Part I.

#First dataset "airquality"
#load the datasets
library(datasets)
airquality
##     Ozone Solar.R Wind Temp Month Day
## 1      41     190  7.4   67     5   1
## 2      36     118  8.0   72     5   2
## 3      12     149 12.6   74     5   3
## 4      18     313 11.5   62     5   4
## 5      NA      NA 14.3   56     5   5
## 6      28      NA 14.9   66     5   6
## 7      23     299  8.6   65     5   7
## 8      19      99 13.8   59     5   8
## 9       8      19 20.1   61     5   9
## 10     NA     194  8.6   69     5  10
## 11      7      NA  6.9   74     5  11
## 12     16     256  9.7   69     5  12
## 13     11     290  9.2   66     5  13
## 14     14     274 10.9   68     5  14
## 15     18      65 13.2   58     5  15
## 16     14     334 11.5   64     5  16
## 17     34     307 12.0   66     5  17
## 18      6      78 18.4   57     5  18
## 19     30     322 11.5   68     5  19
## 20     11      44  9.7   62     5  20
## 21      1       8  9.7   59     5  21
## 22     11     320 16.6   73     5  22
## 23      4      25  9.7   61     5  23
## 24     32      92 12.0   61     5  24
## 25     NA      66 16.6   57     5  25
## 26     NA     266 14.9   58     5  26
## 27     NA      NA  8.0   57     5  27
## 28     23      13 12.0   67     5  28
## 29     45     252 14.9   81     5  29
## 30    115     223  5.7   79     5  30
## 31     37     279  7.4   76     5  31
## 32     NA     286  8.6   78     6   1
## 33     NA     287  9.7   74     6   2
## 34     NA     242 16.1   67     6   3
## 35     NA     186  9.2   84     6   4
## 36     NA     220  8.6   85     6   5
## 37     NA     264 14.3   79     6   6
## 38     29     127  9.7   82     6   7
## 39     NA     273  6.9   87     6   8
## 40     71     291 13.8   90     6   9
## 41     39     323 11.5   87     6  10
## 42     NA     259 10.9   93     6  11
## 43     NA     250  9.2   92     6  12
## 44     23     148  8.0   82     6  13
## 45     NA     332 13.8   80     6  14
## 46     NA     322 11.5   79     6  15
## 47     21     191 14.9   77     6  16
## 48     37     284 20.7   72     6  17
## 49     20      37  9.2   65     6  18
## 50     12     120 11.5   73     6  19
## 51     13     137 10.3   76     6  20
## 52     NA     150  6.3   77     6  21
## 53     NA      59  1.7   76     6  22
## 54     NA      91  4.6   76     6  23
## 55     NA     250  6.3   76     6  24
## 56     NA     135  8.0   75     6  25
## 57     NA     127  8.0   78     6  26
## 58     NA      47 10.3   73     6  27
## 59     NA      98 11.5   80     6  28
## 60     NA      31 14.9   77     6  29
## 61     NA     138  8.0   83     6  30
## 62    135     269  4.1   84     7   1
## 63     49     248  9.2   85     7   2
## 64     32     236  9.2   81     7   3
## 65     NA     101 10.9   84     7   4
## 66     64     175  4.6   83     7   5
## 67     40     314 10.9   83     7   6
## 68     77     276  5.1   88     7   7
## 69     97     267  6.3   92     7   8
## 70     97     272  5.7   92     7   9
## 71     85     175  7.4   89     7  10
## 72     NA     139  8.6   82     7  11
## 73     10     264 14.3   73     7  12
## 74     27     175 14.9   81     7  13
## 75     NA     291 14.9   91     7  14
## 76      7      48 14.3   80     7  15
## 77     48     260  6.9   81     7  16
## 78     35     274 10.3   82     7  17
## 79     61     285  6.3   84     7  18
## 80     79     187  5.1   87     7  19
## 81     63     220 11.5   85     7  20
## 82     16       7  6.9   74     7  21
## 83     NA     258  9.7   81     7  22
## 84     NA     295 11.5   82     7  23
## 85     80     294  8.6   86     7  24
## 86    108     223  8.0   85     7  25
## 87     20      81  8.6   82     7  26
## 88     52      82 12.0   86     7  27
## 89     82     213  7.4   88     7  28
## 90     50     275  7.4   86     7  29
## 91     64     253  7.4   83     7  30
## 92     59     254  9.2   81     7  31
## 93     39      83  6.9   81     8   1
## 94      9      24 13.8   81     8   2
## 95     16      77  7.4   82     8   3
## 96     78      NA  6.9   86     8   4
## 97     35      NA  7.4   85     8   5
## 98     66      NA  4.6   87     8   6
## 99    122     255  4.0   89     8   7
## 100    89     229 10.3   90     8   8
## 101   110     207  8.0   90     8   9
## 102    NA     222  8.6   92     8  10
## 103    NA     137 11.5   86     8  11
## 104    44     192 11.5   86     8  12
## 105    28     273 11.5   82     8  13
## 106    65     157  9.7   80     8  14
## 107    NA      64 11.5   79     8  15
## 108    22      71 10.3   77     8  16
## 109    59      51  6.3   79     8  17
## 110    23     115  7.4   76     8  18
## 111    31     244 10.9   78     8  19
## 112    44     190 10.3   78     8  20
## 113    21     259 15.5   77     8  21
## 114     9      36 14.3   72     8  22
## 115    NA     255 12.6   75     8  23
## 116    45     212  9.7   79     8  24
## 117   168     238  3.4   81     8  25
## 118    73     215  8.0   86     8  26
## 119    NA     153  5.7   88     8  27
## 120    76     203  9.7   97     8  28
## 121   118     225  2.3   94     8  29
## 122    84     237  6.3   96     8  30
## 123    85     188  6.3   94     8  31
## 124    96     167  6.9   91     9   1
## 125    78     197  5.1   92     9   2
## 126    73     183  2.8   93     9   3
## 127    91     189  4.6   93     9   4
## 128    47      95  7.4   87     9   5
## 129    32      92 15.5   84     9   6
## 130    20     252 10.9   80     9   7
## 131    23     220 10.3   78     9   8
## 132    21     230 10.9   75     9   9
## 133    24     259  9.7   73     9  10
## 134    44     236 14.9   81     9  11
## 135    21     259 15.5   76     9  12
## 136    28     238  6.3   77     9  13
## 137     9      24 10.9   71     9  14
## 138    13     112 11.5   71     9  15
## 139    46     237  6.9   78     9  16
## 140    18     224 13.8   67     9  17
## 141    13      27 10.3   76     9  18
## 142    24     238 10.3   68     9  19
## 143    16     201  8.0   82     9  20
## 144    13     238 12.6   64     9  21
## 145    23      14  9.2   71     9  22
## 146    36     139 10.3   81     9  23
## 147     7      49 10.3   69     9  24
## 148    14      20 16.6   63     9  25
## 149    30     193  6.9   70     9  26
## 150    NA     145 13.2   77     9  27
## 151    14     191 14.3   75     9  28
## 152    18     131  8.0   76     9  29
## 153    20     223 11.5   68     9  30
#Second dateset 
chickwts
##    weight      feed
## 1     179 horsebean
## 2     160 horsebean
## 3     136 horsebean
## 4     227 horsebean
## 5     217 horsebean
## 6     168 horsebean
## 7     108 horsebean
## 8     124 horsebean
## 9     143 horsebean
## 10    140 horsebean
## 11    309   linseed
## 12    229   linseed
## 13    181   linseed
## 14    141   linseed
## 15    260   linseed
## 16    203   linseed
## 17    148   linseed
## 18    169   linseed
## 19    213   linseed
## 20    257   linseed
## 21    244   linseed
## 22    271   linseed
## 23    243   soybean
## 24    230   soybean
## 25    248   soybean
## 26    327   soybean
## 27    329   soybean
## 28    250   soybean
## 29    193   soybean
## 30    271   soybean
## 31    316   soybean
## 32    267   soybean
## 33    199   soybean
## 34    171   soybean
## 35    158   soybean
## 36    248   soybean
## 37    423 sunflower
## 38    340 sunflower
## 39    392 sunflower
## 40    339 sunflower
## 41    341 sunflower
## 42    226 sunflower
## 43    320 sunflower
## 44    295 sunflower
## 45    334 sunflower
## 46    322 sunflower
## 47    297 sunflower
## 48    318 sunflower
## 49    325  meatmeal
## 50    257  meatmeal
## 51    303  meatmeal
## 52    315  meatmeal
## 53    380  meatmeal
## 54    153  meatmeal
## 55    263  meatmeal
## 56    242  meatmeal
## 57    206  meatmeal
## 58    344  meatmeal
## 59    258  meatmeal
## 60    368    casein
## 61    390    casein
## 62    379    casein
## 63    260    casein
## 64    404    casein
## 65    318    casein
## 66    352    casein
## 67    359    casein
## 68    216    casein
## 69    222    casein
## 70    283    casein
## 71    332    casein

Description of Datasets

1. Airquality

This dataset records daily air quality measurements in New York, May to September 1973. Furthermore, this dataset contains 153 observations(m=153) and 6 variables(n=6).

#get more information about the dataset
help(airquality)
  • Ozone: numeric Ozone (ppb)

  • Solar. R: numeric Solar R (lang)

  • Wind: numeric Wind (mph)

  • Temp: numeric Temperature (degrees F)

  • Month: numeric Month( 1-12)

  • Day: numeric Day of month (1-31)

#check the structure of airquality
str(airquality)
## 'data.frame':    153 obs. of  6 variables:
##  $ Ozone  : int  41 36 12 18 NA 28 23 19 8 NA ...
##  $ Solar.R: int  190 118 149 313 NA NA 299 99 19 194 ...
##  $ Wind   : num  7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
##  $ Temp   : int  67 72 74 62 56 66 65 59 61 69 ...
##  $ Month  : int  5 5 5 5 5 5 5 5 5 5 ...
##  $ Day    : int  1 2 3 4 5 6 7 8 9 10 ...
#check the missing values of airquality
Ozone_na <- any(is.na(airquality$Ozone))
Ozone_na
## [1] TRUE
Solar.R_na <- any(is.na(airquality$Solar.R))
Solar.R_na 
## [1] TRUE
Wind_na <- any(is.na(airquality$Wind))
Wind_na 
## [1] FALSE
Temp_na <- any(is.na(airquality$Temp))
Temp_na
## [1] FALSE
Month_na <- any(is.na(airquality$Month))
Month_na
## [1] FALSE
Day_na <- any(is.na(airquality$Day))
Day_na
## [1] FALSE

Based on the findings, both Ozone and Solar.R have missing values. This highlights the need to implement techniques to handle these missing values for further analysis.

#check the summary statistics for each variable
summary(airquality$Ozone)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    1.00   18.00   31.50   42.13   63.25  168.00      37
summary(airquality$Solar.R)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##     7.0   115.8   205.0   185.9   258.8   334.0       7
summary(airquality$Wind)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.700   7.400   9.700   9.958  11.500  20.700
summary(airquality$Temp)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   56.00   72.00   79.00   77.88   85.00   97.00
#install.packages("TSstudio", dependencies=TRUE)
#install.packages("tidyverse")
library(TSstudio)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.0     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.3     ✔ tibble    3.1.8
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the ]8;;http://conflicted.r-lib.org/conflicted package]8;; to force all conflicts to become errors
# Add a Date column to the airquality dataset
airquality$Date <- as.Date(with(airquality, paste(1973, Month, Day, sep="-")), "%Y-%m-%d")
# Plot the Ozone time series 
ts_plot(airquality[,c("Date", "Ozone")], title = "Ozone Levels Over Time")
# Plot the Solar.R time series 
ts_plot(airquality[, c("Date", "Solar.R")], title = "Solar.R Levels Over Time")
#Plot the Wind time series
ts_plot(airquality[, c("Date", "Wind")], title = "Wind Levels Over Time")
#Plot the Temp time series
ts_plot(airquality[, c("Date", "Temp")], title = "Temp Levels Over Time")

Conclusion:

Based on the graphs, airquality is a time series dataset. As the description in both ’Month” and ’Day” columns indicates sequential dates from May to September with daily observations.

2. Chickwts

This dataset with 71 observations and 2 variables. To be more specific, it capture the weights of chicken fed with different types of feed after six weeks.

#get more information about chickwts
help(chickwts)
  • weight: A numeric variable giving the chick weight

  • feed: a factor giving the feed type

#check the structure of airquality
str(chickwts)
## 'data.frame':    71 obs. of  2 variables:
##  $ weight: num  179 160 136 227 217 168 108 124 143 140 ...
##  $ feed  : Factor w/ 6 levels "casein","horsebean",..: 2 2 2 2 2 2 2 2 2 2 ...
#No missing value
any(is.na(chickwts))
## [1] FALSE
#Check the unique feed types and their counts
table(chickwts$feed)
## 
##    casein horsebean   linseed  meatmeal   soybean sunflower 
##        12        10        12        11        14        12
#compute summary statistics for each feed type
summary_stats <- chickwts %>%
  group_by(feed) %>%
  summarise(
    count = n(),
    mean_weight = mean(weight),
    median_weight = median(weight),
    min_weight = min(weight),
    max_weight = max(weight),
    sd_weight = sd(weight)
  )

print(summary_stats)
## # A tibble: 6 × 7
##   feed      count mean_weight median_weight min_weight max_weight sd_weight
##   <fct>     <int>       <dbl>         <dbl>      <dbl>      <dbl>     <dbl>
## 1 casein       12        324.          342         216        404      64.4
## 2 horsebean    10        160.          152.        108        227      38.6
## 3 linseed      12        219.          221         141        309      52.2
## 4 meatmeal     11        277.          263         153        380      64.9
## 5 soybean      14        246.          248         158        329      54.1
## 6 sunflower    12        329.          328         226        423      48.8
ggplot(chickwts, aes(x=weight)) +
  geom_histogram(binwidth=10, fill="skyblue", color="black", alpha=0.7) +
  facet_wrap(~feed) +
  theme_light() +
  labs(title="Histogram of Chicken Weights by Different Feed Type",
       y="Frequency",
       x="Weight") 

Conclusion:

The ‘chickwts’ dataset capture the snapshot of weights at a specific point of time (after 6 week). Thus, this dataset can be considered as a cross - sectional dataset.

Part II.

1.

  1. The general idea of the slope of a linear regression indicates the average change. Covariance measures the joint variability if y and x, and variance measures how much x changes. By taking the ratio, we get the average change in y for each unit change in x.

  2. Show in R

    airquality
    ##     Ozone Solar.R Wind Temp Month Day       Date
    ## 1      41     190  7.4   67     5   1 1973-05-01
    ## 2      36     118  8.0   72     5   2 1973-05-02
    ## 3      12     149 12.6   74     5   3 1973-05-03
    ## 4      18     313 11.5   62     5   4 1973-05-04
    ## 5      NA      NA 14.3   56     5   5 1973-05-05
    ## 6      28      NA 14.9   66     5   6 1973-05-06
    ## 7      23     299  8.6   65     5   7 1973-05-07
    ## 8      19      99 13.8   59     5   8 1973-05-08
    ## 9       8      19 20.1   61     5   9 1973-05-09
    ## 10     NA     194  8.6   69     5  10 1973-05-10
    ## 11      7      NA  6.9   74     5  11 1973-05-11
    ## 12     16     256  9.7   69     5  12 1973-05-12
    ## 13     11     290  9.2   66     5  13 1973-05-13
    ## 14     14     274 10.9   68     5  14 1973-05-14
    ## 15     18      65 13.2   58     5  15 1973-05-15
    ## 16     14     334 11.5   64     5  16 1973-05-16
    ## 17     34     307 12.0   66     5  17 1973-05-17
    ## 18      6      78 18.4   57     5  18 1973-05-18
    ## 19     30     322 11.5   68     5  19 1973-05-19
    ## 20     11      44  9.7   62     5  20 1973-05-20
    ## 21      1       8  9.7   59     5  21 1973-05-21
    ## 22     11     320 16.6   73     5  22 1973-05-22
    ## 23      4      25  9.7   61     5  23 1973-05-23
    ## 24     32      92 12.0   61     5  24 1973-05-24
    ## 25     NA      66 16.6   57     5  25 1973-05-25
    ## 26     NA     266 14.9   58     5  26 1973-05-26
    ## 27     NA      NA  8.0   57     5  27 1973-05-27
    ## 28     23      13 12.0   67     5  28 1973-05-28
    ## 29     45     252 14.9   81     5  29 1973-05-29
    ## 30    115     223  5.7   79     5  30 1973-05-30
    ## 31     37     279  7.4   76     5  31 1973-05-31
    ## 32     NA     286  8.6   78     6   1 1973-06-01
    ## 33     NA     287  9.7   74     6   2 1973-06-02
    ## 34     NA     242 16.1   67     6   3 1973-06-03
    ## 35     NA     186  9.2   84     6   4 1973-06-04
    ## 36     NA     220  8.6   85     6   5 1973-06-05
    ## 37     NA     264 14.3   79     6   6 1973-06-06
    ## 38     29     127  9.7   82     6   7 1973-06-07
    ## 39     NA     273  6.9   87     6   8 1973-06-08
    ## 40     71     291 13.8   90     6   9 1973-06-09
    ## 41     39     323 11.5   87     6  10 1973-06-10
    ## 42     NA     259 10.9   93     6  11 1973-06-11
    ## 43     NA     250  9.2   92     6  12 1973-06-12
    ## 44     23     148  8.0   82     6  13 1973-06-13
    ## 45     NA     332 13.8   80     6  14 1973-06-14
    ## 46     NA     322 11.5   79     6  15 1973-06-15
    ## 47     21     191 14.9   77     6  16 1973-06-16
    ## 48     37     284 20.7   72     6  17 1973-06-17
    ## 49     20      37  9.2   65     6  18 1973-06-18
    ## 50     12     120 11.5   73     6  19 1973-06-19
    ## 51     13     137 10.3   76     6  20 1973-06-20
    ## 52     NA     150  6.3   77     6  21 1973-06-21
    ## 53     NA      59  1.7   76     6  22 1973-06-22
    ## 54     NA      91  4.6   76     6  23 1973-06-23
    ## 55     NA     250  6.3   76     6  24 1973-06-24
    ## 56     NA     135  8.0   75     6  25 1973-06-25
    ## 57     NA     127  8.0   78     6  26 1973-06-26
    ## 58     NA      47 10.3   73     6  27 1973-06-27
    ## 59     NA      98 11.5   80     6  28 1973-06-28
    ## 60     NA      31 14.9   77     6  29 1973-06-29
    ## 61     NA     138  8.0   83     6  30 1973-06-30
    ## 62    135     269  4.1   84     7   1 1973-07-01
    ## 63     49     248  9.2   85     7   2 1973-07-02
    ## 64     32     236  9.2   81     7   3 1973-07-03
    ## 65     NA     101 10.9   84     7   4 1973-07-04
    ## 66     64     175  4.6   83     7   5 1973-07-05
    ## 67     40     314 10.9   83     7   6 1973-07-06
    ## 68     77     276  5.1   88     7   7 1973-07-07
    ## 69     97     267  6.3   92     7   8 1973-07-08
    ## 70     97     272  5.7   92     7   9 1973-07-09
    ## 71     85     175  7.4   89     7  10 1973-07-10
    ## 72     NA     139  8.6   82     7  11 1973-07-11
    ## 73     10     264 14.3   73     7  12 1973-07-12
    ## 74     27     175 14.9   81     7  13 1973-07-13
    ## 75     NA     291 14.9   91     7  14 1973-07-14
    ## 76      7      48 14.3   80     7  15 1973-07-15
    ## 77     48     260  6.9   81     7  16 1973-07-16
    ## 78     35     274 10.3   82     7  17 1973-07-17
    ## 79     61     285  6.3   84     7  18 1973-07-18
    ## 80     79     187  5.1   87     7  19 1973-07-19
    ## 81     63     220 11.5   85     7  20 1973-07-20
    ## 82     16       7  6.9   74     7  21 1973-07-21
    ## 83     NA     258  9.7   81     7  22 1973-07-22
    ## 84     NA     295 11.5   82     7  23 1973-07-23
    ## 85     80     294  8.6   86     7  24 1973-07-24
    ## 86    108     223  8.0   85     7  25 1973-07-25
    ## 87     20      81  8.6   82     7  26 1973-07-26
    ## 88     52      82 12.0   86     7  27 1973-07-27
    ## 89     82     213  7.4   88     7  28 1973-07-28
    ## 90     50     275  7.4   86     7  29 1973-07-29
    ## 91     64     253  7.4   83     7  30 1973-07-30
    ## 92     59     254  9.2   81     7  31 1973-07-31
    ## 93     39      83  6.9   81     8   1 1973-08-01
    ## 94      9      24 13.8   81     8   2 1973-08-02
    ## 95     16      77  7.4   82     8   3 1973-08-03
    ## 96     78      NA  6.9   86     8   4 1973-08-04
    ## 97     35      NA  7.4   85     8   5 1973-08-05
    ## 98     66      NA  4.6   87     8   6 1973-08-06
    ## 99    122     255  4.0   89     8   7 1973-08-07
    ## 100    89     229 10.3   90     8   8 1973-08-08
    ## 101   110     207  8.0   90     8   9 1973-08-09
    ## 102    NA     222  8.6   92     8  10 1973-08-10
    ## 103    NA     137 11.5   86     8  11 1973-08-11
    ## 104    44     192 11.5   86     8  12 1973-08-12
    ## 105    28     273 11.5   82     8  13 1973-08-13
    ## 106    65     157  9.7   80     8  14 1973-08-14
    ## 107    NA      64 11.5   79     8  15 1973-08-15
    ## 108    22      71 10.3   77     8  16 1973-08-16
    ## 109    59      51  6.3   79     8  17 1973-08-17
    ## 110    23     115  7.4   76     8  18 1973-08-18
    ## 111    31     244 10.9   78     8  19 1973-08-19
    ## 112    44     190 10.3   78     8  20 1973-08-20
    ## 113    21     259 15.5   77     8  21 1973-08-21
    ## 114     9      36 14.3   72     8  22 1973-08-22
    ## 115    NA     255 12.6   75     8  23 1973-08-23
    ## 116    45     212  9.7   79     8  24 1973-08-24
    ## 117   168     238  3.4   81     8  25 1973-08-25
    ## 118    73     215  8.0   86     8  26 1973-08-26
    ## 119    NA     153  5.7   88     8  27 1973-08-27
    ## 120    76     203  9.7   97     8  28 1973-08-28
    ## 121   118     225  2.3   94     8  29 1973-08-29
    ## 122    84     237  6.3   96     8  30 1973-08-30
    ## 123    85     188  6.3   94     8  31 1973-08-31
    ## 124    96     167  6.9   91     9   1 1973-09-01
    ## 125    78     197  5.1   92     9   2 1973-09-02
    ## 126    73     183  2.8   93     9   3 1973-09-03
    ## 127    91     189  4.6   93     9   4 1973-09-04
    ## 128    47      95  7.4   87     9   5 1973-09-05
    ## 129    32      92 15.5   84     9   6 1973-09-06
    ## 130    20     252 10.9   80     9   7 1973-09-07
    ## 131    23     220 10.3   78     9   8 1973-09-08
    ## 132    21     230 10.9   75     9   9 1973-09-09
    ## 133    24     259  9.7   73     9  10 1973-09-10
    ## 134    44     236 14.9   81     9  11 1973-09-11
    ## 135    21     259 15.5   76     9  12 1973-09-12
    ## 136    28     238  6.3   77     9  13 1973-09-13
    ## 137     9      24 10.9   71     9  14 1973-09-14
    ## 138    13     112 11.5   71     9  15 1973-09-15
    ## 139    46     237  6.9   78     9  16 1973-09-16
    ## 140    18     224 13.8   67     9  17 1973-09-17
    ## 141    13      27 10.3   76     9  18 1973-09-18
    ## 142    24     238 10.3   68     9  19 1973-09-19
    ## 143    16     201  8.0   82     9  20 1973-09-20
    ## 144    13     238 12.6   64     9  21 1973-09-21
    ## 145    23      14  9.2   71     9  22 1973-09-22
    ## 146    36     139 10.3   81     9  23 1973-09-23
    ## 147     7      49 10.3   69     9  24 1973-09-24
    ## 148    14      20 16.6   63     9  25 1973-09-25
    ## 149    30     193  6.9   70     9  26 1973-09-26
    ## 150    NA     145 13.2   77     9  27 1973-09-27
    ## 151    14     191 14.3   75     9  28 1973-09-28
    ## 152    18     131  8.0   76     9  29 1973-09-29
    ## 153    20     223 11.5   68     9  30 1973-09-30
    lm(data = airquality, Temp ~ Wind )
    ## 
    ## Call:
    ## lm(formula = Temp ~ Wind, data = airquality)
    ## 
    ## Coefficients:
    ## (Intercept)         Wind  
    ##       90.13        -1.23
    cov(airquality$Temp, airquality$Wind)/var(airquality$Wind)
    ## [1] -1.230479