = TRUE)
round(ftable(tabla.alter1) * 100, 1)
##                   AlterGastrica.rec1-No AlterGastrica.rec2-Yes
## Sexo.rec                                                      
## 1-F      svymean                   95,5                    4,5
##          SE                         0,8                    0,8
## 2-M      svymean                   93,4                    6,6
##          SE                         1,3                    1,3
round(confint(tabla.alter1) * 100, 1)
##                            2,5 % 97,5 %
## 1-F:AlterGastrica.rec1-No   93,9   97,2
## 2-M:AlterGastrica.rec1-No   90,8   96,0
## 1-F:AlterGastrica.rec2-Yes   2,8    6,1
## 2-M:AlterGastrica.rec2-Yes   4,0    9,2

svyby(~AlterGastrica.rec, ~Sexo.rec, diseniopost1, svytotal, na.rm = TRUE)
##     Sexo.rec AlterGastrica.rec1-No AlterGastrica.rec2-Yes
## 1-F      1-F                 12789                  599,1
## 2-M      2-M                 13418                  947,3
##     se.AlterGastrica.rec1-No se.AlterGastrica.rec2-Yes
## 1-F                    140,3                     112,3
## 2-M                    237,9                     189,2
svychisq(~AlterGastrica.rec + Sexo.rec, diseniopost1, statistic = "adjWald")
## 
##  Design-based Wald test of association
## 
## data:  svychisq(~AlterGastrica.rec + Sexo.rec, diseniopost1, statistic = "adjWald") 
## F = 1,718, ndf = 1, ddf = 39, p-value = 0,1976

summary(svyglm(AlterGastrica.rec ~ Sexo.rec, diseniopost1, family = quasibinomial()))
## 
## Call:
## svyglm(formula = AlterGastrica.rec ~ Sexo.rec, diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   -3,061      0,197  -15,57   <2e-16 ***
## Sexo.rec2-M    0,410      0,301    1,36     0,18    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0,9845)
## 
## Number of Fisher Scoring iterations: 5

tabla.alter2 <- (svytable(~AlterGastrica.rec + Sexo.rec, diseniopost1, round = TRUE))
tabla.alter2
##                  Sexo.rec
## AlterGastrica.rec   1-F   2-M
##             1-No  12789 13418
##             2-Yes   599   947
fourfoldplot(svytable(~AlterGastrica.rec + Sexo.rec, diseniopost1, round = TRUE), 
    conf.level = 0.99, main = "Asociación  entre Alteracion gastrica y sexo", 
    col = c(2, 4))

plot of chunk unnamed-chunk-1


tabla.alter3 <- svytable(~Erosinbord + Sexo.rec + AlterGastrica.rec, diseniopost1, 
    round = TRUE)

ftable(tabla.alter3)
##                     AlterGastrica.rec  1-No 2-Yes
## Erosinbord Sexo.rec                              
## 0          1-F                        12292   599
##            2-M                        12231   887
## 1          1-F                          314     0
##            2-M                          892     0
fourfoldplot(tabla.alter3, conf.level = 0.99, main = "Asociación  entre Erosion, Alteracion gastrica y sexo", 
    col = c(2, 4))

plot of chunk unnamed-chunk-1