###Asignación se variables
###Impresion de resultados
## [1] 3
## [1] 2
###Operaciones aritméticas
## [1] 5
## [1] 1
multiplicacion <- x*y
multiplicacion
## [1] 6
## [1] 1.5
division_entera <- x%/%y
division_entera
## [1] 1
## [1] 1
## [1] 9
###Funciones matemáticas
raiz_cuadrada <- sqrt(x)
raiz_cuadrada
## [1] 1.732051
raiz_cubica <- x^(1/3)
raiz_cubica
## [1] 1.44225
exponencial1 <- exp(1)
exponencial1
## [1] 2.718282
absoluto <- abs(x)
absoluto
## [1] 3
## [1] 1
redondeo_arriba <- ceiling(division)
redondeo_arriba
## [1] 2
redondeo_abajo <- floor(division)
redondeo_abajo
## [1] 1
###El decimal lo redondea hasta 1 sola cifra
truncar <- trunc(division)
truncar
## [1] 1
###Constantes
## [1] 3.141593
radio <- 5
area_circulo <- pi*radio^2
area_circulo
## [1] 78.53982
###Vectores
a <- c(1,2,3,4,5)
b <- c(1:100)
b
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
## [19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
## [37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
## [55] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
## [73] 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
## [91] 91 92 93 94 95 96 97 98 99 100
c <- c("pera", "mango", "manzana","kiwi","fresa")
c
## [1] "pera" "mango" "manzana" "kiwi" "fresa"
longitud <- length(a)
longitud
## [1] 5
promedio <- mean(a)
promedio
## [1] 3
resumen <- summary(a)
resumen
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1 2 3 3 4 5
ordenar_ascendente <- sort(a)
ordenar_ascendente
## [1] 1 2 3 4 5
ordenar_descendente <-sort(a, decreasing = TRUE)
ordenar_descendente
## [1] 5 4 3 2 1
## [1] 1 2 3 4 5
suma_vectores <- a+d
suma_vectores
## [1] 2 4 6 8 10
###graficar
plot(a,d, main="ventas por mes", xlab="Mes", ylab="Millones de dolares", type = "l")

LS0tCnRpdGxlOiAiY29uY2VwdG9zX2Jhc2ljb3MiCmF1dGhvcjogIkFuZHJlYSBDcnV6IEEwMTYzNTEyMyIKZGF0ZTogIjIwMjMtMDktMTEiCm91dHB1dDogICAgIAogIGh0bWxfZG9jdW1lbnQ6CiAgICB0b2M6IFRSVUUKICAgIHRvY19mbG9hdDogVFJVRQogICAgY29kZV9kb3dubG9hZDogVFJVRQogICAgdGhlbWU6ICJjb3NtbyIKICAgIGhpZ2hsaWdodDogInRhbmdvIgotLS0KIyMjQXNpZ25hY2nDs24gc2UgdmFyaWFibGVzIApgYGB7cn0KeCA8LSAzCnkgPC0gMiAKYGBgCiMjI0ltcHJlc2lvbiBkZSByZXN1bHRhZG9zIApgYGB7cn0KeAp5CmBgYAojIyNPcGVyYWNpb25lcyBhcml0bcOpdGljYXMKYGBge3J9CnN1bWE8LSB4K3kKc3VtYQoKcmVzdGEgPC0geC15CnJlc3RhIAoKbXVsdGlwbGljYWNpb24gPC0geCp5Cm11bHRpcGxpY2FjaW9uCgpkaXZpc2lvbiA8LSB4L3kKZGl2aXNpb24KCmRpdmlzaW9uX2VudGVyYSA8LSB4JS8leQpkaXZpc2lvbl9lbnRlcmEKCnJlc2lkdW8gPC0geCUleQpyZXNpZHVvCgpwb3RlbmNpYSA8LSB4XnkKcG90ZW5jaWEKYGBgCiMjI0Z1bmNpb25lcyBtYXRlbcOhdGljYXMKYGBge3J9CnJhaXpfY3VhZHJhZGEgPC0gc3FydCh4KQpyYWl6X2N1YWRyYWRhCgpyYWl6X2N1YmljYSA8LSB4XigxLzMpCnJhaXpfY3ViaWNhCgpleHBvbmVuY2lhbDEgPC0gZXhwKDEpCmV4cG9uZW5jaWFsMQoKYWJzb2x1dG8gPC0gYWJzKHgpCmFic29sdXRvCgpzaWdubyA8LSBzaWduKHgpCnNpZ25vCgpyZWRvbmRlb19hcnJpYmEgPC0gY2VpbGluZyhkaXZpc2lvbikKcmVkb25kZW9fYXJyaWJhCgpyZWRvbmRlb19hYmFqbyA8LSBmbG9vcihkaXZpc2lvbikKcmVkb25kZW9fYWJham8KYGBgCiMjI0VsIGRlY2ltYWwgbG8gcmVkb25kZWEgaGFzdGEgMSBzb2xhIGNpZnJhCmBgYHtyfQp0cnVuY2FyIDwtIHRydW5jKGRpdmlzaW9uKQp0cnVuY2FyCmBgYAojIyNDb25zdGFudGVzCmBgYHtyfQpwaQpyYWRpbyA8LSA1IAphcmVhX2NpcmN1bG8gPC0gcGkqcmFkaW9eMgphcmVhX2NpcmN1bG8KYGBgCiMjI1ZlY3RvcmVzCmBgYHtyfQphIDwtIGMoMSwyLDMsNCw1KQoKYiA8LSBjKDE6MTAwKQpiCgpjIDwtIGMoInBlcmEiLCAibWFuZ28iLCAibWFuemFuYSIsImtpd2kiLCJmcmVzYSIpCmMKCmxvbmdpdHVkIDwtIGxlbmd0aChhKQpsb25naXR1ZAoKcHJvbWVkaW8gPC0gbWVhbihhKQpwcm9tZWRpbwoKcmVzdW1lbiA8LSBzdW1tYXJ5KGEpCnJlc3VtZW4KCm9yZGVuYXJfYXNjZW5kZW50ZSA8LSBzb3J0KGEpCm9yZGVuYXJfYXNjZW5kZW50ZSAKCm9yZGVuYXJfZGVzY2VuZGVudGUgPC1zb3J0KGEsIGRlY3JlYXNpbmcgPSBUUlVFKQpvcmRlbmFyX2Rlc2NlbmRlbnRlCgpkIDwtIGMoMSwyLDMsNCw1KQpkCgpzdW1hX3ZlY3RvcmVzIDwtIGErZApzdW1hX3ZlY3RvcmVzCmBgYAojIyNncmFmaWNhciAKYGBge3J9CnBsb3QoYSxkLCBtYWluPSJ2ZW50YXMgcG9yIG1lcyIsIHhsYWI9Ik1lcyIsIHlsYWI9Ik1pbGxvbmVzIGRlIGRvbGFyZXMiLCB0eXBlID0gImwiKQpgYGAKCgogICAgICAgICAgICAgICAgICAgICAgICAgICAgIAoKCgo=