
Impresion de Resultados
## [1] 3
## [1] 2
Operaciones Aritméticas
## [1] 5
## [1] 1
multiplicacion <- x*y
multiplicacion
## [1] 6
## [1] 1.5
division_entera <- x%/%y
division_entera
## [1] 1
## [1] 1
## [1] 9
Funciones matemáticas
raiz_cuadrada <- sqrt(x)
raiz_cuadrada
## [1] 1.732051
raiz_cubica <- x^(1/3)
raiz_cubica
## [1] 1.44225
exponencial <- exp(1)
exponencial
## [1] 2.718282
absoluto <- abs(x)
absoluto
## [1] 3
## [1] 1
redondeo_arriba <- ceiling(division)
redondeo_arriba
## [1] 2
redondeo_abajo <- floor(division)
redondeo_abajo
## [1] 1
truncar <- trunc(division)
truncar
## [1] 1
Constantes
## [1] 3.141593
radio <- 5
area_circulo <- pi*radio^2
area_circulo
## [1] 78.53982
Vectores
## [1] 1 2 3 4 5
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
## [19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
## [37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
## [55] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
## [73] 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
## [91] 91 92 93 94 95 96 97 98 99 100
c <- c("pera","mango","manzana","kiwi","fresa")
c
## [1] "pera" "mango" "manzana" "kiwi" "fresa"
longitud <- length(a)
longitud
## [1] 5
promedio <- mean(a)
promedio
## [1] 3
resumen <- summary(a)
resumen
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1 2 3 3 4 5
orden_Ascendente <- sort(a)
orden_Ascendente
## [1] 1 2 3 4 5
orden_descendente <- sort(a,decreasing = TRUE)
orden_descendente
## [1] 5 4 3 2 1
## [1] 1 2 3 4 5
suma_vectores <- a+d
suma_vectores
## [1] 2 4 6 8 10
Graficar
plot(a,d, main = "Ventas por mes", xlab = "Mes", ylab = "Millones USD", type = "b")

## function (x, y, ...)
## UseMethod("plot")
## <bytecode: 0x000001af232e9a10>
## <environment: namespace:base>
LS0tDQp0aXRsZTogIkNvbWFuZG9zIEJhc2ljb3MiDQphdXRob3I6ICJMdWlzIENhcmxvcyBZw6lwaXogR29uesOhbGV6IEEwMDgzNTc1MiINCmRhdGU6ICIyMDIzLTA5LTExIg0Kb3V0cHV0OiANCiAgaHRtbF9kb2N1bWVudDoNCiAgICB0b2M6IFRSVUUNCiAgICB0b2NfZmxvYXQ6IFRSVUUNCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFDQogICAgdGhlbWU6ICJjZXJ1bGVhbiINCiAgICBoaWdobGlnaHQ6ICJ0YW5nbyINCi0tLQ0KIVtdKEM6XFxVc2Vyc1xcbGN5ZXBcXERvd25sb2Fkc1xccHJvZi1hbGFuLXJhbmdlbC1tYXRlbWF0aWNhLmdpZikNCg0KDQoNCg0KIyMjIEFzaWduYWNpw7NuIGRlIHZhbG9yZXMNCmBgYHtyfQ0KeCA8LSAzDQp5IDwtIDINCmBgYA0KDQojIyMgSW1wcmVzaW9uIGRlIFJlc3VsdGFkb3MNCmBgYHtyfQ0KeA0KeQ0KYGBgDQoNCiMjIyBPcGVyYWNpb25lcyBBcml0bcOpdGljYXMNCmBgYHtyfQ0Kc3VtYSA8LSB4K3kNCnN1bWENCg0KcmVzdGEgPC0geC15DQpyZXN0YQ0KDQptdWx0aXBsaWNhY2lvbiA8LSB4KnkNCm11bHRpcGxpY2FjaW9uIA0KDQpkaXZpc2lvbiA8LSB4L3kNCmRpdmlzaW9uDQoNCmRpdmlzaW9uX2VudGVyYSA8LSB4JS8leQ0KZGl2aXNpb25fZW50ZXJhDQoNCnJlc2lkdW8gPC0geCUvJXkNCnJlc2lkdW8NCg0KcG90ZW5jaWEgPC0geF55DQpwb3RlbmNpYQ0KYGBgDQoNCiMjIyBGdW5jaW9uZXMgbWF0ZW3DoXRpY2FzDQpgYGB7cn0NCnJhaXpfY3VhZHJhZGEgPC0gc3FydCh4KQ0KcmFpel9jdWFkcmFkYQ0KDQpyYWl6X2N1YmljYSA8LSB4XigxLzMpDQpyYWl6X2N1YmljYQ0KDQpleHBvbmVuY2lhbCA8LSBleHAoMSkNCmV4cG9uZW5jaWFsDQoNCmFic29sdXRvIDwtICBhYnMoeCkNCmFic29sdXRvDQoNCnNpZ25vIDwtIHNpZ24oeCkNCnNpZ25vDQoNCnJlZG9uZGVvX2FycmliYSA8LSBjZWlsaW5nKGRpdmlzaW9uKQ0KcmVkb25kZW9fYXJyaWJhDQoNCnJlZG9uZGVvX2FiYWpvIDwtIGZsb29yKGRpdmlzaW9uKQ0KcmVkb25kZW9fYWJham8NCg0KdHJ1bmNhciA8LSB0cnVuYyhkaXZpc2lvbikNCnRydW5jYXINCmBgYA0KDQojIyMgQ29uc3RhbnRlcw0KYGBge3J9DQpwaQ0KcmFkaW8gPC0gNQ0KYXJlYV9jaXJjdWxvIDwtIHBpKnJhZGlvXjINCmFyZWFfY2lyY3Vsbw0KYGBgDQoNCiMjIyBWZWN0b3Jlcw0KYGBge3J9DQphIDwtIGMoMSwyLDMsNCw1KQ0KYQ0KDQpiIDwtIGMoMToxMDApDQpiDQoNCmMgPC0gYygicGVyYSIsIm1hbmdvIiwibWFuemFuYSIsImtpd2kiLCJmcmVzYSIpDQpjDQoNCmxvbmdpdHVkIDwtIGxlbmd0aChhKQ0KbG9uZ2l0dWQNCg0KcHJvbWVkaW8gPC0gbWVhbihhKQ0KcHJvbWVkaW8NCg0KcmVzdW1lbiA8LSBzdW1tYXJ5KGEpDQpyZXN1bWVuDQoNCm9yZGVuX0FzY2VuZGVudGUgPC0gc29ydChhKQ0Kb3JkZW5fQXNjZW5kZW50ZQ0KDQpvcmRlbl9kZXNjZW5kZW50ZSA8LSBzb3J0KGEsZGVjcmVhc2luZyA9IFRSVUUpDQpvcmRlbl9kZXNjZW5kZW50ZQ0KDQpkIDwtIGMoMSwyLDMsNCw1KQ0KZA0KDQpzdW1hX3ZlY3RvcmVzIDwtIGErZA0Kc3VtYV92ZWN0b3Jlcw0KYGBgDQoNCiMjIyBHcmFmaWNhcg0KYGBge3J9DQpwbG90KGEsZCwgbWFpbiA9ICJWZW50YXMgcG9yIG1lcyIsIHhsYWIgPSAiTWVzIiwgeWxhYiA9ICJNaWxsb25lcyBVU0QiLCB0eXBlID0gImIiKQ0KcGxvdA0KDQpgYGANCg0K