
Impresión de Resultados
## [1] 3
## [1] 2
Operaciones Aritméticas
## [1] 5
## [1] 1
multiplicacion <- x*y
multiplicacion
## [1] 6
## [1] 1.5
division_entera <- x%/%y
division_entera
## [1] 1
## [1] 1
## [1] 9
Funciones Matemáticas
raiz_cuadrada <- sqrt(x)
raiz_cuadrada
## [1] 1.732051
raiz_cubica <- x^(1/3)
raiz_cubica
## [1] 1.44225
exponencial <- exp(1)
exponencial
## [1] 2.718282
absoluto <- abs(x)
absoluto
## [1] 3
## [1] 1
redondeo_arriba <- ceiling(division)
redondeo_arriba
## [1] 2
redondeo_abajo <- floor(division)
redondeo_abajo
## [1] 1
truncar <- trunc(division)
truncar
## [1] 1
Constantes
## [1] 3.141593
radio <- 5
area_circulo <- pi*radio^2
area_circulo
## [1] 78.53982
Vectores
## [1] 1 2 3 4 5
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
## [19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
## [37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
## [55] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
## [73] 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
## [91] 91 92 93 94 95 96 97 98 99 100
c <- c("pera","mango","manzana","kiwi","fresa")
longitud <- length(a)
longitud
## [1] 5
promedio <- mean(a)
promedio
## [1] 3
resumen <- summary(a)
resumen
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1 2 3 3 4 5
orden_ascendente <- sort(a)
orden_ascendente
## [1] 1 2 3 4 5
orden_descendente <- sort(a, decreasing = TRUE)
orden_descendente
## [1] 5 4 3 2 1
## [1] 1 2 3 4 5
suma_vectores <- a+d
suma_vectores
## [1] 2 4 6 8 10
Graficar
plot(a,d, main="Ventas por Mes", xlab="Mes", ylab="Millones USD", type ="b")

LS0tDQp0aXRsZTogIkNvbWFuZG9zIELDoXNpY29zIg0KYXV0aG9yOiAiUmF1bCBDYW50dSBBMDEwODc2ODMiDQpkYXRlOiAiMjAyMy0wOS0xMSINCm91dHB1dDogDQogIGh0bWxfZG9jdW1lbnQ6DQogICAgdG9jOiBUUlVFDQogICAgdG9jX2Zsb2F0OiBUUlVFDQogICAgY29kZV9kb3dubG9hZDogVFJVRQ0KICAgIHRoZW1lOiAiY2VydWxlYW4iDQogICAgaGlnaGxpZ2h0OiAidGFuZ28iDQotLS0NCg0KIVtdKEM6XFxVc2Vyc1xccmF1bGNcXE9uZURyaXZlXFxFc2NyaXRvcmlvXFxtYXRoLmdpZikNCg0KIyMjIEFzaWduYWNpw7NuIGRlIFZhcmlhYmxlcw0KYGBge3J9DQp4IDwtIDMNCnkgPC0gMg0KYGBgDQoNCiMjIyBJbXByZXNpw7NuIGRlIFJlc3VsdGFkb3MNCmBgYHtyfQ0KeA0KeQ0KYGBgDQoNCiMjIyBPcGVyYWNpb25lcyBBcml0bcOpdGljYXMNCmBgYHtyfQ0Kc3VtYSA8LSB4K3kNCnN1bWENCg0KcmVzdGEgPC0geC15DQpyZXN0YQ0KDQptdWx0aXBsaWNhY2lvbiA8LSB4KnkNCm11bHRpcGxpY2FjaW9uDQoNCmRpdmlzaW9uIDwtIHgveQ0KZGl2aXNpb24NCg0KZGl2aXNpb25fZW50ZXJhIDwtIHglLyV5DQpkaXZpc2lvbl9lbnRlcmENCg0KcmVzaWR1byA8LSB4JSV5DQpyZXNpZHVvDQoNCnBvdGVuY2lhIDwtIHheeQ0KcG90ZW5jaWENCmBgYA0KDQojIyMgRnVuY2lvbmVzIE1hdGVtw6F0aWNhcw0KYGBge3J9DQpyYWl6X2N1YWRyYWRhIDwtIHNxcnQoeCkNCnJhaXpfY3VhZHJhZGENCg0KcmFpel9jdWJpY2EgPC0geF4oMS8zKQ0KcmFpel9jdWJpY2ENCg0KZXhwb25lbmNpYWwgPC0gZXhwKDEpDQpleHBvbmVuY2lhbA0KDQphYnNvbHV0byA8LSBhYnMoeCkNCmFic29sdXRvDQoNCnNpZ25vIDwtIHNpZ24oeCkNCnNpZ25vDQoNCnJlZG9uZGVvX2FycmliYSA8LSBjZWlsaW5nKGRpdmlzaW9uKQ0KcmVkb25kZW9fYXJyaWJhDQoNCnJlZG9uZGVvX2FiYWpvIDwtIGZsb29yKGRpdmlzaW9uKQ0KcmVkb25kZW9fYWJham8NCg0KdHJ1bmNhciA8LSB0cnVuYyhkaXZpc2lvbikNCnRydW5jYXINCmBgYA0KDQojIyMgQ29uc3RhbnRlcw0KYGBge3J9DQpwaQ0KcmFkaW8gPC0gIDUNCmFyZWFfY2lyY3VsbyA8LSBwaSpyYWRpb14yDQphcmVhX2NpcmN1bG8NCmBgYA0KDQojIyMgVmVjdG9yZXMNCmBgYHtyfQ0KYSA8LSBjKDEsMiwzLDQsNSkNCmENCg0KYiA8LSBjKDE6MTAwKQ0KYg0KDQpjIDwtIGMoInBlcmEiLCJtYW5nbyIsIm1hbnphbmEiLCJraXdpIiwiZnJlc2EiKQ0KDQpsb25naXR1ZCA8LSBsZW5ndGgoYSkNCmxvbmdpdHVkDQoNCnByb21lZGlvIDwtIG1lYW4oYSkNCnByb21lZGlvDQoNCnJlc3VtZW4gPC0gc3VtbWFyeShhKQ0KcmVzdW1lbg0KDQpvcmRlbl9hc2NlbmRlbnRlIDwtIHNvcnQoYSkNCm9yZGVuX2FzY2VuZGVudGUNCg0Kb3JkZW5fZGVzY2VuZGVudGUgPC0gc29ydChhLCBkZWNyZWFzaW5nID0gVFJVRSkNCm9yZGVuX2Rlc2NlbmRlbnRlDQoNCmQgPC0gYygxLDIsMyw0LDUpDQpkDQoNCnN1bWFfdmVjdG9yZXMgPC0gYStkDQpzdW1hX3ZlY3RvcmVzDQpgYGANCg0KIyMjIEdyYWZpY2FyDQpgYGB7cn0NCnBsb3QoYSxkLCBtYWluPSJWZW50YXMgcG9yIE1lcyIsIHhsYWI9Ik1lcyIsIHlsYWI9Ik1pbGxvbmVzIFVTRCIsIHR5cGUgPSJiIikNCiMgP3Bsb3QNCmBgYA0KDQoNCg0K