
Impresión de resultados
## [1] 3
## [1] 2
Operaciones artiméticas
## [1] 5
## [1] 1
multiplicación <- x * y
multiplicación
## [1] 6
división <- x / y
división
## [1] 1.5
division_entera <- x%/%y
division_entera
## [1] 1
## [1] 1
## [1] 9
Funciones matemáticas
raiz_cuadrada <- sqrt(x)
raiz_cuadrada
## [1] 1.732051
raiz_cubica <- x^(1/3)
raiz_cubica
## [1] 1.44225
exponencial <- exp(1)
exponencial
## [1] 2.718282
absoluto <- abs(x)
absoluto
## [1] 3
## [1] 1
redondeo_arriba <- ceiling(división)
redondeo_arriba
## [1] 2
redondeo_abajo <- floor(división)
redondeo_abajo
## [1] 1
truncar <- trunc(división)
truncar
## [1] 1
Constantes
## [1] 3.141593
radio <- 5
area_circulo <- pi*radio^2
area_circulo
## [1] 78.53982
Vectores
## [1] 1 2 3 4 5
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
## [19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
## [37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
## [55] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
## [73] 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
## [91] 91 92 93 94 95 96 97 98 99 100
c <- c("pera", "mango", "manzana", "kiwi", "fresa")
c
## [1] "pera" "mango" "manzana" "kiwi" "fresa"
longitud <- length(a)
longitud
## [1] 5
promedio <- mean(a)
promedio
## [1] 3
resumen <- summary(a)
resumen
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1 2 3 3 4 5
orden_ascendente <- sort(a)
orden_ascendente
## [1] 1 2 3 4 5
orden_descendente <- sort(a, decreasing = TRUE)
orden_descendente
## [1] 5 4 3 2 1
## [1] 1 2 3 4 5
suma_vectores <- a + d
suma_vectores
## [1] 2 4 6 8 10
Gráfica
plot(a,d, main="Ventas por mes", xlab="Mes", ylab="Millones USD", type ="b")

LS0tCnRpdGxlOiAiQ29tYW5kb3MgYsOhc2ljb3MiCmF1dGhvcjogIk9kcmEgTWFyaWVsIEdhcnphIENhc3RpbGxvIgpkYXRlOiAiMjAyMy0wOS0xMSIKb3V0cHV0OiAKICBodG1sX2RvY3VtZW50OgogICAgICB0b2M6IFRSVUUKICAgICAgdG9jX2Zsb2F0OiBUUlVFCiAgICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUKICAgICAgdGhlbWU6ICJjZXJ1bGVhbiIKICAgICAgaGlnaGxpZ2h0OiAidGFuZ28iCi0tLQoKIVtdKC9Vc2Vycy9tYXJpZWxnYXJ6YS9EZXNrdG9wL0N3Z2YuZ2lmKQoKIyMjIEFzaWduYWNpw7NuIGRlIFZhcmlhYmxlcwpgYGB7cn0KeCA8LSAzIAp5IDwtIDIKYGBgCiMjIyBJbXByZXNpw7NuIGRlIHJlc3VsdGFkb3MKYGBge3J9CngKeQpgYGAKIyMjIE9wZXJhY2lvbmVzIGFydGltw6l0aWNhcwpgYGB7cn0Kc3VtYSA8LSB4ICsgeQpzdW1hCgpyZXN0YSA8LSB4IC0geQpyZXN0YQoKbXVsdGlwbGljYWNpw7NuIDwtIHggKiB5Cm11bHRpcGxpY2FjacOzbiAKCmRpdmlzacOzbiA8LSB4IC8geQpkaXZpc2nDs24KCmRpdmlzaW9uX2VudGVyYSA8LSB4JS8leQpkaXZpc2lvbl9lbnRlcmEKCnJlc2lkdW8gPC0geCUvJXkKcmVzaWR1bwoKcG90ZW5jaWEgPC0geF55CnBvdGVuY2lhCmBgYAojIyMgRnVuY2lvbmVzIG1hdGVtw6F0aWNhcwpgYGB7cn0KcmFpel9jdWFkcmFkYSA8LSBzcXJ0KHgpCnJhaXpfY3VhZHJhZGEKCnJhaXpfY3ViaWNhIDwtIHheKDEvMykKcmFpel9jdWJpY2EKCmV4cG9uZW5jaWFsIDwtIGV4cCgxKQpleHBvbmVuY2lhbAoKYWJzb2x1dG8gPC0gYWJzKHgpCmFic29sdXRvCgpzaWdubyA8LSBzaWduKHgpCnNpZ25vCgpyZWRvbmRlb19hcnJpYmEgPC0gY2VpbGluZyhkaXZpc2nDs24pCnJlZG9uZGVvX2FycmliYQoKcmVkb25kZW9fYWJham8gPC0gZmxvb3IoZGl2aXNpw7NuKQpyZWRvbmRlb19hYmFqbwoKdHJ1bmNhciA8LSB0cnVuYyhkaXZpc2nDs24pCnRydW5jYXIKYGBgCiMjIyBDb25zdGFudGVzCmBgYHtyfQpwaQpyYWRpbyA8LSA1CmFyZWFfY2lyY3VsbyA8LSBwaSpyYWRpb14yCmFyZWFfY2lyY3VsbwpgYGAKIyMjIFZlY3RvcmVzCmBgYHtyfQphIDwtIGMoMSwyLDMsNCw1KQphCgpiIDwtIGMoMToxMDApCmIKCmMgPC0gYygicGVyYSIsICJtYW5nbyIsICJtYW56YW5hIiwgImtpd2kiLCAiZnJlc2EiKQpjCgpsb25naXR1ZCA8LSBsZW5ndGgoYSkKbG9uZ2l0dWQKCnByb21lZGlvIDwtIG1lYW4oYSkKcHJvbWVkaW8KCnJlc3VtZW4gPC0gc3VtbWFyeShhKQpyZXN1bWVuCgpvcmRlbl9hc2NlbmRlbnRlIDwtIHNvcnQoYSkKb3JkZW5fYXNjZW5kZW50ZQoKb3JkZW5fZGVzY2VuZGVudGUgPC0gc29ydChhLCBkZWNyZWFzaW5nID0gVFJVRSkKb3JkZW5fZGVzY2VuZGVudGUKCmQgPC0gYygxLDIsMyw0LDUpCmQKCnN1bWFfdmVjdG9yZXMgPC0gYSArIGQKc3VtYV92ZWN0b3JlcwpgYGAKIyMjIEdyw6FmaWNhCmBgYHtyfQpwbG90KGEsZCwgbWFpbj0iVmVudGFzIHBvciBtZXMiLCB4bGFiPSJNZXMiLCB5bGFiPSJNaWxsb25lcyBVU0QiLCB0eXBlID0iYiIpCmBgYAoKCgoKCgoKCgo=