# Reto "Indicadores de Salud, Desarrollo Infantil Temprano y Nutrición
# para la Primera Infancia"
#file.choose()
bd <- read.csv("/Users/marianaguevara/Downloads/Reto_menores.csv")
#install.packages("dplyr")
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
# Resumen de la base de datos
summary(bd)
## FOLIO_INT FOLIO_I FOLIO_ID encuesta
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## t_hora t_min t_sumai t_sumaf
## Min. : 0.00 Min. : 0.00 Min. : 68.0 Min. : 12.0
## 1st Qu.:12.00 1st Qu.:15.00 1st Qu.: 760.0 1st Qu.: 773.0
## Median :15.00 Median :30.00 Median : 915.0 Median : 929.0
## Mean :15.29 Mean :29.31 Mean : 934.6 Mean : 946.8
## 3rd Qu.:18.00 3rd Qu.:44.00 3rd Qu.:1111.0 3rd Qu.:1124.0
## Max. :22.00 Max. :59.00 Max. :1340.0 Max. :1345.0
##
## hora_ini_1 fecha_ini_1 hora_fin_1 fecha_fin_1
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## tiempo1 resultado_1 hora_ini_2 fecha_ini_2
## Min. :-1237.00 Min. :1.000 Length:841 Length:841
## 1st Qu.: 9.00 1st Qu.:1.000 Class :character Class :character
## Median : 12.00 Median :1.000 Mode :character Mode :character
## Mean : 12.23 Mean :1.042
## 3rd Qu.: 17.00 3rd Qu.:1.000
## Max. : 135.00 Max. :4.000
##
## hora_fin_2 fecha_fin_2 tiempo2 resultado_2
## Length:841 Length:841 Min. : 0.0000 Min. :0.00000
## Class :character Class :character 1st Qu.: 0.0000 1st Qu.:0.00000
## Mode :character Mode :character Median : 0.0000 Median :0.00000
## Mean : 0.1688 Mean :0.03092
## 3rd Qu.: 0.0000 3rd Qu.:0.00000
## Max. :15.0000 Max. :2.00000
##
## hora_ini_3 fecha_ini_3 hora_fin_3 fecha_fin_3
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## tiempo3 resultado_3 hora_ini_4 fecha_ini_4
## Min. : 0.00000 Min. :0.000000 Length:841 Length:841
## 1st Qu.: 0.00000 1st Qu.:0.000000 Class :character Class :character
## Median : 0.00000 Median :0.000000 Mode :character Mode :character
## Mean : 0.02497 Mean :0.005945
## 3rd Qu.: 0.00000 3rd Qu.:0.000000
## Max. :12.00000 Max. :2.000000
##
## hora_fin_4 fecha_fin_4 tiempo4 resultado_4
## Length:841 Length:841 Min. :0.000000 Min. :0.000000
## Class :character Class :character 1st Qu.:0.000000 1st Qu.:0.000000
## Mode :character Mode :character Median :0.000000 Median :0.000000
## Mean :0.008323 Mean :0.001189
## 3rd Qu.:0.000000 3rd Qu.:0.000000
## Max. :7.000000 Max. :1.000000
##
## hora_ini fecha_ini entidad desc_ent
## Length:841 Length:841 Min. :19 Length:841
## Class :character Class :character 1st Qu.:19 Class :character
## Mode :character Mode :character Median :19 Mode :character
## Mean :19
## 3rd Qu.:19
## Max. :19
##
## municipio desc_mun edad sexo
## Min. : 6.00 Length:841 Min. :0.000 Length:841
## 1st Qu.:18.00 Class :character 1st Qu.:1.000 Class :character
## Median :31.00 Mode :character Median :2.000 Mode :character
## Mean :28.98 Mean :2.136
## 3rd Qu.:39.00 3rd Qu.:3.000
## Max. :49.00 Max. :4.000
##
## fech_nac meses notain nota001
## Min. : 1012018 Min. : 0.000 Length:841 Length:841
## 1st Qu.: 9032022 1st Qu.: 2.000 Class :character Class :character
## Median :16102021 Median : 6.000 Mode :character Mode :character
## Mean :16715047 Mean : 5.585
## 3rd Qu.:24032020 3rd Qu.: 9.000
## Max. :99999999 Max. :11.000
##
## nota002 m0101_id m0102 m0103_id
## Mode:logical Min. : 1.000 Length:841 Min. :1.000
## NA's:841 1st Qu.: 2.000 Class :character 1st Qu.:1.250
## Median : 2.000 Mode :character Median :2.000
## Mean : 2.929 Mean :1.667
## 3rd Qu.: 2.000 3rd Qu.:2.000
## Max. :99.000 Max. :2.000
## NA's :835
## nota003 M0104_1 m0104a M0104_2
## Mode:logical Length:841 Min. : 0.000 Length:841
## NA's:841 Class :character 1st Qu.: 6.000 Class :character
## Mode :character Median : 9.000 Mode :character
## Mean : 8.053
## 3rd Qu.: 9.000
## Max. :48.000
## NA's :557
## m0104b m0105 m0106 m0107a
## Min. :1.0 Min. : 1.000 Length:841 Length:841
## 1st Qu.:3.0 1st Qu.: 1.000 Class :character Class :character
## Median :3.0 Median : 2.000 Mode :character Mode :character
## Mean :3.8 Mean : 2.905
## 3rd Qu.:6.0 3rd Qu.: 3.000
## Max. :6.0 Max. :99.000
## NA's :836 NA's :557
## m0107b m0107c m0107d m0107e
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## m0107f m0107g m0107h m0107i
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## m0107j m0107aa m0107ab m0107ac
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## m0108 m0109 nota004 m0110
## Length:841 Length:841 Length:841 Min. : 0.00
## Class :character Class :character Class :character 1st Qu.: 3.00
## Mode :character Mode :character Mode :character Median : 5.00
## Mean :15.73
## 3rd Qu.:12.00
## Max. :99.00
##
## m0111d m0111m m0111a m0111e
## Length:841 Length:841 Length:841 Min. : 0.00
## Class :character Class :character Class :character 1st Qu.: 6.00
## Mode :character Mode :character Mode :character Median :18.00
## Mean :35.44
## 3rd Qu.:88.00
## Max. :99.00
## NA's :578
## m0112a m0112b m0112c m0112d
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## m0112e m0112f m0112g m0112h
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## m0112i m0112j m0112k m0112l
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## m0112m m0112aa m0112b1 m0112b2
## Length:841 Min. : 0.00 Length:841 Length:841
## Class :character 1st Qu.: 1.00 Class :character Class :character
## Mode :character Median : 3.00 Mode :character Mode :character
## Mean : 3.43
## 3rd Qu.: 4.00
## Max. :32.00
## NA's :195
## m0112b3 m0112b4 m0112b5 m0113
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## m0114a m0114b m0114d m0115
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## m0116 m0117 M0118A M0118B
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## M0118C M0118D M0118E m0118esp
## Length:841 Mode:logical Mode:logical Mode:logical
## Class :character NA's:841 NA's:841 NA's:841
## Mode :character
##
##
##
##
## nota005 nota006 m0201 m0202
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## M0203A M0203B M0203C M0203D
## Length:841 Length:841 Length:841 Mode:logical
## Class :character Class :character Class :character NA's:841
## Mode :character Mode :character Mode :character
##
##
##
##
## M0203E M0203F M0203G m0203esp
## Mode:logical Mode:logical Mode:logical Length:841
## NA's:841 NA's:841 NA's:841 Class :character
## Mode :character
##
##
##
##
## nota007 m0204 m0205 M0206A
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## M0206B M0206C M0206D M0206E
## Length:841 Length:841 Mode:logical Mode:logical
## Class :character Class :character NA's:841 NA's:841
## Mode :character Mode :character
##
##
##
##
## M0206F M0206G m0206esp nota008
## Mode:logical Mode:logical Length:841 Length:841
## NA's:841 NA's:841 Class :character Class :character
## Mode :character Mode :character
##
##
##
##
## nota009 nota010 m0301 m0302
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## m0303 m0304 m0305 m0306
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## m0307 nota032 m0308 m0309
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## m0310 m0311 m0312 m0313
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## m0314 m0315 m0316 m0317
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## m0318 m0319 nota011 nota012
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## m0401 m0402a m0402a_esp m0402b
## Min. : 0.000 Length:841 Length:841 Length:841
## 1st Qu.: 0.000 Class :character Class :character Class :character
## Median : 2.000 Mode :character Mode :character Mode :character
## Mean : 2.372
## 3rd Qu.: 3.000
## Max. :10.000
##
## m0402b_esp m0402c m0402c_esp m0403a
## Length:841 Length:841 Length:841 Min. :0.0000
## Class :character Class :character Class :character 1st Qu.:0.0000
## Mode :character Mode :character Mode :character Median :0.0000
## Mean :0.3674
## 3rd Qu.:0.0000
## Max. :8.0000
##
## m0403b M0404AA M0404AB M0404AC
## Min. :0.0000 Length:841 Length:841 Length:841
## 1st Qu.:0.0000 Class :character Class :character Class :character
## Median :0.0000 Mode :character Mode :character Mode :character
## Mean :0.6278
## 3rd Qu.:0.0000
## Max. :8.0000
##
## M0404BA M0404BB M0404BC M0404CA
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## M0404CB M0404CC M0404DA M0404DB
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## M0404DC M0404EA M0404EB M0404EC
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## M0404FA M0404FB M0404FC M0404GA
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## M0404GB M0404GC nota013 m0405a
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## m0405b m0405c m0405d m0405e
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## m0405f m0405g m0405h m0405i
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## m0405j m0405k m0406 nota014
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## nota015 m0501 m0501esp m0502
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## m0503 m0504 m0505 m0505esp
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## m0506 m0507 m0508 m0509
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## m0510 nota016 nota017 m0511
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## m0512 m0512v m0513 m0513v
## Length:841 Min. :1.00 Length:841 Min. :1.000
## Class :character 1st Qu.:1.00 Class :character 1st Qu.:1.000
## Mode :character Median :1.00 Mode :character Median :3.000
## Mean :1.18 Mean :2.231
## 3rd Qu.:1.00 3rd Qu.:3.000
## Max. :4.00 Max. :4.000
## NA's :752 NA's :750
## m0514 m0514v m05141 m0514v1
## Length:841 Min. :1.000 Length:841 Min. :1.000
## Class :character 1st Qu.:1.000 Class :character 1st Qu.:1.000
## Mode :character Median :3.000 Mode :character Median :1.000
## Mean :2.737 Mean :2.205
## 3rd Qu.:4.000 3rd Qu.:3.500
## Max. :5.000 Max. :4.000
## NA's :761 NA's :802
## m0515 m0515v m0516 m0516v
## Length:841 Min. :1.000 Length:841 Min. :1.000
## Class :character 1st Qu.:1.000 Class :character 1st Qu.:1.000
## Mode :character Median :3.000 Mode :character Median :3.000
## Mean :2.351 Mean :2.247
## 3rd Qu.:3.000 3rd Qu.:3.000
## Max. :4.000 Max. :3.000
## NA's :764 NA's :764
## m0517 m0517v m0518 m0518v
## Length:841 Min. :1.000 Length:841 Min. :1.000
## Class :character 1st Qu.:1.000 Class :character 1st Qu.:1.000
## Mode :character Median :2.000 Mode :character Median :1.000
## Mean :1.683 Mean :1.213
## 3rd Qu.:2.000 3rd Qu.:1.000
## Max. :4.000 Max. :3.000
## NA's :778 NA's :794
## m0520 m0520v m0521 m0521v
## Length:841 Min. :1.000 Length:841 Min. :1.0
## Class :character 1st Qu.:1.000 Class :character 1st Qu.:1.0
## Mode :character Median :1.000 Mode :character Median :1.0
## Mean :1.214 Mean :1.2
## 3rd Qu.:1.000 3rd Qu.:1.0
## Max. :2.000 Max. :2.0
## NA's :827 NA's :826
## m0522a m0522a_esp m0522av m0522b
## Length:841 Length:841 Min. :1 Length:841
## Class :character Class :character 1st Qu.:1 Class :character
## Mode :character Mode :character Median :1 Mode :character
## Mean :1
## 3rd Qu.:1
## Max. :1
## NA's :840
## m0522b_esp m0522bv m0522c m0522c_esp m0522cv
## Mode:logical Mode:logical Mode:logical Mode:logical Mode:logical
## NA's:841 NA's:841 NA's:841 NA's:841 NA's:841
##
##
##
##
##
## nota018 nota019 m0524 m0524d
## Length:841 Length:841 Length:841 Min. :20170916
## Class :character Class :character Class :character 1st Qu.:20190209
## Mode :character Mode :character Mode :character Median :20200110
## Mean :20197013
## 3rd Qu.:20210428
## Max. :20220829
## NA's :744
## m0525_1 m0525d_1 m0525_2 m0525d_2
## Length:841 Min. :20170916 Length:841 Min. :20190314
## Class :character 1st Qu.:20190325 Class :character 1st Qu.:20198115
## Mode :character Median :20200109 Mode :character Median :20210412
## Mean :20197483 Mean :20207935
## 3rd Qu.:20210508 3rd Qu.:20220233
## Max. :20220812 Max. :20220601
## NA's :744 NA's :837
## m0525_3 m0525d_3 m0525_4 m0525d_4
## Length:841 Min. :20170916 Length:841 Min. :20190404
## Class :character 1st Qu.:20190566 Class :character 1st Qu.:20190722
## Mode :character Median :20200219 Mode :character Median :20195917
## Mean :20198403 Mean :20200637
## 3rd Qu.:20210468 3rd Qu.:20205832
## Max. :20220816 Max. :20220311
## NA's :758 NA's :837
## m0525_5 m0525d_5 m0526_1 m0526d_1
## Length:841 Min. :20181004 Length:841 Min. :20180109
## Class :character 1st Qu.:20190913 Class :character 1st Qu.:20190453
## Mode :character Median :20200522 Mode :character Median :20200224
## Mean :20200291 Mean :20198234
## 3rd Qu.:20210326 3rd Qu.:20210520
## Max. :20220902 Max. :20220816
## NA's :764 NA's :758
## m0526_2 m0526d_2 m0526_3 m0526d_3
## Length:841 Min. :20180322 Length:841 Min. :20180405
## Class :character 1st Qu.:20190706 Class :character 1st Qu.:20190666
## Mode :character Median :20200306 Mode :character Median :20200618
## Mean :20198442 Mean :20198799
## 3rd Qu.:20210113 3rd Qu.:20210206
## Max. :20220819 Max. :20220806
## NA's :765 NA's :769
## m0526_4 m0526d_4 m05261_1 m05261d_1
## Length:841 Min. :20180425 Length:841 Min. :20190111
## Class :character 1st Qu.:20200212 Class :character 1st Qu.:20200434
## Mode :character Median :20210617 Mode :character Median :20210420
## Mean :20205799 Mean :20207240
## 3rd Qu.:20210929 3rd Qu.:20217871
## Max. :20220606 Max. :20220905
## NA's :792 NA's :811
## m05261_2 m05261d_2 m05261_3 m05261d_3
## Length:841 Min. :20190606 Length:841 Min. :20190718
## Class :character 1st Qu.:20200164 Class :character 1st Qu.:20200342
## Mode :character Median :20210318 Mode :character Median :20200860
## Mean :20205800 Mean :20205138
## 3rd Qu.:20211006 3rd Qu.:20210982
## Max. :20220704 Max. :20220902
## NA's :818 NA's :823
## m05261_4 m05261d_4 m0527 m0527d
## Length:841 Min. :20191212 Length:841 Min. :20220215
## Class :character 1st Qu.:20200733 Class :character 1st Qu.:20220324
## Mode :character Median :20205702 Mode :character Median :20220367
## Mean :20204448 Mean :20220384
## 3rd Qu.:20210460 3rd Qu.:20220478
## Max. :20210830 Max. :20220530
## NA's :833 NA's :835
## m0528_1 m0528d_1 m0528_2 m0528d_2
## Length:841 Min. :20180109 Length:841 Min. :20180220
## Class :character 1st Qu.:20190530 Class :character 1st Qu.:20190766
## Mode :character Median :20200326 Mode :character Median :20200603
## Mean :20199686 Mean :20200092
## 3rd Qu.:20210714 3rd Qu.:20210768
## Max. :20220905 Max. :20220819
## NA's :744 NA's :754
## m0528_3 m0528d_3 m05281_1 m0528d1_1
## Length:841 Min. :20180525 Length:841 Min. :20180830
## Class :character 1st Qu.:20190541 Class :character 1st Qu.:20191106
## Mode :character Median :20200262 Mode :character Median :20200316
## Mean :20196916 Mean :20198128
## 3rd Qu.:20201016 3rd Qu.:20202908
## Max. :20220902 Max. :20210729
## NA's :783 NA's :833
## m05281_2 m05281d_2 m0529_1 m0529d_1
## Length:841 Min. :20180828 Length:841 Min. :20180109
## Class :character 1st Qu.:20200164 Class :character 1st Qu.:20190603
## Mode :character Median :20200226 Mode :character Median :20200428
## Mean :20200519 Mean :20199727
## 3rd Qu.:20205562 3rd Qu.:20210706
## Max. :20211130 Max. :20220905
## NA's :834 NA's :740
## m0529_2 m0529d_2 m0529_3 m0529d_3
## Length:841 Min. :20180220 Length:841 Min. :20180823
## Class :character 1st Qu.:20190722 Class :character 1st Qu.:20191064
## Mode :character Median :20200513 Mode :character Median :20201014
## Mean :20199898 Mean :20202606
## 3rd Qu.:20210526 3rd Qu.:20210814
## Max. :20220819 Max. :20220815
## NA's :750 NA's :774
## m0530_1 m0530d_1 m0530_2 m0530d_2
## Length:841 Min. :20180322 Length:841 Min. :20180425
## Class :character 1st Qu.:20191018 Class :character 1st Qu.:20191122
## Mode :character Median :20200569 Mode :character Median :20200218
## Mean :20199417 Mean :20199903
## 3rd Qu.:20210222 3rd Qu.:20211111
## Max. :20220925 Max. :20220301
## NA's :775 NA's :796
## m0530_3 m0530d_3 m0530_4 m0530d_4
## Length:841 Min. :20190103 Length:841 Min. :20201125
## Class :character 1st Qu.:20191115 Class :character 1st Qu.:20206076
## Mode :character Median :20210315 Mode :character Median :20211026
## Mean :20205123 Mean :20207756
## 3rd Qu.:20211187 3rd Qu.:20211071
## Max. :20220302 Max. :20211116
## NA's :823 NA's :838
## m0530_5 m0530d_5 m0530_6 m0530d_6
## Length:841 Min. :20211111 Length:841 Min. :20220215
## Class :character 1st Qu.:20211111 Class :character 1st Qu.:20220215
## Mode :character Median :20211111 Mode :character Median :20220215
## Mean :20211111 Mean :20220215
## 3rd Qu.:20211111 3rd Qu.:20220215
## Max. :20211111 Max. :20220215
## NA's :840 NA's :840
## m0531_1 m0531d_1 m0531_2 m0531d_2
## Length:841 Min. :20180307 Length:841 Min. :20200311
## Class :character 1st Qu.:20200323 Class :character 1st Qu.:20200914
## Mode :character Median :20201209 Mode :character Median :20210474
## Mean :20203619 Mean :20209269
## 3rd Qu.:20210623 3rd Qu.:20213166
## Max. :20220606 Max. :20220425
## NA's :784 NA's :833
## m0534_1 m0610a m0534n_1 m0534do_1
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## m0534d_1 m0534_2 m0534n_2 m0534do_2
## Min. :20181019 Length:841 Length:841 Min. :1
## 1st Qu.:20191028 Class :character Class :character 1st Qu.:1
## Median :20200417 Mode :character Mode :character Median :1
## Mean :20199233 Mean :1
## 3rd Qu.:20210122 3rd Qu.:1
## Max. :20220702 Max. :1
## NA's :828 NA's :838
## m0534d_2 m0534_3 m0534n_3 m0534do_3
## Min. :20190801 Length:841 Length:841 Min. :1
## 1st Qu.:20200660 Class :character Class :character 1st Qu.:1
## Median :20210518 Mode :character Mode :character Median :1
## Mean :20204046 Mean :1
## 3rd Qu.:20210668 3rd Qu.:1
## Max. :20210818 Max. :1
## NA's :838 NA's :840
## m0534d_3 m0534_4 m0534n_4 m0534do_4
## Min. :20191008 Length:841 Mode:logical Mode:logical
## 1st Qu.:20191008 Class :character NA's:841 NA's:841
## Median :20191008 Mode :character
## Mean :20191008
## 3rd Qu.:20191008
## Max. :20191008
## NA's :840
## m0534d_4 m0534_5 m0534n_5 m0534do_5 m0534d_5
## Mode:logical Mode:logical Mode:logical Mode:logical Mode:logical
## NA's:841 NA's:841 NA's:841 NA's:841 NA's:841
##
##
##
##
##
## m0535 nota020 m0536 m0537
## Min. :0.0000 Length:841 Length:841 Length:841
## 1st Qu.:0.0000 Class :character Class :character Class :character
## Median :0.0000 Mode :character Mode :character Mode :character
## Mean :0.4244
## 3rd Qu.:1.0000
## Max. :9.0000
## NA's :636
## m0538 m0539 nota021 nota022
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## m0601 m0602 m0603 nota023
## Length:841 Min. :1.000 Length:841 Length:841
## Class :character 1st Qu.:2.000 Class :character Class :character
## Mode :character Median :2.000 Mode :character Mode :character
## Mean :2.647
## 3rd Qu.:3.000
## Max. :6.000
## NA's :824
## m0604 m0605 M0606A M0606B
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## M0606C m0606aesp m0607a m0607aesp
## Mode:logical Mode:logical Length:841 Mode:logical
## NA's:841 NA's:841 Class :character NA's:841
## Mode :character
##
##
##
##
## m0607b m0607besp m0607c m0607cesp m0608
## Length:841 Mode:logical Mode:logical Mode:logical Mode:logical
## Class :character NA's:841 NA's:841 NA's:841 NA's:841
## Mode :character
##
##
##
##
## M0609A M0609B M0609C M0609D
## Length:841 Length:841 Mode:logical Mode:logical
## Class :character Class :character NA's:841 NA's:841
## Mode :character Mode :character
##
##
##
##
## M0609E m0609esp m0611 M0613A
## Mode:logical Mode:logical Length:841 Length:841
## NA's:841 NA's:841 Class :character Class :character
## Mode :character Mode :character
##
##
##
##
## M0613B M0613C M0613D M0613E
## Length:841 Length:841 Length:841 Mode:logical
## Class :character Class :character Class :character NA's:841
## Mode :character Mode :character Mode :character
##
##
##
##
## m0613esp M0614A M0614B M0614C
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## M0614D m0614esp nota025 nota026
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## m0701 m0702 m0703 m0704
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## m0704esp m0705 M0706A M0706B
## Length:841 Length:841 Length:841 Mode:logical
## Class :character Class :character Class :character NA's:841
## Mode :character Mode :character Mode :character
##
##
##
##
## M0706C m0706aesp m0707a m0707aesp
## Mode:logical Length:841 Length:841 Length:841
## NA's:841 Class :character Class :character Class :character
## Mode :character Mode :character Mode :character
##
##
##
##
## m0707b m0707besp m0707c m0707cesp m0709a
## Mode:logical Mode:logical Mode:logical Mode:logical Length:841
## NA's:841 NA's:841 NA's:841 NA's:841 Class :character
## Mode :character
##
##
##
##
## M0712A M0712B M0712C M0712D
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## M0712E m0712esp m0713 m0714
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## m0715 nota028 nota029 m0801
## Min. :1 Length:841 Length:841 Length:841
## 1st Qu.:1 Class :character Class :character Class :character
## Median :1 Mode :character Mode :character Mode :character
## Mean :1
## 3rd Qu.:1
## Max. :1
## NA's :840
## m0802 m0803 m0804 m0805
## Length:841 Mode:logical Mode:logical Length:841
## Class :character NA's:841 NA's:841 Class :character
## Mode :character Mode :character
##
##
##
##
## m0805esp m0806 m0806esp m0807
## Length:841 Length:841 Mode:logical Length:841
## Class :character Class :character NA's:841 Class :character
## Mode :character Mode :character Mode :character
##
##
##
##
## m0807esp m0808 m0808esp nota030
## Mode:logical Length:841 Length:841 Length:841
## NA's:841 Class :character Class :character Class :character
## Mode :character Mode :character Mode :character
##
##
##
##
## nota031 m0901 m0902 m0903
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## nota033 nota034 m0904 m0905
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## nota035 m0906 m0907 nota036
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## m0908 m0909 m0910 m0911
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## m0912 m0913 m0914 m0915
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## m0916 nota037 m0917 m0918 m0919
## Length:841 Mode:logical Mode:logical Mode:logical Mode:logical
## Class :character NA's:841 NA's:841 NA's:841 NA's:841
## Mode :character
##
##
##
##
## nota038 nota039 m0920 m0921 nota040
## Mode:logical Mode:logical Mode:logical Mode:logical Mode:logical
## NA's:841 NA's:841 NA's:841 NA's:841 NA's:841
##
##
##
##
##
## m0922 m0923 nota041 m0924 m0925
## Mode:logical Mode:logical Mode:logical Mode:logical Mode:logical
## NA's:841 NA's:841 NA's:841 NA's:841 NA's:841
##
##
##
##
##
## m0926 m0927 m0928 m0929 m0930
## Mode:logical Mode:logical Mode:logical Mode:logical Mode:logical
## NA's:841 NA's:841 NA's:841 NA's:841 NA's:841
##
##
##
##
##
## m0931 m0932 m0933 m0934 m0935
## Mode:logical Mode:logical Mode:logical Mode:logical Mode:logical
## NA's:841 NA's:841 NA's:841 NA's:841 NA's:841
##
##
##
##
##
## m0936 nota042 m0937 m0938 comentario
## Mode:logical Mode:logical Mode:logical Mode:logical Length:841
## NA's:841 NA's:841 NA's:841 NA's:841 Class :character
## Mode :character
##
##
##
##
## tiempo hora_fin fecha_fin completa
## Min. :-1237.00 Length:841 Length:841 Length:841
## 1st Qu.: 9.00 Class :character Class :character Class :character
## Median : 12.00 Mode :character Mode :character Mode :character
## Mean : 12.43
## 3rd Qu.: 17.00
## Max. : 135.00
##
## otroent ponde_f estrato est_sel
## Mode:logical Min. : 115.7 Length:841 Min. :191.0
## NA's:841 1st Qu.: 260.4 Class :character 1st Qu.:192.0
## Median : 353.9 Mode :character Median :193.0
## Mean : 509.6 Mean :192.7
## 3rd Qu.: 582.6 3rd Qu.:193.0
## Max. :2653.8 Max. :193.0
##
## upm region v1
## Length:841 Length:841 Min. :1
## Class :character Class :character 1st Qu.:1
## Mode :character Mode :character Median :1
## Mean :1
## 3rd Qu.:1
## Max. :1
## NA's :636
# ¿Cuál es el grado de estudios más alto de la madre de (NOMBRE)?
count(bd, m0102, sort = TRUE)
## m0102 n
## 1 Secundaria 403
## 2 Preparatoria 204
## 3 Licenciatura 86
## 4 Primaria 84
## 5 Estudios té 27
## 6 Ninguno 21
## 7 6
## 8 Preescolar 5
## 9 Maestría 3
## 10 No sabe 1
## 11 Normal de li 1
# ¿Asiste (NOMBRE) a algún programa de cuidado o educación para la primera infancia
# tal como una estancia, guardería, jardín de niños o preescolar? (0 A 2 AÑOS Y 11 MESES)
count(bd, m0201, sort = TRUE)
## m0201 n
## 1 No 441
## 2 376
## 3 Sí 22
## 4 No responde 2
# Este programa o escuela, ¿es público o privado? (0 A 2 AÑOS Y 11 MESES)
count(bd, m0202, sort = TRUE)
## m0202 n
## 1 819
## 2 Público 14
## 3 Privado 8
# ¿Cuál es la razón por la que (NOMBRE) no va a una institución de cuidado
# o educación para la primera infancia? (0 A 2 AÑOS Y 11 MESES)
count(bd, M0203A, sort = TRUE)
## M0203A n
## 1 398
## 2 Está muy pe 209
## 3 Está mejor 145
## 4 No lo puedo 41
## 5 Otro (especi 29
## 6 No tengo tie 9
## 7 Está muy le 8
## 8 No responde 2
count(bd, M0203B, sort = TRUE)
## M0203B n
## 1 804
## 2 Está muy pe 31
## 3 Está mejor 2
## 4 Otro (especi 2
## 5 Está muy le 1
## 6 No tengo tie 1
count(bd, M0203C, sort = TRUE)
## M0203C n
## 1 840
## 2 Está muy pe 1
count(bd, M0203D, sort = TRUE)
## M0203D n
## 1 NA 841
count(bd, M0203E, sort = TRUE)
## M0203E n
## 1 NA 841
count(bd, M0203F, sort = TRUE)
## M0203F n
## 1 NA 841
count(bd, M0203G, sort = TRUE)
## M0203G n
## 1 NA 841
count(bd, m0203esp, sort = TRUE)
## m0203esp n
## 1 810
## 2 A0ENAS LLEGARON A LA CIUDAD 1
## 3 ACABAN DE LLEGAR Y NO HAN REVISADO 1
## 4 APENAS LLEGARON Y NO CONOCEN EL LUGAR 1
## 5 CAMBIO DE RESIDENCIA 1
## 6 DESCONFIANA DE PAPÁ ACERCA DE LA GUARDERÍA 1
## 7 DESCONFIANZA 1
## 8 DESCONOCE DE ELLO 1
## 9 EL ESPOSO NO QUIERE PERO LA MAMÁ SI 1
## 10 ELLA LO CUIDA 1
## 11 ELLA LO CUIDA Y REALIZA ESTIMULACION TEMPRANA 1
## 12 EN PROCESO DE INSCRPCION 1
## 13 ES MUY APEGADO A LA MAMÁ 1
## 14 FALTA DE CONFIANZA 1
## 15 LA ESCUELA NO LA ADMITE POR LA EDAD 1
## 16 LA MAMA LA CUIDA 1
## 17 LE PISEN QUE VAYA AL BAÑO SOLO Y TODAVIA NO PUEDE 1
## 18 NO CUENTA CON LA EDAD 1
## 19 NO HABIA LUGARES 1
## 20 NO HAY NINGUNO 1
## 21 NO LE INFORMES DE ELLO 1
## 22 NO LO OCUPA 1
## 23 NO PUEDE IR SOLO AL BAÑO 1
## 24 NO SABE A DONDE LLEVARLO 1
## 25 NO SABE SI LO VAN A ACEPTAR 1
## 26 NO SABIA QUE EXISTEN LAS ESTANCIAS INFANTILES 1
## 27 NO TIENE CONOCIMIENTO 1
## 28 POR PROBLEMAS DE LA GUARDERÍA 1
## 29 PORQUE LLORA 1
## 30 PORQUE NO VA AL BAÑO SOLO 1
## 31 SE ENFERMO 1
## 32 TIENE A ALGUIEN QUE LA CUIDE 1
# ¿Asiste (NOMBRE) a algún programa de educación formal para la primera infancia
# como jardín de niños, kínder o preescolar? (NIÑOS 3 A 4 AÑOS)
count(bd, m0204, sort = TRUE)
## m0204 n
## 1 465
## 2 Sí 236
## 3 No 140
# Este programa o escuela, ¿es público o privado? (NIÑOS 3 A 4 AÑOS)
count(bd, m0205, sort = TRUE)
## m0205 n
## 1 605
## 2 Público 219
## 3 Privado 17
# ¿Cuál es la razón por la que (NOMBRE) no va a una institución de educación
# formal para la primera infancia? (NIÑOS 3 A 4 AÑOS)
count(bd, M0206A, sort = TRUE)
## M0206A n
## 1 701
## 2 Está muy pe 83
## 3 Otro (especi 22
## 4 No lo puedo 15
## 5 (NOMBRE) Est 9
## 6 Está muy le 8
## 7 No tengo tie 3
count(bd, M0206B, sort = TRUE)
## M0206B n
## 1 829
## 2 Está muy pe 10
## 3 (NOMBRE) Est 1
## 4 Otro (especi 1
count(bd, M0206C, sort = TRUE)
## M0206C n
## 1 840
## 2 Está muy pe 1
count(bd, M0206D, sort = TRUE)
## M0206D n
## 1 NA 841
count(bd, M0206E, sort = TRUE)
## M0206E n
## 1 NA 841
count(bd, M0206F, sort = TRUE)
## M0206F n
## 1 NA 841
count(bd, M0206G, sort = TRUE)
## M0206G n
## 1 NA 841
count(bd, m0206esp, sort = TRUE)
## m0206esp n
## 1 818
## 2 NO HAY CUPO EN LA ESCUELA 2
## 3 AQUI NO HAY 1
## 4 AUTISMO 1
## 5 CONTROL DE ESFINTERES 1
## 6 EL PRESENTA TRASTORNO AUSTISTA 1
## 7 ESTÁ EN PROCESO DE INSCRIPCIÓN 1
## 8 L SE ALCANZÓ A COMPLETAR EL GRUPO 1
## 9 NO HABIA LUGAR 1
## 10 NO HAY CUPO 1
## 11 NO HAY ESCUELA CON KINDER 1
## 12 NO SABE IR AL BAÑO SOLO 1
## 13 NO SABE QUE ES 1
## 14 NO SABIA LA MAMA QUE YA HABIA PRIMERO EN EL KINDER 1
## 15 NO TENIA LA EDAD 1
## 16 PORQUE NO HABIA CUPO 1
## 17 PROBLEMAS CON LOS DOCUMENTOS 1
## 18 PROBLEMAS CON LOS PAPELES POQUE NO NACIO EN MEXICO 1
## 19 PROBLEMAS PERSONALES 1
## 20 SE LE PASÓ EL PLAZO DE INSCRIPCIÓN 1
## 21 SE PASO FECHA DE INSCRIPCIONES 1
## 22 TIENE PROBLEMAS DE REZAGO MENTAL 1
## 23 YA NO TUVO CONTACTO CON LA PROMOTORA 1
# Técnicas para limpieza de datos
# Tecnica 1. Remover valores irrelevantes
# Seleccionar columnas
bd1 <- bd
bd1 <- subset(bd1, select = c(desc_mun, edad, sexo, fech_nac, meses, m0102, m0201, m0202, M0203A, M0203B, M0203C, M0203D, M0203E, M0203F, M0203G, m0203esp, m0204, m0205, M0206A, M0206B, M0206C, M0206D, M0206E, M0206F, M0206G, m0206esp))
bd2 <- bd1
# Técnica 2. Remover valores duplicados
# ¿Cuántos registros duplicados tenemos?
bd2[duplicated(bd2),]
## desc_mun edad sexo fech_nac meses m0102 m0201 m0202
## 351 048 SANTA CATARINA 0 Hombre 21072022 2 Licenciatura No
## 357 048 SANTA CATARINA 1 Hombre 29122020 8 Secundaria No
## 659 031 JUÁREZ 4 Hombre 15072018 2 Secundaria
## M0203A M0203B M0203C M0203D M0203E M0203F M0203G m0203esp m0204
## 351 Está muy pe NA NA NA NA
## 357 Está mejor NA NA NA NA
## 659 NA NA NA NA Sí
## m0205 M0206A M0206B M0206C M0206D M0206E M0206F M0206G m0206esp
## 351 NA NA NA NA
## 357 NA NA NA NA
## 659 Público NA NA NA NA
sum(duplicated(bd1))
## [1] 3
# Técnica 3. Errores tipográficos y errores similares
# Eliminar código en la columna municipio
#install.packages("stringr")
library(stringr)
# Eliminar acentos en la columna Municipio
#install.packages("stringi")
library(stringi)
bd2$desc_mun <- toupper(stri_trans_general(bd2$desc_mun, "Latin-ASCII"))
bd3 <- bd2
bd3$desc_mun <- substr(bd3$desc_mun, 5, 50)
# Separar día, mes y año de Fecha de nacimiento
bd4 <- bd3
#install.packages("stringr")
library(stringr)
bd4$año <- str_sub(bd4$fech_nac, -4, -1)
bd4$mes <- str_sub(bd4$fech_nac, -6, -5)
bd4$dia <- str_sub(bd4$fech_nac, -8, -7)
# Técnica 4. Convertir tipos de datos
# Convertir de caracter a entero
bd5 <- bd4
bd5$año <- as.integer(bd5$año)
summary(bd5$año)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2017 2018 2019 2039 2021 9999
bd5$mes <- as.integer(bd5$mes)
summary(bd5$mes)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.000 3.000 7.000 7.092 10.000 99.000
bd5$dia <- as.integer(bd5$dia)
summary(bd5$dia)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.00 9.00 16.00 16.64 24.00 99.00
summary(bd5)
## desc_mun edad sexo fech_nac
## Length:841 Min. :0.000 Length:841 Min. : 1012018
## Class :character 1st Qu.:1.000 Class :character 1st Qu.: 9032022
## Mode :character Median :2.000 Mode :character Median :16102021
## Mean :2.136 Mean :16715047
## 3rd Qu.:3.000 3rd Qu.:24032020
## Max. :4.000 Max. :99999999
## meses m0102 m0201 m0202
## Min. : 0.000 Length:841 Length:841 Length:841
## 1st Qu.: 2.000 Class :character Class :character Class :character
## Median : 6.000 Mode :character Mode :character Mode :character
## Mean : 5.585
## 3rd Qu.: 9.000
## Max. :11.000
## M0203A M0203B M0203C M0203D
## Length:841 Length:841 Length:841 Mode:logical
## Class :character Class :character Class :character NA's:841
## Mode :character Mode :character Mode :character
##
##
##
## M0203E M0203F M0203G m0203esp
## Mode:logical Mode:logical Mode:logical Length:841
## NA's:841 NA's:841 NA's:841 Class :character
## Mode :character
##
##
##
## m0204 m0205 M0206A M0206B
## Length:841 Length:841 Length:841 Length:841
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
## M0206C M0206D M0206E M0206F M0206G
## Length:841 Mode:logical Mode:logical Mode:logical Mode:logical
## Class :character NA's:841 NA's:841 NA's:841 NA's:841
## Mode :character
##
##
##
## m0206esp año mes dia
## Length:841 Min. :2017 Min. : 1.000 Min. : 1.00
## Class :character 1st Qu.:2018 1st Qu.: 3.000 1st Qu.: 9.00
## Mode :character Median :2019 Median : 7.000 Median :16.00
## Mean :2039 Mean : 7.092 Mean :16.64
## 3rd Qu.:2021 3rd Qu.:10.000 3rd Qu.:24.00
## Max. :9999 Max. :99.000 Max. :99.00
# Juntar día, mes y año a formato fecha
#install.packages("lubridate")
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
bd5$fecha_nacimiento <- make_date(year = bd5$año, month = bd5$mes, day = bd5$dia)
# Juntar respuestas de una pregunta de selección múltiple
m0206 <- data.frame(razon06 = c(bd5[, "M0206A"], bd5[, "M0206B"],bd5[, "M0206C"],bd5[, "M0206D"], bd5[, "M0206E"], bd5[, "M0206F"], bd5[, "M0206G"]))
m0203 <- data.frame(razon03 = c(bd5[, "M0203A"], bd5[, "M0203B"],bd5[, "M0203C"],bd5[, "M0203D"], bd5[, "M0203E"], bd5[, "M0203F"], bd5[, "M0203G"]))
#install.packages("dplyr")
library(dplyr)
count(m0206, razon06, sort = TRUE)
## razon06 n
## 1 <NA> 3364
## 2 2370
## 3 Está muy pe 94
## 4 Otro (especi 23
## 5 No lo puedo 15
## 6 (NOMBRE) Est 10
## 7 Está muy le 8
## 8 No tengo tie 3
count(m0203, razon03, sort = TRUE)
## razon03 n
## 1 <NA> 3364
## 2 2042
## 3 Está muy pe 241
## 4 Está mejor 147
## 5 No lo puedo 41
## 6 Otro (especi 31
## 7 No tengo tie 10
## 8 Está muy le 9
## 9 No responde 2
count(bd5, M0206A, sort = TRUE)
## M0206A n
## 1 701
## 2 Está muy pe 83
## 3 Otro (especi 22
## 4 No lo puedo 15
## 5 (NOMBRE) Est 9
## 6 Está muy le 8
## 7 No tengo tie 3
count(bd5, M0206G, sort = TRUE)
## M0206G n
## 1 NA 841
# Exportar las base de datos limpia
bd_limpia <- bd5
write.csv(bd_limpia, file="menores_ensanut_limpia.csv", row.names = FALSE)
write.csv(m0206, file="razones_m0206_limpia.csv", row.names = FALSE)
write.csv(m0203, file="razones_m0203_limpia.csv", row.names = FALSE)
# Wordcloud
#install.packages("wordcloud")
library(wordcloud)
## Loading required package: RColorBrewer
m0203_esp <- data.frame(bd1$m0203esp)
m0203_esp_na <- m0203_esp[!apply(m0203_esp == "", 1, all),]
b <- sample(seq(0,1,0.01) , length(m0203_esp_na) , replace=TRUE)
#The package will automatically make the wordcloud ! (I add a black background)
par(bg="black")
wordcloud(m0203_esp_na , b , col=rainbow(length(m0203_esp_na) , alpha=0.9) , rot.per=0.3, scale=c(.8, .5) )
m0206_esp <- data.frame(bd1$m0206esp)
m0206_esp_na <- m0206_esp[!apply(m0206_esp == "", 1, all),]
c <- sample(seq(0,1,0.01) , length(m0206_esp_na) , replace=TRUE)
#The package will automatically make the wordcloud !
par(bg="black")
wordcloud(m0206_esp_na , b , col=rainbow(length(m0206_esp_na) , alpha=0.9) , rot.per=0.3, scale=c(.8, .5) )
# Tabla cruzada comparando la cantidad de infantes, hombres y mujeres que hay en cada municipio
municipio_sexo <- table(bd$desc_mun, bd$sexo)
print(municipio_sexo)
##
## Hombre Mujer
## 006 APODACA 24 42
## 007 ARAMBERRI 3 1
## 009 CADEREYTA JIMÉNEZ 3 4
## 012 CIÉNEGA DE FLORES 13 12
## 016 DOCTOR GONZÁLEZ 2 0
## 018 GARCÍA 70 64
## 021 GENERAL ESCOBEDO 47 39
## 025 GENERAL ZUAZUA 12 10
## 026 GUADALUPE 23 28
## 031 JUÁREZ 52 51
## 032 LAMPAZOS DE NARANJO 3 1
## 038 MONTEMORELOS 8 14
## 039 MONTERREY 70 84
## 041 PESQUERÍA 24 26
## 044 SABINAS HIDALGO 4 4
## 046 SAN NICOLÁS DE LOS GARZA 13 10
## 047 HIDALGO 3 2
## 048 SANTA CATARINA 32 39
## 049 SANTIAGO 2 2
# Tabla cruzada comparando la edad en años y el sexo de los niños de los padres encuestados
edad_sexo <- table(bd$edad, bd$sexo)
print(edad_sexo)
##
## Hombre Mujer
## 0 75 79
## 1 64 67
## 2 71 109
## 3 102 97
## 4 96 81
# Tabla cruzada comparando la variable edad y la razón por la que no asisten a una estancia infantil (edad de 0-2 años)
edad_noasiste1 <- table(bd$edad, bd$M0203A)
print(edad_noasiste1)
##
## Está mejor Está muy le Está muy pe No lo puedo No responde No tengo tie
## 0 3 57 0 68 14 2 3
## 1 7 46 3 51 14 0 3
## 2 12 42 5 90 13 0 3
## 3 199 0 0 0 0 0 0
## 4 177 0 0 0 0 0 0
##
## Otro (especi
## 0 7
## 1 7
## 2 15
## 3 0
## 4 0
# Tabla cruzada comparando la variable edad y la razón por la que no asisten a una estancia infantil (edad de 3-4 años)
edad_noasiste2 <- table(bd$edad, bd$M0206A)
print(edad_noasiste2)
##
## (NOMBRE) Est Está muy le Está muy pe No lo puedo No tengo tie
## 0 154 0 0 0 0 0
## 1 131 0 0 0 0 0
## 2 180 0 0 0 0 0
## 3 78 8 8 76 7 3
## 4 158 1 0 7 8 0
##
## Otro (especi
## 0 0
## 1 0
## 2 0
## 3 19
## 4 3
Pregunta_m0201 <- count(bd5, m0201)
# cambiar el valor en la fila 3 y la columna "nombre" a "NuevoNombre"
nuevo_valor_m0201 <- "Sin respuesta"
fila_a_modificar_m0201 <- 1
columna_a_modificar_m0201 <- "m0201"
# Utiliza el operador de asignación para cambiar el valor
Pregunta_m0201[fila_a_modificar_m0201, columna_a_modificar_m0201] <- nuevo_valor_m0201
# Crear un gráfico de barras con colores personalizados
grafico_barras_colores <- ggplot(Pregunta_m0201, aes(x = m0201, y = n, fill = m0201)) +
geom_bar(stat = "identity") + # Utilizar geom_bar para las barras
labs(title = "¿Asiste a algún programa de cuidado o educación para la primera infancia?", x = "Asiste", y = "Frecuencia") + # Personalizar etiquetas
scale_fill_manual(values = c("#FFB3B5", "#C1CD83", "#61D8D6", "#BCC3FE")) +
scale_fill_discrete(name = "Asiste")# Definir colores
## Scale for fill is already present.
## Adding another scale for fill, which will replace the existing scale.
# Mostrar el gráfico
print(grafico_barras_colores)
grafico_barras <- ggplot(bd, aes(x = m0202)) +
geom_bar(position = "dodge", na.rm = TRUE, fill = "pink") +
labs(title = "¿Este programa o escuela, ¿es público o privado?",
x = "Respuestas",
y = "Frecuencia")
print(grafico_barras)
Pregunta_m0102 <- count(bd5, m0102)
Pregunta_m0102 <- subset(Pregunta_m0102, n > 3)
# cambiar el valor en la fila 3 y la columna "nombre" a "NuevoNombre"
nuevo_valor <- "Sin respuesta"
fila_a_modificar <- 1
columna_a_modificar <- "m0102"
# Utiliza el operador de asignación para cambiar el valor
Pregunta_m0102[fila_a_modificar, columna_a_modificar] <- nuevo_valor
col_2 <- "Técnico"
fila_2 <- 2
columna_2 <- "m0102"
Pregunta_m0102[fila_2, columna_2] <- col_2
print(Pregunta_m0102)
## m0102 n
## 1 Sin respuesta 6
## 2 Técnico 27
## 3 Licenciatura 86
## 5 Ninguno 21
## 8 Preescolar 5
## 9 Preparatoria 204
## 10 Primaria 84
## 11 Secundaria 403
# Crear un gráfico de barras con colores personalizados
Pregunta_m0102 <- ggplot(Pregunta_m0102, aes(x = m0102, y = n, fill = m0102)) +
geom_bar(stat = "identity") + # Utilizar geom_bar para las barras
labs(title = "¿Cuál es el grado de estudios más alto de la madre?", x = "m0102", y = "n") + # Personalizar etiquetas
scale_fill_discrete(name = "Asiste")# Definir colores
# Mostrar el gráfico
print(Pregunta_m0102)
Pregunta_M0203A<- count(bd5, M0203A)
# cambiar el valor en la fila 3 y la columna "nombre" a "NuevoNombre"
nuevo_valor_M0203A <- "Sin respuesta"
fila_a_modificar_M0203A <- 1
columna_a_modificar_M0203A <- "M0203A"
# Utiliza el operador de asignación para cambiar el valor
Pregunta_M0203A[fila_a_modificar_M0203A, columna_a_modificar_M0203A] <- nuevo_valor_M0203A
col_3_M0203A <- "Muy lejos"
fila_3_M0203A <- 3
columna_3_M0203A <- "M0203A"
Pregunta_M0203A[fila_3_M0203A, columna_3_M0203A] <- col_3_M0203A
col_4_M0203A <- "Muy pequeño"
fila_4_M0203A <- 4
columna_4_M0203A <- "M0203A"
Pregunta_M0203A[fila_4_M0203A, columna_4_M0203A] <- col_4_M0203A
col_5_M0203A <- "No puedo"
fila_5_M0203A <- 5
columna_5_M0203A <- "M0203A"
Pregunta_M0203A[fila_5_M0203A, columna_5_M0203A] <- col_5_M0203A
col_8_M0203A <- "Otro"
fila_8_M0203A <- 8
columna_8_M0203A <- "M0203A"
Pregunta_M0203A[fila_8_M0203A, columna_8_M0203A] <- col_8_M0203A
print(Pregunta_M0203A)
## M0203A n
## 1 Sin respuesta 398
## 2 Está mejor 145
## 3 Muy lejos 8
## 4 Muy pequeño 209
## 5 No puedo 41
## 6 No responde 2
## 7 No tengo tie 9
## 8 Otro 29
# Gráficas
# Colores personalizados para las categorías
colores_comentarios <- c("No lo puedo" = "darkgreen",
"Está muy le" = "blue",
"No aprende mucho en la guarderia" = "orange",
"Está mejor" = "red",
"No tengo tie" = "gold",
"No responde" = "black",
"Otro (especi" = "grey",
"Está muy pe" = "hotpink")
ggplot(Pregunta_M0203A, aes(x = M0203A, y = n, fill = M0203A)) +
geom_bar(stat = "identity") +
labs(title = "Razones por las que no va a una institución de primera infancia",
x = "Municipio",
y = "Frecuencia") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1),
legend.position = "top") +
scale_fill_manual(values = colores_comentarios)+
scale_fill_discrete(name = "Razones")
## Scale for fill is already present.
## Adding another scale for fill, which will replace the existing scale.
Pregunta_m0102 <- count(bd5, m0102)
Pregunta_m0102 <- subset(Pregunta_m0102, n > 3)
# cambiar el valor en la fila 3 y la columna "nombre" a "NuevoNombre"
nuevo_valor <- "Sin respuesta"
fila_a_modificar <- 1
columna_a_modificar <- "m0102"
# Utiliza el operador de asignación para cambiar el valor
Pregunta_m0102[fila_a_modificar, columna_a_modificar] <- nuevo_valor
col_2 <- "Técnico"
fila_2 <- 2
columna_2 <- "m0102"
Pregunta_m0102[fila_2, columna_2] <- col_2
print(Pregunta_m0102)
## m0102 n
## 1 Sin respuesta 6
## 2 Técnico 27
## 3 Licenciatura 86
## 5 Ninguno 21
## 8 Preescolar 5
## 9 Preparatoria 204
## 10 Primaria 84
## 11 Secundaria 403
# Crear un gráfico de pastel a partir de la base de datos Pregunta_m0102
ggplot(Pregunta_m0102, aes(x = "", y = n, fill = m0102)) +
geom_bar(stat = "identity", width = 1, color = "white") +
coord_polar("y") +
theme_void() +
labs(title = "Grado máximo de estudios de la madre", fill = "Estudios") +
scale_fill_discrete(name = "Estudios")+
labs(title = "Grado máximo de estudios de la madre") # Título del gráfico
# Crear un dataframe
# Crear una nueva base de datos seleccionando dos columnas
Pregunta_m0102_m0201 <- bd5[, c("m0102", "m0201")]
Pregunta_m0102_m0201 <- Pregunta_m0102_m0201 %>%
mutate(m0102 = recode(m0102, "Estudios té" = "Técnico", "Normal de li" = "Profesional"))
# Crear un gráfico de barras horizontales
grafico_barras_horizontal <- ggplot(Pregunta_m0102_m0201, aes(x = m0102, y = m0201)) +
geom_bar(stat = "identity") +
labs(title = "Comparación del Grado de Estudios de la Madre por Asistencia a Estancia",
x = "Grado de Estudios de la Madre",
y = "Frecuencia") +
scale_fill_manual(values = c("Técnico" = "#1BA3C6", "Secundaria" = "#2CB5C0", "#21B087", "#D5BB21", "#F89217", "#E03426", "#FC719E", "#A26DC2", "#7873C0", "#4F7CBA")) + # Colores personalizados
coord_flip() # Invertir ejes para hacerlo horizontal
# Mostrar el gráfico
print(grafico_barras_horizontal)
Pregunta_m0102_m0202 <- bd5[, c("m0102", "m0202")]
Pregunta_m0102_m0202 <- data.frame(
m0102 = c(
"Secundaria", "Preparatoria", "Licenciatura", "Primaria",
"Estudios Técnicos", "Ninguno", "Preescolar", "Maestría", "No Sabe"
),
m0202 = c("Público", "Privado", "No Responde")
)
# Crear el gráfico de barras apiladas
ggplot(Pregunta_m0102_m0202, aes(x = m0102, fill = m0202)) +
geom_bar(position = "dodge", stat = "count") +
geom_text(stat = "count", aes(label = after_stat(count)), vjust = -0.5, position = position_dodge(width = 0.9)) +
labs(
x = "Grado de estudios más alto de la madre",
y = "Cantidad de personas",
fill = "Elección de programa"
) +
ggtitle("Elección de Programa Público o Privado por Grado de Estudios de la Madre") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))