Asignación de variables

x <- 3
y <- 2

Impresión de resultados

x
## [1] 3
y
## [1] 2

Impresión de resultados

suma <- x+y

resta <- x-y

multiplicacion <- x*y

division <- x/y

division_ent <- x%/%y

residuo <- x%%y

potencia <- x^y

Funciones matemáticas

raiz_cuadrada <- sqrt(x)

raiz_cubica <- x^(1/3)

exponencial <- exp(1)

absoluto <- abs(x)

signo <-sign(x)

redondeo_arriba <- ceiling(division)

redonde_abajo <- floor(division)

truncar <- trunc(division)

Constantes

pi
## [1] 3.141593
radio <- 5
area_circulo <- pi*radio^2

Vectores

a <- c(1,2,3,4,5)

b <- c(1:100)
b
##   [1]   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18
##  [19]  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36
##  [37]  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54
##  [55]  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72
##  [73]  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90
##  [91]  91  92  93  94  95  96  97  98  99 100
c <- c("pera","mango","manzana", "kiwi", "fresa")

longitud <- length(b)
longitud
## [1] 100
promedio <- mean(a)
promedio
## [1] 3
resumen <- summary(a)
resumen
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       1       2       3       3       4       5
orden_ascendente <- sort(a)
orden_ascendente
## [1] 1 2 3 4 5
orden_descendente <- sort(a, decreasing = TRUE)
orden_descendente
## [1] 5 4 3 2 1
d <- c(1,2,3,4,5)

suma_vectores <- a+d
suma_vectores
## [1]  2  4  6  8 10

Graficar

plot(a,d, main= "Ventas por mes", xlab= "Mes", ylab="Millones USD", type = "b")

#?plot 
LS0tCnRpdGxlOiAiQ29tYW5kb3MgYsOhc2ljb3MiCmF1dGhvcjogIkl2w6FuIEJhemFsZMO6YSBDYXZhem9zIEEwMDgzNzExNSIKZGF0ZTogIjIwMjMtMDktMTEiCm91dHB1dDoKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiBUUlVFCiAgICB0b2NfZmxvYXQ6IFRSVUUKICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUKICAgIHRoZW1lOiAiY2VydWxlYW4iCiAgICBoaWdobGlnaHQ6ICJ0YW5nbyIKLS0tCgohW10oL1VzZXJzL2l2YW5iYXphbGR1YS9Eb3dubG9hZHMvYW5pbWF0aW9uLWNhcnRvb25zLmdpZikKCiMgQXNpZ25hY2nDs24gZGUgdmFyaWFibGVzCgpgYGB7cn0KeCA8LSAzCnkgPC0gMgpgYGAKCiMgSW1wcmVzacOzbiBkZSByZXN1bHRhZG9zCgpgYGB7cn0KeAp5CmBgYAoKCiMgSW1wcmVzacOzbiBkZSByZXN1bHRhZG9zCmBgYHtyfQpzdW1hIDwtIHgreQoKcmVzdGEgPC0geC15CgptdWx0aXBsaWNhY2lvbiA8LSB4KnkKCmRpdmlzaW9uIDwtIHgveQoKZGl2aXNpb25fZW50IDwtIHglLyV5CgpyZXNpZHVvIDwtIHglJXkKCnBvdGVuY2lhIDwtIHheeQoKYGBgCgojIEZ1bmNpb25lcyBtYXRlbcOhdGljYXMKCmBgYHtyfQpyYWl6X2N1YWRyYWRhIDwtIHNxcnQoeCkKCnJhaXpfY3ViaWNhIDwtIHheKDEvMykKCmV4cG9uZW5jaWFsIDwtIGV4cCgxKQoKYWJzb2x1dG8gPC0gYWJzKHgpCgpzaWdubyA8LXNpZ24oeCkKCnJlZG9uZGVvX2FycmliYSA8LSBjZWlsaW5nKGRpdmlzaW9uKQoKcmVkb25kZV9hYmFqbyA8LSBmbG9vcihkaXZpc2lvbikKCnRydW5jYXIgPC0gdHJ1bmMoZGl2aXNpb24pCmBgYAoKIyBDb25zdGFudGVzCgpgYGB7cn0KcGkKcmFkaW8gPC0gNQphcmVhX2NpcmN1bG8gPC0gcGkqcmFkaW9eMgpgYGAKCiMgVmVjdG9yZXMKCmBgYHtyfQphIDwtIGMoMSwyLDMsNCw1KQoKYiA8LSBjKDE6MTAwKQpiCmMgPC0gYygicGVyYSIsIm1hbmdvIiwibWFuemFuYSIsICJraXdpIiwgImZyZXNhIikKCmxvbmdpdHVkIDwtIGxlbmd0aChiKQpsb25naXR1ZAoKcHJvbWVkaW8gPC0gbWVhbihhKQpwcm9tZWRpbwoKcmVzdW1lbiA8LSBzdW1tYXJ5KGEpCnJlc3VtZW4KCm9yZGVuX2FzY2VuZGVudGUgPC0gc29ydChhKQpvcmRlbl9hc2NlbmRlbnRlCgpvcmRlbl9kZXNjZW5kZW50ZSA8LSBzb3J0KGEsIGRlY3JlYXNpbmcgPSBUUlVFKQpvcmRlbl9kZXNjZW5kZW50ZQoKZCA8LSBjKDEsMiwzLDQsNSkKCnN1bWFfdmVjdG9yZXMgPC0gYStkCnN1bWFfdmVjdG9yZXMKYGBgCgoKIyBHcmFmaWNhcgoKYGBge3J9CnBsb3QoYSxkLCBtYWluPSAiVmVudGFzIHBvciBtZXMiLCB4bGFiPSAiTWVzIiwgeWxhYj0iTWlsbG9uZXMgVVNEIiwgdHlwZSA9ICJiIikKYGBgCgpgYGB7cn0KIz9wbG90IApgYGAK