Asignacion de Variables

x<-3
y<-2

Impresion de resultados

x
## [1] 3
y
## [1] 2

Operacion Aritmeticas

sum <- x+y
sum
## [1] 5
resta <- x-y
resta
## [1] 1
multiplicacion <- x*y
multiplicacion
## [1] 6
division <- x/y
division
## [1] 1.5
division_entera <- x%/%y
division_entera  
## [1] 1
residuo <- x%%y
residuo
## [1] 1
potencia <- x^y
potencia
## [1] 9
potenciaa <-y^x
potenciaa
## [1] 8

Funciones Matematicas

raiz_cuadrada <- sqrt(x)
raiz_cuadrada
## [1] 1.732051
raizcubica <- x^(1/3)
raizcubica
## [1] 1.44225
exponencial <- exp(1)
exponencial
## [1] 2.718282
absoluto <- abs(x)
absoluto
## [1] 3
signo <- sign(x)
signo
## [1] 1
redondeo_arriba <- ceiling(division)
redondeo_arriba
## [1] 2
redondeo_abajo <- floor(division)
redondeo_abajo
## [1] 1
truncar <- trunc(division)
truncar
## [1] 1

Constantes

pi
## [1] 3.141593
radio <- 5
area_circulo <- pi*radio^2
area_circulo
## [1] 78.53982

Vectores

a<- c(1,2,3,4,5)
a
## [1] 1 2 3 4 5
b <- c(1:100)
b
##   [1]   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18
##  [19]  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36
##  [37]  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54
##  [55]  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72
##  [73]  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90
##  [91]  91  92  93  94  95  96  97  98  99 100
c <- c("pera","mango","manza","kiwi","fresa")
c
## [1] "pera"  "mango" "manza" "kiwi"  "fresa"
longitud <- length(c)
longitud
## [1] 5
promedio <- mean(a)
promedio
## [1] 3
resumen <-summary(a)
resumen
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       1       2       3       3       4       5
orden_Ascendente <-sort(a)
orden_Ascendente
## [1] 1 2 3 4 5
ordenn_descendente <-sort(a,decreasing = TRUE)
ordenn_descendente
## [1] 5 4 3 2 1
d <- c(1,2,3,4,5)
d 
## [1] 1 2 3 4 5
suma_vectores <- a+b
suma_vectores
##   [1]   2   4   6   8  10   7   9  11  13  15  12  14  16  18  20  17  19  21
##  [19]  23  25  22  24  26  28  30  27  29  31  33  35  32  34  36  38  40  37
##  [37]  39  41  43  45  42  44  46  48  50  47  49  51  53  55  52  54  56  58
##  [55]  60  57  59  61  63  65  62  64  66  68  70  67  69  71  73  75  72  74
##  [73]  76  78  80  77  79  81  83  85  82  84  86  88  90  87  89  91  93  95
##  [91]  92  94  96  98 100  97  99 101 103 105

Graficar

plot(a,d, main="Ventas por Mes",xlab = "Mes", ylab = "Millones USD", type = "b")

LS0tDQp0aXRsZTogIkNvbWFuZG9zIGJhc2ljb3MiDQphdXRob3I6ICJSb2xhbmRvIFRvcnJlcyBCZW5hdmlkZXMgQTAxMjg2MTYwIg0KZGF0ZTogIjIwMjMtMDktMTEiDQpvdXRwdXQ6DQogIGh0bWxfZG9jdW1lbnQ6DQogICAgdG9jOiBUUlVFDQogICAgdG9jX2Zsb2F0OiBUUlVFDQogICAgY29kZV9kb3dubG9hZDogVFJVRQ0KICAgIHRoZW1lOiAiY2VydWxlYW4iDQogICAgaGlnaGxpZ2h0OiAidGFuZ28iDQotLS0NCg0KIVtdKEM6XFxVc2Vyc1xccnRvcnJcXERvd25sb2Fkc1xcYXJpdG1ldGljYS01LWdyYWRvICgxKS5naWYpDQoNCiMjIyBBc2lnbmFjaW9uIGRlIFZhcmlhYmxlcw0KYGBge3J9DQp4PC0zDQp5PC0yDQoNCmBgYA0KIyMjIEltcHJlc2lvbiBkZSByZXN1bHRhZG9zDQpgYGB7cn0NCngNCnkNCg0KYGBgDQojIyMgT3BlcmFjaW9uIEFyaXRtZXRpY2FzDQpgYGB7cn0NCnN1bSA8LSB4K3kNCnN1bQ0KDQpyZXN0YSA8LSB4LXkNCnJlc3RhDQoNCm11bHRpcGxpY2FjaW9uIDwtIHgqeQ0KbXVsdGlwbGljYWNpb24NCg0KZGl2aXNpb24gPC0geC95DQpkaXZpc2lvbg0KDQpkaXZpc2lvbl9lbnRlcmEgPC0geCUvJXkNCmRpdmlzaW9uX2VudGVyYSAgDQoNCnJlc2lkdW8gPC0geCUleQ0KcmVzaWR1bw0KDQpwb3RlbmNpYSA8LSB4XnkNCnBvdGVuY2lhDQoNCnBvdGVuY2lhYSA8LXleeA0KcG90ZW5jaWFhDQpgYGANCiMjIyBGdW5jaW9uZXMgTWF0ZW1hdGljYXMNCmBgYHtyfQ0KcmFpel9jdWFkcmFkYSA8LSBzcXJ0KHgpDQpyYWl6X2N1YWRyYWRhDQoNCnJhaXpjdWJpY2EgPC0geF4oMS8zKQ0KcmFpemN1YmljYQ0KDQpleHBvbmVuY2lhbCA8LSBleHAoMSkNCmV4cG9uZW5jaWFsDQoNCmFic29sdXRvIDwtIGFicyh4KQ0KYWJzb2x1dG8NCg0Kc2lnbm8gPC0gc2lnbih4KQ0Kc2lnbm8NCg0KcmVkb25kZW9fYXJyaWJhIDwtIGNlaWxpbmcoZGl2aXNpb24pDQpyZWRvbmRlb19hcnJpYmENCg0KcmVkb25kZW9fYWJham8gPC0gZmxvb3IoZGl2aXNpb24pDQpyZWRvbmRlb19hYmFqbw0KDQp0cnVuY2FyIDwtIHRydW5jKGRpdmlzaW9uKQ0KdHJ1bmNhcg0KYGBgDQoNCg0KDQojIyMgQ29uc3RhbnRlcw0KYGBge3J9DQpwaQ0KcmFkaW8gPC0gNQ0KYXJlYV9jaXJjdWxvIDwtIHBpKnJhZGlvXjINCmFyZWFfY2lyY3Vsbw0KYGBgDQoNCg0KIyMjIFZlY3RvcmVzDQpgYGB7cn0NCmE8LSBjKDEsMiwzLDQsNSkNCmENCg0KYiA8LSBjKDE6MTAwKQ0KYg0KDQpjIDwtIGMoInBlcmEiLCJtYW5nbyIsIm1hbnphIiwia2l3aSIsImZyZXNhIikNCmMNCg0KbG9uZ2l0dWQgPC0gbGVuZ3RoKGMpDQpsb25naXR1ZA0KDQpwcm9tZWRpbyA8LSBtZWFuKGEpDQpwcm9tZWRpbw0KDQpyZXN1bWVuIDwtc3VtbWFyeShhKQ0KcmVzdW1lbg0KDQpvcmRlbl9Bc2NlbmRlbnRlIDwtc29ydChhKQ0Kb3JkZW5fQXNjZW5kZW50ZQ0KDQpvcmRlbm5fZGVzY2VuZGVudGUgPC1zb3J0KGEsZGVjcmVhc2luZyA9IFRSVUUpDQpvcmRlbm5fZGVzY2VuZGVudGUNCg0KZCA8LSBjKDEsMiwzLDQsNSkNCmQgDQoNCnN1bWFfdmVjdG9yZXMgPC0gYStiDQpzdW1hX3ZlY3RvcmVzDQpgYGANCiMjIyBHcmFmaWNhcg0KYGBge3J9DQpwbG90KGEsZCwgbWFpbj0iVmVudGFzIHBvciBNZXMiLHhsYWIgPSAiTWVzIiwgeWxhYiA9ICJNaWxsb25lcyBVU0QiLCB0eXBlID0gImIiKQ0KYGBgDQoNCg==