
Impresión de resultados
## [1] 3
## [1] 2
Impresión de resultados
suma <- x+y
resta <- x-y
multiplicacion <- x*y
division <- x/y
division_ent <- x%/%y
residuo <- x%%y
potencia <- x^y
Funciones matemáticas
raiz_cuadrada <- sqrt(x)
raiz_cubica <- x^(1/3)
exponencial <- exp(1)
absoluto <- abs(x)
signo <-sign(x)
redondeo_arriba <- ceiling(division)
redonde_abajo <- floor(division)
truncar <- trunc(division)
Constantes
## [1] 3.141593
radio <- 5
area_circulo <- pi*radio^2
Vectores
a <- c(1,2,3,4,5)
b <- c(1:100)
b
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
## [19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
## [37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
## [55] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
## [73] 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
## [91] 91 92 93 94 95 96 97 98 99 100
c <- c("pera","mango","manzana", "kiwi", "fresa")
longitud <- length(b)
longitud
## [1] 100
promedio <- mean(a)
promedio
## [1] 3
resumen <- summary(a)
resumen
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1 2 3 3 4 5
orden_ascendente <- sort(a)
orden_ascendente
## [1] 1 2 3 4 5
orden_descendente <- sort(a, decreasing = TRUE)
orden_descendente
## [1] 5 4 3 2 1
d <- c(1,2,3,4,5)
suma_vectores <- a+d
suma_vectores
## [1] 2 4 6 8 10
Graficar
plot(a,d, main= "Ventas por mes", xlab= "Mes", ylab="Millones USD", type = "b")

LS0tCnRpdGxlOiAiQ29tYW5kb3MgYsOhc2ljb3MiCmF1dGhvcjogIkl2w6FuIEJhemFsZMO6YSBDYXZhem9zIEEwMDgzNzExNSIKZGF0ZTogIjIwMjMtMDktMTEiCm91dHB1dDoKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiBUUlVFCiAgICB0b2NfZmxvYXQ6IFRSVUUKICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUKICAgIHRoZW1lOiAiY2VydWxlYW4iCiAgICBoaWdobGlnaHQ6ICJ0YW5nbyIKLS0tCgohW10oL1VzZXJzL2l2YW5iYXphbGR1YS9Eb3dubG9hZHMvYW5pbWF0aW9uLWNhcnRvb25zLmdpZikKCiMgQXNpZ25hY2nDs24gZGUgdmFyaWFibGVzCgpgYGB7cn0KeCA8LSAzCnkgPC0gMgpgYGAKCiMgSW1wcmVzacOzbiBkZSByZXN1bHRhZG9zCgpgYGB7cn0KeAp5CmBgYAoKCiMgSW1wcmVzacOzbiBkZSByZXN1bHRhZG9zCmBgYHtyfQpzdW1hIDwtIHgreQoKcmVzdGEgPC0geC15CgptdWx0aXBsaWNhY2lvbiA8LSB4KnkKCmRpdmlzaW9uIDwtIHgveQoKZGl2aXNpb25fZW50IDwtIHglLyV5CgpyZXNpZHVvIDwtIHglJXkKCnBvdGVuY2lhIDwtIHheeQoKYGBgCgojIEZ1bmNpb25lcyBtYXRlbcOhdGljYXMKCmBgYHtyfQpyYWl6X2N1YWRyYWRhIDwtIHNxcnQoeCkKCnJhaXpfY3ViaWNhIDwtIHheKDEvMykKCmV4cG9uZW5jaWFsIDwtIGV4cCgxKQoKYWJzb2x1dG8gPC0gYWJzKHgpCgpzaWdubyA8LXNpZ24oeCkKCnJlZG9uZGVvX2FycmliYSA8LSBjZWlsaW5nKGRpdmlzaW9uKQoKcmVkb25kZV9hYmFqbyA8LSBmbG9vcihkaXZpc2lvbikKCnRydW5jYXIgPC0gdHJ1bmMoZGl2aXNpb24pCmBgYAoKIyBDb25zdGFudGVzCgpgYGB7cn0KcGkKcmFkaW8gPC0gNQphcmVhX2NpcmN1bG8gPC0gcGkqcmFkaW9eMgpgYGAKCiMgVmVjdG9yZXMKCmBgYHtyfQphIDwtIGMoMSwyLDMsNCw1KQoKYiA8LSBjKDE6MTAwKQpiCmMgPC0gYygicGVyYSIsIm1hbmdvIiwibWFuemFuYSIsICJraXdpIiwgImZyZXNhIikKCmxvbmdpdHVkIDwtIGxlbmd0aChiKQpsb25naXR1ZAoKcHJvbWVkaW8gPC0gbWVhbihhKQpwcm9tZWRpbwoKcmVzdW1lbiA8LSBzdW1tYXJ5KGEpCnJlc3VtZW4KCm9yZGVuX2FzY2VuZGVudGUgPC0gc29ydChhKQpvcmRlbl9hc2NlbmRlbnRlCgpvcmRlbl9kZXNjZW5kZW50ZSA8LSBzb3J0KGEsIGRlY3JlYXNpbmcgPSBUUlVFKQpvcmRlbl9kZXNjZW5kZW50ZQoKZCA8LSBjKDEsMiwzLDQsNSkKCnN1bWFfdmVjdG9yZXMgPC0gYStkCnN1bWFfdmVjdG9yZXMKYGBgCgoKIyBHcmFmaWNhcgoKYGBge3J9CnBsb3QoYSxkLCBtYWluPSAiVmVudGFzIHBvciBtZXMiLCB4bGFiPSAiTWVzIiwgeWxhYj0iTWlsbG9uZXMgVVNEIiwgdHlwZSA9ICJiIikKYGBgCgpgYGB7cn0KIz9wbG90IApgYGAK