In this handout, I use ChatGPT 4.0 and the KeyMate.AI Search plugin
to synthesize the information from the textbook, give examples, and
create R code. All prompts are exact, but some of the output may be
modified for correctness.
Hanck, Arnold, Gerber, and Schmelzer (2023). Introduction to
Econometrics with R. https://www.econometrics-with-r.org/index.html. This
book is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.
Prompt
Synthesize the information in this website. Include all relevant
formulas and definitions. Also create examples utilizing R to
demonstrate the concepts.
https://www.econometrics-with-r.org/4.2-estimating-the-coefficients-of-the-linear-regression-model.html#the-ordinary-least-squares-estimator
R Examples
Here are some R examples to demonstrate the concepts:
- Installing and Loading the AER Package
# Install the AER package (once)
#install.packages("AER")
# Load the AER package
library(AER)
- Loading the California School Dataset
# Load the dataset
data(CASchools)
# compute STR and append it to CASchools
CASchools$STR <- CASchools$students/CASchools$teachers
# compute TestScore and append it to CASchools
CASchools$score <- (CASchools$read + CASchools$math)/2
- Computing OLS Estimators Manually
# Compute beta_1_hat
beta_1_hat <- sum((CASchools$STR - mean(CASchools$STR)) * (CASchools$score - mean(CASchools$score))) / sum((CASchools$STR - mean(CASchools$STR))^2)
# Compute beta_0_hat
beta_0_hat <- mean(CASchools$score) - beta_1_hat * mean(CASchools$STR)
- Using lm() Function for Regression Analysis
# Estimate the model
linear_model <- lm(score ~ STR, data = CASchools)
- Seeing Regression Output
summary(linear_model)
Call:
lm(formula = score ~ STR, data = CASchools)
Residuals:
Min 1Q Median 3Q Max
-47.727 -14.251 0.483 12.822 48.540
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 698.9329 9.4675 73.825 < 2e-16 ***
STR -2.2798 0.4798 -4.751 2.78e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 18.58 on 418 degrees of freedom
Multiple R-squared: 0.05124, Adjusted R-squared: 0.04897
F-statistic: 22.58 on 1 and 418 DF, p-value: 2.783e-06
- Scatter Plot of Data
# plot the data
plot(score ~ STR,
data = CASchools,
main = "Scatterplot of Test Score and STR",
xlab = "STR (X)",
ylab = "Test Score (Y)",
xlim = c(10, 30),
ylim = c(600, 720))
# add the regression line
abline(linear_model)

LS0tDQp0aXRsZTogIklFUiBDaGFwdGVycyA0LjEgU3VtbWFyeSINCmF1dGhvcjogIkRyLiBTZWxieS1MZWFjaCINCmRhdGU6ICJgciBTeXMuRGF0ZSgpYCINCm91dHB1dDogaHRtbF9ub3RlYm9vayANCi0tLQ0KDQo8c3R5bGU+DQogICAgLyogU3R5bGluZyBmb3IgaDEgaGVhZGVycyAqLw0KICAgIGgxIHsNCiAgICAgICAgZm9udC13ZWlnaHQ6IGJvbGQ7ICAgICAgIC8qIEJvbGQgKi8NCiAgICAgICAgY29sb3I6IGRhcmtibHVlOyAgICAgICAgLyogRGFyayBibHVlIGNvbG9yICovDQogICAgfQ0KICAgIC8qIFN0eWxpbmcgZm9yIGgyIGhlYWRlcnMgKi8NCiAgICBoMiB7DQogICAgICAgIGZvbnQtd2VpZ2h0OiBib2xkOyANCiAgICB9DQoNCiAgICAvKiBTdHlsaW5nIGZvciBoMyBoZWFkZXJzICovDQogICAgaDMgew0KICAgICAgICBmb250LXN0eWxlOiBpdGFsaWM7ICAgICAvKiBJdGFsaWMgKi8NCiAgICB9DQo8L3N0eWxlPg0KDQoNCkluIHRoaXMgaGFuZG91dCwgSSB1c2UgQ2hhdEdQVCA0LjAgYW5kIHRoZSBLZXlNYXRlLkFJIFNlYXJjaCBwbHVnaW4gdG8gc3ludGhlc2l6ZSB0aGUgaW5mb3JtYXRpb24gZnJvbSB0aGUgdGV4dGJvb2ssIGdpdmUgZXhhbXBsZXMsIGFuZCBjcmVhdGUgUiBjb2RlLiBBbGwgcHJvbXB0cyBhcmUgZXhhY3QsIGJ1dCBzb21lIG9mIHRoZSBvdXRwdXQgbWF5IGJlIG1vZGlmaWVkIGZvciBjb3JyZWN0bmVzcy4gDQoNCkhhbmNrLCBBcm5vbGQsIEdlcmJlciwgYW5kIFNjaG1lbHplciAoMjAyMykuIEludHJvZHVjdGlvbiB0byBFY29ub21ldHJpY3Mgd2l0aCBSLiBodHRwczovL3d3dy5lY29ub21ldHJpY3Mtd2l0aC1yLm9yZy9pbmRleC5odG1sLiBUaGlzIGJvb2sgaXMgbGljZW5zZWQgdW5kZXIgdGhlIENyZWF0aXZlIENvbW1vbnMgQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1TaGFyZUFsaWtlIDQuMCBJbnRlcm5hdGlvbmFsIExpY2Vuc2UuDQoNCiMjIFByb21wdA0KU3ludGhlc2l6ZSB0aGUgaW5mb3JtYXRpb24gaW4gdGhpcyB3ZWJzaXRlLiBJbmNsdWRlIGFsbCByZWxldmFudCBmb3JtdWxhcyBhbmQgZGVmaW5pdGlvbnMuIEFsc28gY3JlYXRlIGV4YW1wbGVzIHV0aWxpemluZyBSIHRvIGRlbW9uc3RyYXRlIHRoZSBjb25jZXB0cy4gDQoNCmh0dHBzOi8vd3d3LmVjb25vbWV0cmljcy13aXRoLXIub3JnLzQuMi1lc3RpbWF0aW5nLXRoZS1jb2VmZmljaWVudHMtb2YtdGhlLWxpbmVhci1yZWdyZXNzaW9uLW1vZGVsLmh0bWwjdGhlLW9yZGluYXJ5LWxlYXN0LXNxdWFyZXMtZXN0aW1hdG9yDQoNCiMjIyMgS2V5IENvbmNlcHRzIGFuZCBGb3JtdWxhcw0KDQoxLiAqKk9MUyBFc3RpbWF0b3JzKio6IE9yZGluYXJ5IExlYXN0IFNxdWFyZXMgKE9MUykgaXMgdXNlZCB0byBmaW5kIHRoZSBiZXN0LWZpdHRpbmcgbGluZSBieSBtaW5pbWl6aW5nIHRoZSBzdW0gb2Ygc3F1YXJlZCBlcnJvcnMuIFRoZSBPTFMgZXN0aW1hdG9ycyBmb3IgdGhlIHNsb3BlIGFuZCBpbnRlcmNlcHQgaW4gYSBzaW1wbGUgbGluZWFyIHJlZ3Jlc3Npb24gbW9kZWwgYXJlOg0KDQpcWw0KXGhhdHtcYmV0YX1fMSA9IFxmcmFje1xzdW1fe2k9MX1ee259IChYX2kgLSBcb3ZlcmxpbmV7WH0pKFlfaSAtIFxvdmVybGluZXtZfSl9e1xzdW1fe2k9MX1ee259IChYX2kgLSBcb3ZlcmxpbmV7WH0pXjJ9DQpcXQ0KXFsNClxoYXR7XGJldGF9XzAgPSBcb3ZlcmxpbmV7WX0gLSBcaGF0e1xiZXRhfV8xIFxvdmVybGluZXtYfQ0KXF0NCg0KMi4gKipQcmVkaWN0ZWQgVmFsdWVzIGFuZCBSZXNpZHVhbHMqKjogVGhlIHByZWRpY3RlZCB2YWx1ZXMgKFwoIFxoYXR7WX1faSBcKSkgYW5kIHJlc2lkdWFscyAoXCggXGhhdHt1fV9pIFwpKSBhcmUgY2FsY3VsYXRlZCBhczoNCg0KXFsNClxoYXR7WX1faSA9IFxoYXR7XGJldGF9XzAgKyBcaGF0e1xiZXRhfV8xIFhfaQ0KXF0NClxbDQpcaGF0e3V9X2kgPSBZX2kgLSBcaGF0e1l9X2kNClxdDQoNCiMjIyMgUiBFeGFtcGxlcw0KDQpIZXJlIGFyZSBzb21lIFIgZXhhbXBsZXMgdG8gZGVtb25zdHJhdGUgdGhlIGNvbmNlcHRzOg0KDQoxLiAqKkluc3RhbGxpbmcgYW5kIExvYWRpbmcgdGhlIEFFUiBQYWNrYWdlKioNCg0KYGBge1J9DQojIEluc3RhbGwgdGhlIEFFUiBwYWNrYWdlIChvbmNlKQ0KI2luc3RhbGwucGFja2FnZXMoIkFFUiIpDQojIExvYWQgdGhlIEFFUiBwYWNrYWdlDQpsaWJyYXJ5KEFFUikNCmBgYA0KDQoyLiAqKkxvYWRpbmcgdGhlIENhbGlmb3JuaWEgU2Nob29sIERhdGFzZXQqKg0KDQpgYGB7Un0NCiMgTG9hZCB0aGUgZGF0YXNldA0KZGF0YShDQVNjaG9vbHMpDQoNCiMgY29tcHV0ZSBTVFIgYW5kIGFwcGVuZCBpdCB0byBDQVNjaG9vbHMNCkNBU2Nob29scyRTVFIgPC0gQ0FTY2hvb2xzJHN0dWRlbnRzL0NBU2Nob29scyR0ZWFjaGVycyANCg0KIyBjb21wdXRlIFRlc3RTY29yZSBhbmQgYXBwZW5kIGl0IHRvIENBU2Nob29scw0KQ0FTY2hvb2xzJHNjb3JlIDwtIChDQVNjaG9vbHMkcmVhZCArIENBU2Nob29scyRtYXRoKS8yIA0KDQpgYGANCg0KMy4gKipDb21wdXRpbmcgT0xTIEVzdGltYXRvcnMgTWFudWFsbHkqKg0KDQpgYGB7Un0NCiMgQ29tcHV0ZSBiZXRhXzFfaGF0DQpiZXRhXzFfaGF0IDwtIHN1bSgoQ0FTY2hvb2xzJFNUUiAtIG1lYW4oQ0FTY2hvb2xzJFNUUikpICogKENBU2Nob29scyRzY29yZSAtIG1lYW4oQ0FTY2hvb2xzJHNjb3JlKSkpIC8gc3VtKChDQVNjaG9vbHMkU1RSIC0gbWVhbihDQVNjaG9vbHMkU1RSKSleMikNCiMgQ29tcHV0ZSBiZXRhXzBfaGF0DQpiZXRhXzBfaGF0IDwtIG1lYW4oQ0FTY2hvb2xzJHNjb3JlKSAtIGJldGFfMV9oYXQgKiBtZWFuKENBU2Nob29scyRTVFIpDQpgYGANCg0KNC4gKipVc2luZyBsbSgpIEZ1bmN0aW9uIGZvciBSZWdyZXNzaW9uIEFuYWx5c2lzKioNCg0KYGBge1J9DQojIEVzdGltYXRlIHRoZSBtb2RlbA0KbGluZWFyX21vZGVsIDwtIGxtKHNjb3JlIH4gU1RSLCBkYXRhID0gQ0FTY2hvb2xzKQ0KYGBgDQoNCg0KNS4gKipTZWVpbmcgUmVncmVzc2lvbiBPdXRwdXQqKg0KDQpgYGB7cn0NCnN1bW1hcnkobGluZWFyX21vZGVsKQ0KYGBgDQoNCjYuICoqU2NhdHRlciBQbG90IG9mIERhdGEgKioNCg0KYGBge3J9DQojIHBsb3QgdGhlIGRhdGENCnBsb3Qoc2NvcmUgfiBTVFIsIA0KICAgICBkYXRhID0gQ0FTY2hvb2xzLA0KICAgICBtYWluID0gIlNjYXR0ZXJwbG90IG9mIFRlc3QgU2NvcmUgYW5kIFNUUiIsIA0KICAgICB4bGFiID0gIlNUUiAoWCkiLA0KICAgICB5bGFiID0gIlRlc3QgU2NvcmUgKFkpIiwNCiAgICAgeGxpbSA9IGMoMTAsIDMwKSwNCiAgICAgeWxpbSA9IGMoNjAwLCA3MjApKQ0KDQojIGFkZCB0aGUgcmVncmVzc2lvbiBsaW5lDQphYmxpbmUobGluZWFyX21vZGVsKSANCmBgYA0KDQo=