In this handout, I use ChatGPT 4.0 and the KeyMate.AI Search plugin
to synthesize the information from the textbook, give examples, and
create R code. All prompts are exact, but some of the output may be
modified for correctness.
Hanck, Arnold, Gerber, and Schmelzer (2023). Introduction to
Econometrics with R. https://www.econometrics-with-r.org/index.html. This
book is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.
Prompt
Synthesize the information in this website. Include all relevant
formulas and definitions. Also create examples utilizing R to
demonstrate the concepts. https://www.econometrics-with-r.org/3.7-scatterplots-sample-covariance-and-sample-correlation.html
Definitions:
- Scatterplot: A graphical representation that shows
the relationship between two variables.
- Sample Covariance: Measures the degree to which two
variables change together. It is calculated as the average of the
product of the deviations of each pair of data points from their
respective means.
- Sample Correlation: A standardized measure of the
relationship between two variables, ranging from -1 to 1.
Key Points:
- Scatterplots are useful for visually assessing the relationship
between two variables.
- Sample covariance gives an idea of the direction of the relationship
between two variables.
- Sample correlation standardizes the covariance and provides a
measure that is independent of the units of the variables.
R Examples:
Scatterplot
# Create a scatterplot in R
x <- c(1, 2, 3, 4, 5)
y <- c(2, 4, 1, 3, 5)
plot(x, y, main="Scatterplot Example", xlab="X values", ylab="Y values")

Sample Covariance
# Calculate sample covariance in R
(sample_covariance <- cov(x, y))
[1] 1.25
Sample Correlation
# Calculate sample correlation in R
(sample_correlation <- cor(x, y))
[1] 0.5
LS0tDQp0aXRsZTogIklFUiBDaGFwdGVycyAzLjcgU3VtbWFyeSINCmF1dGhvcjogIkRyLiBTZWxieS1MZWFjaCINCmRhdGU6ICJgciBTeXMuRGF0ZSgpYCINCm91dHB1dDogaHRtbF9ub3RlYm9vayANCi0tLQ0KDQo8c3R5bGU+DQogICAgLyogU3R5bGluZyBmb3IgaDEgaGVhZGVycyAqLw0KICAgIGgxIHsNCiAgICAgICAgZm9udC13ZWlnaHQ6IGJvbGQ7ICAgICAgIC8qIEJvbGQgKi8NCiAgICAgICAgY29sb3I6IGRhcmtibHVlOyAgICAgICAgLyogRGFyayBibHVlIGNvbG9yICovDQogICAgfQ0KICAgIC8qIFN0eWxpbmcgZm9yIGgyIGhlYWRlcnMgKi8NCiAgICBoMiB7DQogICAgICAgIGZvbnQtd2VpZ2h0OiBib2xkOyANCiAgICB9DQoNCiAgICAvKiBTdHlsaW5nIGZvciBoMyBoZWFkZXJzICovDQogICAgaDMgew0KICAgICAgICBmb250LXN0eWxlOiBpdGFsaWM7ICAgICAvKiBJdGFsaWMgKi8NCiAgICB9DQo8L3N0eWxlPg0KDQoNCkluIHRoaXMgaGFuZG91dCwgSSB1c2UgQ2hhdEdQVCA0LjAgYW5kIHRoZSBLZXlNYXRlLkFJIFNlYXJjaCBwbHVnaW4gdG8gc3ludGhlc2l6ZSB0aGUgaW5mb3JtYXRpb24gZnJvbSB0aGUgdGV4dGJvb2ssIGdpdmUgZXhhbXBsZXMsIGFuZCBjcmVhdGUgUiBjb2RlLiBBbGwgcHJvbXB0cyBhcmUgZXhhY3QsIGJ1dCBzb21lIG9mIHRoZSBvdXRwdXQgbWF5IGJlIG1vZGlmaWVkIGZvciBjb3JyZWN0bmVzcy4gDQoNCkhhbmNrLCBBcm5vbGQsIEdlcmJlciwgYW5kIFNjaG1lbHplciAoMjAyMykuIEludHJvZHVjdGlvbiB0byBFY29ub21ldHJpY3Mgd2l0aCBSLiBodHRwczovL3d3dy5lY29ub21ldHJpY3Mtd2l0aC1yLm9yZy9pbmRleC5odG1sLiBUaGlzIGJvb2sgaXMgbGljZW5zZWQgdW5kZXIgdGhlIENyZWF0aXZlIENvbW1vbnMgQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1TaGFyZUFsaWtlIDQuMCBJbnRlcm5hdGlvbmFsIExpY2Vuc2UuDQoNCiMjIFByb21wdA0KU3ludGhlc2l6ZSB0aGUgaW5mb3JtYXRpb24gaW4gdGhpcyB3ZWJzaXRlLiBJbmNsdWRlIGFsbCByZWxldmFudCBmb3JtdWxhcyBhbmQgZGVmaW5pdGlvbnMuIEFsc28gY3JlYXRlIGV4YW1wbGVzIHV0aWxpemluZyBSIHRvIGRlbW9uc3RyYXRlIHRoZSBjb25jZXB0cy4gDQpodHRwczovL3d3dy5lY29ub21ldHJpY3Mtd2l0aC1yLm9yZy8zLjctc2NhdHRlcnBsb3RzLXNhbXBsZS1jb3ZhcmlhbmNlLWFuZC1zYW1wbGUtY29ycmVsYXRpb24uaHRtbA0KDQojIyMgRGVmaW5pdGlvbnM6DQoxLiAqKlNjYXR0ZXJwbG90Kio6IEEgZ3JhcGhpY2FsIHJlcHJlc2VudGF0aW9uIHRoYXQgc2hvd3MgdGhlIHJlbGF0aW9uc2hpcCBiZXR3ZWVuIHR3byB2YXJpYWJsZXMuDQoyLiAqKlNhbXBsZSBDb3ZhcmlhbmNlKio6IE1lYXN1cmVzIHRoZSBkZWdyZWUgdG8gd2hpY2ggdHdvIHZhcmlhYmxlcyBjaGFuZ2UgdG9nZXRoZXIuIEl0IGlzIGNhbGN1bGF0ZWQgYXMgdGhlIGF2ZXJhZ2Ugb2YgdGhlIHByb2R1Y3Qgb2YgdGhlIGRldmlhdGlvbnMgb2YgZWFjaCBwYWlyIG9mIGRhdGEgcG9pbnRzIGZyb20gdGhlaXIgcmVzcGVjdGl2ZSBtZWFucy4NCjMuICoqU2FtcGxlIENvcnJlbGF0aW9uKio6IEEgc3RhbmRhcmRpemVkIG1lYXN1cmUgb2YgdGhlIHJlbGF0aW9uc2hpcCBiZXR3ZWVuIHR3byB2YXJpYWJsZXMsIHJhbmdpbmcgZnJvbSAtMSB0byAxLg0KDQojIyMgRm9ybXVsYXM6DQoxLiAqKlNhbXBsZSBDb3ZhcmlhbmNlKio6DQogICBcWyBzX3t4eX0gPSBcZnJhY3sxfXtuLTF9IFxzdW1fe2k9MX1ee259ICh4X2kgLSBcYmFye3h9KSh5X2kgLSBcYmFye3l9KSBcXQ0KICAgDQoyLiAqKlNhbXBsZSBDb3JyZWxhdGlvbioqOg0KICAgXFsgcl97eHl9ID0gXGZyYWN7c197eHl9fXtcc3FydHtzX3t4eH0gXHRpbWVzIHNfe3l5fX19IFxdDQogICB3aGVyZSBcKCBzX3t4eH0gXCkgYW5kIFwoIHNfe3l5fSBcKSBhcmUgdGhlIHNhbXBsZSB2YXJpYW5jZXMgb2YgXCggeCBcKSBhbmQgXCggeSBcKSByZXNwZWN0aXZlbHkuDQoNCiMjIyBLZXkgUG9pbnRzOg0KLSBTY2F0dGVycGxvdHMgYXJlIHVzZWZ1bCBmb3IgdmlzdWFsbHkgYXNzZXNzaW5nIHRoZSByZWxhdGlvbnNoaXAgYmV0d2VlbiB0d28gdmFyaWFibGVzLg0KLSBTYW1wbGUgY292YXJpYW5jZSBnaXZlcyBhbiBpZGVhIG9mIHRoZSBkaXJlY3Rpb24gb2YgdGhlIHJlbGF0aW9uc2hpcCBiZXR3ZWVuIHR3byB2YXJpYWJsZXMuDQotIFNhbXBsZSBjb3JyZWxhdGlvbiBzdGFuZGFyZGl6ZXMgdGhlIGNvdmFyaWFuY2UgYW5kIHByb3ZpZGVzIGEgbWVhc3VyZSB0aGF0IGlzIGluZGVwZW5kZW50IG9mIHRoZSB1bml0cyBvZiB0aGUgdmFyaWFibGVzLg0KDQojIyMgUiBFeGFtcGxlczoNCg0KIyMjIyBTY2F0dGVycGxvdA0KYGBge1J9DQojIENyZWF0ZSBhIHNjYXR0ZXJwbG90IGluIFINCnggPC0gYygxLCAyLCAzLCA0LCA1KQ0KeSA8LSBjKDIsIDQsIDEsIDMsIDUpDQpwbG90KHgsIHksIG1haW49IlNjYXR0ZXJwbG90IEV4YW1wbGUiLCB4bGFiPSJYIHZhbHVlcyIsIHlsYWI9IlkgdmFsdWVzIikNCmBgYA0KDQojIyMjIFNhbXBsZSBDb3ZhcmlhbmNlDQpgYGB7Un0NCiMgQ2FsY3VsYXRlIHNhbXBsZSBjb3ZhcmlhbmNlIGluIFINCihzYW1wbGVfY292YXJpYW5jZSA8LSBjb3YoeCwgeSkpDQpgYGANCg0KIyMjIyBTYW1wbGUgQ29ycmVsYXRpb24NCmBgYHtSfQ0KIyBDYWxjdWxhdGUgc2FtcGxlIGNvcnJlbGF0aW9uIGluIFINCihzYW1wbGVfY29ycmVsYXRpb24gPC0gY29yKHgsIHkpKQ0KYGBgDQoNCg==