In this handout, I use ChatGPT 4.0 and the KeyMate.AI Search plugin to synthesize the information from the textbook, give examples, and create R code. All prompts are exact, but some of the output may be modified for correctness.

Hanck, Arnold, Gerber, and Schmelzer (2023). Introduction to Econometrics with R. https://www.econometrics-with-r.org/index.html. This book is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Prompt

Synthesize the information in this website. Include all relevant formulas and definitions. Also create examples utilizing R to demonstrate the concepts.

https://www.econometrics-with-r.org/4.1-simple-linear-regression.html

Definitions:

  1. Simple Linear Regression: A statistical method to model the relationship between a dependent variable and an independent variable using a linear equation.
  2. Dependent Variable (Regressand): The variable we are trying to predict or explain.
  3. Independent Variable (Regressor): The variable used to predict the dependent variable.
  4. Population Regression Line: Represents the systematic relationship between the dependent and independent variables in the population.
  5. Intercept: The value of the dependent variable when the independent variable is zero.
  6. Slope: Represents the change in the dependent variable for a one-unit change in the independent variable.
  7. Error Term: Captures the random effects and deviations between the regression line and the actual observed data.

Formula:

The linear regression model is represented as: \[ Y_i = \beta_0 + \beta_1 X_i + u_i \] Where: - \(Y_i\) is the dependent variable for observation \(i\). - \(X_i\) is the independent variable for observation \(i\). - \(\beta_0\) is the intercept of the population regression line. - \(\beta_1\) is the slope of the population regression line. - \(u_i\) is the error term for observation \(i\).

R Examples:

Creating Sample Data:

# Create sample data
STR <- c(15, 17, 19, 20, 22, 23.5, 25)
TestScore <- c(680, 640, 670, 660, 630, 660, 635)

Visualizing Data with Scatterplot:

# Create a scatterplot of the data
plot(TestScore ~ STR, ylab="Test Score")
# Add the systematic relationship to the plot
abline(a = 713, b = -3)

LS0tDQp0aXRsZTogIklFUiBDaGFwdGVycyA0LjEgU3VtbWFyeSINCmF1dGhvcjogIkRyLiBTZWxieS1MZWFjaCINCmRhdGU6ICJgciBTeXMuRGF0ZSgpYCINCm91dHB1dDogaHRtbF9ub3RlYm9vayANCi0tLQ0KDQo8c3R5bGU+DQogICAgLyogU3R5bGluZyBmb3IgaDEgaGVhZGVycyAqLw0KICAgIGgxIHsNCiAgICAgICAgZm9udC13ZWlnaHQ6IGJvbGQ7ICAgICAgIC8qIEJvbGQgKi8NCiAgICAgICAgY29sb3I6IGRhcmtibHVlOyAgICAgICAgLyogRGFyayBibHVlIGNvbG9yICovDQogICAgfQ0KICAgIC8qIFN0eWxpbmcgZm9yIGgyIGhlYWRlcnMgKi8NCiAgICBoMiB7DQogICAgICAgIGZvbnQtd2VpZ2h0OiBib2xkOyANCiAgICB9DQoNCiAgICAvKiBTdHlsaW5nIGZvciBoMyBoZWFkZXJzICovDQogICAgaDMgew0KICAgICAgICBmb250LXN0eWxlOiBpdGFsaWM7ICAgICAvKiBJdGFsaWMgKi8NCiAgICB9DQo8L3N0eWxlPg0KDQoNCkluIHRoaXMgaGFuZG91dCwgSSB1c2UgQ2hhdEdQVCA0LjAgYW5kIHRoZSBLZXlNYXRlLkFJIFNlYXJjaCBwbHVnaW4gdG8gc3ludGhlc2l6ZSB0aGUgaW5mb3JtYXRpb24gZnJvbSB0aGUgdGV4dGJvb2ssIGdpdmUgZXhhbXBsZXMsIGFuZCBjcmVhdGUgUiBjb2RlLiBBbGwgcHJvbXB0cyBhcmUgZXhhY3QsIGJ1dCBzb21lIG9mIHRoZSBvdXRwdXQgbWF5IGJlIG1vZGlmaWVkIGZvciBjb3JyZWN0bmVzcy4gDQoNCkhhbmNrLCBBcm5vbGQsIEdlcmJlciwgYW5kIFNjaG1lbHplciAoMjAyMykuIEludHJvZHVjdGlvbiB0byBFY29ub21ldHJpY3Mgd2l0aCBSLiBodHRwczovL3d3dy5lY29ub21ldHJpY3Mtd2l0aC1yLm9yZy9pbmRleC5odG1sLiBUaGlzIGJvb2sgaXMgbGljZW5zZWQgdW5kZXIgdGhlIENyZWF0aXZlIENvbW1vbnMgQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1TaGFyZUFsaWtlIDQuMCBJbnRlcm5hdGlvbmFsIExpY2Vuc2UuDQoNCiMjIFByb21wdA0KU3ludGhlc2l6ZSB0aGUgaW5mb3JtYXRpb24gaW4gdGhpcyB3ZWJzaXRlLiBJbmNsdWRlIGFsbCByZWxldmFudCBmb3JtdWxhcyBhbmQgZGVmaW5pdGlvbnMuIEFsc28gY3JlYXRlIGV4YW1wbGVzIHV0aWxpemluZyBSIHRvIGRlbW9uc3RyYXRlIHRoZSBjb25jZXB0cy4gDQoNCmh0dHBzOi8vd3d3LmVjb25vbWV0cmljcy13aXRoLXIub3JnLzQuMS1zaW1wbGUtbGluZWFyLXJlZ3Jlc3Npb24uaHRtbA0KDQojIyMgRGVmaW5pdGlvbnM6DQoxLiAqKlNpbXBsZSBMaW5lYXIgUmVncmVzc2lvbioqOiBBIHN0YXRpc3RpY2FsIG1ldGhvZCB0byBtb2RlbCB0aGUgcmVsYXRpb25zaGlwIGJldHdlZW4gYSBkZXBlbmRlbnQgdmFyaWFibGUgYW5kIGFuIGluZGVwZW5kZW50IHZhcmlhYmxlIHVzaW5nIGEgbGluZWFyIGVxdWF0aW9uLg0KMi4gKipEZXBlbmRlbnQgVmFyaWFibGUgKFJlZ3Jlc3NhbmQpKio6IFRoZSB2YXJpYWJsZSB3ZSBhcmUgdHJ5aW5nIHRvIHByZWRpY3Qgb3IgZXhwbGFpbi4NCjMuICoqSW5kZXBlbmRlbnQgVmFyaWFibGUgKFJlZ3Jlc3NvcikqKjogVGhlIHZhcmlhYmxlIHVzZWQgdG8gcHJlZGljdCB0aGUgZGVwZW5kZW50IHZhcmlhYmxlLg0KNC4gKipQb3B1bGF0aW9uIFJlZ3Jlc3Npb24gTGluZSoqOiBSZXByZXNlbnRzIHRoZSBzeXN0ZW1hdGljIHJlbGF0aW9uc2hpcCBiZXR3ZWVuIHRoZSBkZXBlbmRlbnQgYW5kIGluZGVwZW5kZW50IHZhcmlhYmxlcyBpbiB0aGUgcG9wdWxhdGlvbi4NCjUuICoqSW50ZXJjZXB0Kio6IFRoZSB2YWx1ZSBvZiB0aGUgZGVwZW5kZW50IHZhcmlhYmxlIHdoZW4gdGhlIGluZGVwZW5kZW50IHZhcmlhYmxlIGlzIHplcm8uDQo2LiAqKlNsb3BlKio6IFJlcHJlc2VudHMgdGhlIGNoYW5nZSBpbiB0aGUgZGVwZW5kZW50IHZhcmlhYmxlIGZvciBhIG9uZS11bml0IGNoYW5nZSBpbiB0aGUgaW5kZXBlbmRlbnQgdmFyaWFibGUuDQo3LiAqKkVycm9yIFRlcm0qKjogQ2FwdHVyZXMgdGhlIHJhbmRvbSBlZmZlY3RzIGFuZCBkZXZpYXRpb25zIGJldHdlZW4gdGhlIHJlZ3Jlc3Npb24gbGluZSBhbmQgdGhlIGFjdHVhbCBvYnNlcnZlZCBkYXRhLg0KDQojIyMgRm9ybXVsYToNClRoZSBsaW5lYXIgcmVncmVzc2lvbiBtb2RlbCBpcyByZXByZXNlbnRlZCBhczoNClxbIFlfaSA9IFxiZXRhXzAgKyBcYmV0YV8xIFhfaSArIHVfaSBcXQ0KV2hlcmU6DQotIFwoIFlfaSBcKSBpcyB0aGUgZGVwZW5kZW50IHZhcmlhYmxlIGZvciBvYnNlcnZhdGlvbiBcKCBpIFwpLg0KLSBcKCBYX2kgXCkgaXMgdGhlIGluZGVwZW5kZW50IHZhcmlhYmxlIGZvciBvYnNlcnZhdGlvbiBcKCBpIFwpLg0KLSBcKCBcYmV0YV8wIFwpIGlzIHRoZSBpbnRlcmNlcHQgb2YgdGhlIHBvcHVsYXRpb24gcmVncmVzc2lvbiBsaW5lLg0KLSBcKCBcYmV0YV8xIFwpIGlzIHRoZSBzbG9wZSBvZiB0aGUgcG9wdWxhdGlvbiByZWdyZXNzaW9uIGxpbmUuDQotIFwoIHVfaSBcKSBpcyB0aGUgZXJyb3IgdGVybSBmb3Igb2JzZXJ2YXRpb24gXCggaSBcKS4NCg0KIyMjIFIgRXhhbXBsZXM6DQoNCiMjIyMgQ3JlYXRpbmcgU2FtcGxlIERhdGE6DQpgYGB7Un0NCiMgQ3JlYXRlIHNhbXBsZSBkYXRhDQpTVFIgPC0gYygxNSwgMTcsIDE5LCAyMCwgMjIsIDIzLjUsIDI1KQ0KVGVzdFNjb3JlIDwtIGMoNjgwLCA2NDAsIDY3MCwgNjYwLCA2MzAsIDY2MCwgNjM1KQ0KYGBgDQoNCiMjIyMgVmlzdWFsaXppbmcgRGF0YSB3aXRoIFNjYXR0ZXJwbG90Og0KYGBge1J9DQojIENyZWF0ZSBhIHNjYXR0ZXJwbG90IG9mIHRoZSBkYXRhDQpwbG90KFRlc3RTY29yZSB+IFNUUiwgeWxhYj0iVGVzdCBTY29yZSIpDQojIEFkZCB0aGUgc3lzdGVtYXRpYyByZWxhdGlvbnNoaXAgdG8gdGhlIHBsb3QNCmFibGluZShhID0gNzEzLCBiID0gLTMpDQpgYGANCg0KDQo=