
Impresion de Resultados
## [1] 3
## [1] 2
Operaciones Aritméticas
## [1] 5
## [1] 1
multiplicacion <- x*y
multiplicacion
## [1] 6
## [1] 1.5
division_entera <- x%/%y
division_entera
## [1] 1
## [1] 1
## [1] 9
Funciones matemáticas
raiz_cuadrada <- sqrt(x)
raiz_cuadrada
## [1] 1.732051
raiz_cubica <- x^(1/3)
raiz_cubica
## [1] 1.44225
exponencial <- exp(1)
exponencial
## [1] 2.718282
absoluto <- abs(x)
absoluto
## [1] 3
## [1] 1
redondeo_arriba <- ceiling(division)
redondeo_arriba
## [1] 2
redondeo_abajo <- floor(division)
redondeo_abajo
## [1] 1
truncar <- trunc(division) #TRUNCAR ignora los decimales, sólo considera el número entero
truncar
## [1] 1
Constantes
## [1] 3.141593
radio <- 5
area_circulo <- pi*radio^2
area_circulo
## [1] 78.53982
Vectores
## [1] 1 2 3 4 5
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
## [19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
## [37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
## [55] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
## [73] 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
## [91] 91 92 93 94 95 96 97 98 99 100
c <- c("pera","mango","manzana","kiwi","fresa")
c
## [1] "pera" "mango" "manzana" "kiwi" "fresa"
longitud <- length(a)
longitud
## [1] 5
promedio <- mean(a)
promedio
## [1] 3
resumen <- summary(a)
resumen
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1 2 3 3 4 5
orden_Ascendente <- sort(a)
orden_Ascendente
## [1] 1 2 3 4 5
orden_descendente <- sort(a,decreasing = TRUE)
orden_descendente
## [1] 5 4 3 2 1
## [1] 1 2 3 4 5
suma_vectores <- a+d
suma_vectores
## [1] 2 4 6 8 10
Graficar
plot(a,d, main = "Ventas por mes", xlab = "Mes", ylab = "Millones USD", type = "b")

## function (x, y, ...)
## UseMethod("plot")
## <bytecode: 0x000001ff156dbd30>
## <environment: namespace:base>
LS0tDQp0aXRsZTogIkNvbWFuZG8gQmFzaWNvcyINCmF1dGhvcjogIkZhYmlhbmEgTWVkaW5hY2VsbGkgQTAwODM1ODYiDQpkYXRlOiAiMjAyMy0wOS0xMSINCm91dHB1dDogDQogIGh0bWxfZG9jdW1lbnQ6DQogICAgdG9jOiBUUlVFDQogICAgdG9jX2Zsb2F0OiBUUlVFDQogICAgY29kZV9kb3dubG9hZDogVFJVRQ0KICAgIHRoZW1lOiAiY2VydWxlYW4iDQogICAgaGlnaGxpZ2h0OiAidGFuZ28iDQotLS0NCg0KIVtdKGM6XFxVc2Vyc1xcSFBcXERlc2t0b3BcXEJvb3RjYW1wIGRlIFByb2dyYW1hY2nDs25cXGFyaXRtZXRpY2EtNS1ncmFkby5naWYpDQoNCiMjIyBBc2lnbmFjacOzbiBkZSBWYXJpYWJsZXMNCmBgYHtyfQ0KeCA8LSAzDQp5IDwtIDINCmBgYA0KIyMjIEltcHJlc2lvbiBkZSBSZXN1bHRhZG9zDQpgYGB7cn0NCngNCnkNCmBgYA0KIyMjIE9wZXJhY2lvbmVzIEFyaXRtw6l0aWNhcw0KYGBge3J9DQpzdW1hIDwtIHgreQ0Kc3VtYQ0KDQpyZXN0YSA8LSB4LXkNCnJlc3RhDQoNCm11bHRpcGxpY2FjaW9uIDwtIHgqeQ0KbXVsdGlwbGljYWNpb24gDQoNCmRpdmlzaW9uIDwtIHgveQ0KZGl2aXNpb24NCg0KZGl2aXNpb25fZW50ZXJhIDwtIHglLyV5DQpkaXZpc2lvbl9lbnRlcmENCg0KcmVzaWR1byA8LSB4JS8leQ0KcmVzaWR1bw0KDQpwb3RlbmNpYSA8LSB4XnkNCnBvdGVuY2lhDQpgYGANCiMjIyBGdW5jaW9uZXMgbWF0ZW3DoXRpY2FzDQpgYGB7cn0NCnJhaXpfY3VhZHJhZGEgPC0gc3FydCh4KQ0KcmFpel9jdWFkcmFkYQ0KDQpyYWl6X2N1YmljYSA8LSB4XigxLzMpDQpyYWl6X2N1YmljYQ0KDQpleHBvbmVuY2lhbCA8LSBleHAoMSkNCmV4cG9uZW5jaWFsDQoNCmFic29sdXRvIDwtIGFicyh4KQ0KYWJzb2x1dG8NCg0Kc2lnbm8gPC0gc2lnbih4KQ0Kc2lnbm8NCg0KcmVkb25kZW9fYXJyaWJhIDwtIGNlaWxpbmcoZGl2aXNpb24pDQpyZWRvbmRlb19hcnJpYmENCg0KcmVkb25kZW9fYWJham8gPC0gZmxvb3IoZGl2aXNpb24pDQpyZWRvbmRlb19hYmFqbw0KDQp0cnVuY2FyIDwtIHRydW5jKGRpdmlzaW9uKSAjVFJVTkNBUiBpZ25vcmEgbG9zIGRlY2ltYWxlcywgc8OzbG8gY29uc2lkZXJhIGVsIG7Dum1lcm8gZW50ZXJvDQp0cnVuY2FyDQpgYGANCiMjIyBDb25zdGFudGVzDQpgYGB7cn0NCnBpDQpyYWRpbyA8LSA1DQphcmVhX2NpcmN1bG8gPC0gcGkqcmFkaW9eMg0KYXJlYV9jaXJjdWxvDQpgYGANCiMjIyBWZWN0b3Jlcw0KYGBge3J9DQphIDwtIGMoMSwyLDMsNCw1KQ0KYQ0KDQpiIDwtIGMoMToxMDApDQpiDQoNCmMgPC0gYygicGVyYSIsIm1hbmdvIiwibWFuemFuYSIsImtpd2kiLCJmcmVzYSIpDQpjDQoNCmxvbmdpdHVkIDwtIGxlbmd0aChhKQ0KbG9uZ2l0dWQNCg0KcHJvbWVkaW8gPC0gbWVhbihhKQ0KcHJvbWVkaW8NCg0KcmVzdW1lbiA8LSBzdW1tYXJ5KGEpDQpyZXN1bWVuDQoNCm9yZGVuX0FzY2VuZGVudGUgPC0gc29ydChhKQ0Kb3JkZW5fQXNjZW5kZW50ZQ0KDQpvcmRlbl9kZXNjZW5kZW50ZSA8LSBzb3J0KGEsZGVjcmVhc2luZyA9IFRSVUUpDQpvcmRlbl9kZXNjZW5kZW50ZQ0KDQpkIDwtIGMoMSwyLDMsNCw1KQ0KZA0KDQpzdW1hX3ZlY3RvcmVzIDwtIGErZA0Kc3VtYV92ZWN0b3Jlcw0KDQpgYGANCiMjIyBHcmFmaWNhcg0KYGBge3J9DQpwbG90KGEsZCwgbWFpbiA9ICJWZW50YXMgcG9yIG1lcyIsIHhsYWIgPSAiTWVzIiwgeWxhYiA9ICJNaWxsb25lcyBVU0QiLCB0eXBlID0gImIiKQ0KcGxvdA0KYGBgDQo=