Part 3

st<- read.csv("C:\\Users\\sebastian\\Downloads\\entretainment_stocks.csv")
st
##          Date Disney_Adj_Close Netflix_Adj_Close Nintendo_Adj_Close
## 1    1/1/2007            29.12              3.26              37.10
## 2    2/1/2007            28.36              3.22              33.10
## 3    3/1/2007            28.51              3.31              36.30
## 4    4/1/2007            28.96              3.17              40.05
## 5    5/1/2007            29.34              3.13              43.65
## 6    6/1/2007            28.65              2.77              45.85
## 7    7/1/2007            27.70              2.46              61.25
## 8    8/1/2007            28.20              2.50              58.15
## 9    9/1/2007            28.86              2.96              64.85
## 10  10/1/2007            29.07              3.78              78.50
## 11  11/1/2007            27.82              3.30              76.10
## 12  12/1/2007            27.09              3.80              74.05
## 13   1/1/2008            25.32              3.59              61.75
## 14   2/1/2008            27.50              4.51              62.40
## 15   3/1/2008            26.62              4.95              64.85
## 16   4/1/2008            27.51              4.57              68.69
## 17   5/1/2008            28.51              4.34              68.95
## 18   6/1/2008            26.47              3.72              69.85
## 19   7/1/2008            25.75              4.41              57.75
## 20   8/1/2008            27.45              4.41              61.10
## 21   9/1/2008            26.04              4.41              53.07
## 22  10/1/2008            21.98              3.54              39.00
## 23  11/1/2008            19.11              3.28              38.84
## 24  12/1/2008            19.25              4.27              47.75
## 25   1/1/2009            17.81              5.16              36.40
## 26   2/1/2009            14.44              5.18              35.25
## 27   3/1/2009            15.64              6.13              36.50
## 28   4/1/2009            18.86              6.47              33.65
## 29   5/1/2009            20.86              5.63              33.68
## 30   6/1/2009            20.09              5.91              34.47
## 31   7/1/2009            21.63              6.28              33.12
## 32   8/1/2009            22.42              6.23              33.55
## 33   9/1/2009            23.65              6.60              31.57
## 34  10/1/2009            23.57              7.64              31.41
## 35  11/1/2009            26.02              8.38              30.78
## 36  12/1/2009            27.77              7.87              29.82
## 37   1/1/2010            25.74              8.89              34.90
## 38   2/1/2010            27.21              9.44              33.87
## 39   3/1/2010            30.41             10.53              41.65
## 40   4/1/2010            32.09             14.13              41.90
## 41   5/1/2010            29.11             15.88              36.45
## 42   6/1/2010            27.44             15.52              37.27
## 43   7/1/2010            29.35             14.65              35.21
## 44   8/1/2010            28.34             17.93              34.75
## 45   9/1/2010            28.83             23.17              31.20
## 46  10/1/2010            31.47             24.80              32.15
## 47  11/1/2010            31.80             29.41              34.10
## 48  12/1/2010            32.67             25.10              36.33
## 49   1/1/2011            34.23             30.58              34.10
## 50   2/1/2011            38.52             29.52              36.65
## 51   3/1/2011            37.94             33.97              33.74
## 52   4/1/2011            37.95             33.24              29.79
## 53   5/1/2011            36.66             38.69              28.90
## 54   6/1/2011            34.38             37.53              23.30
## 55   7/1/2011            34.01             38.00              19.95
## 56   8/1/2011            29.99             33.57              21.98
## 57   9/1/2011            26.56             16.18              18.15
## 58  10/1/2011            30.71             11.73              18.90
## 59  11/1/2011            31.57              9.22              19.05
## 60  12/1/2011            33.02              9.90              16.94
## 61   1/1/2012            34.83             17.17              16.94
## 62   2/1/2012            37.60             15.82              18.51
## 63   3/1/2012            39.20             16.43              18.96
## 64   4/1/2012            38.60             11.45              16.72
## 65   5/1/2012            40.93              9.06              14.32
## 66   6/1/2012            43.42              9.78              14.52
## 67   7/1/2012            44.00              8.12              13.80
## 68   8/1/2012            44.29              8.53              13.93
## 69   9/1/2012            46.81              7.78              15.87
## 70  10/1/2012            43.98             11.32              16.15
## 71  11/1/2012            44.46             11.67              15.10
## 72  12/1/2012            44.58             13.23              13.31
## 73   1/1/2013            48.98             23.61              12.16
## 74   2/1/2013            49.63             26.87              12.06
## 75   3/1/2013            51.64             27.04              13.44
## 76   4/1/2013            57.13             30.87              13.75
## 77   5/1/2013            57.35             32.32              12.47
## 78   6/1/2013            57.41             30.16              14.67
## 79   7/1/2013            58.77             34.93              15.80
## 80   8/1/2013            55.30             40.56              14.09
## 81   9/1/2013            58.63             44.17              14.12
## 82  10/1/2013            62.36             46.07              14.01
## 83  11/1/2013            64.13             52.26              16.08
## 84  12/1/2013            69.46             52.60              16.68
## 85   1/1/2014            66.82             58.48              14.63
## 86   2/1/2014            74.37             63.66              15.40
## 87   3/1/2014            73.69             50.29              14.89
## 88   4/1/2014            73.02             46.01              13.08
## 89   5/1/2014            77.32             59.69              14.56
## 90   6/1/2014            78.91             62.94              14.95
## 91   7/1/2014            79.04             60.39              13.83
## 92   8/1/2014            82.72             68.23              13.89
## 93   9/1/2014            81.94             64.45              13.59
## 94  10/1/2014            84.10             56.11              13.67
## 95  11/1/2014            85.14             49.51              14.50
## 96  12/1/2014            86.69             48.80              12.95
## 97   1/1/2015            84.78             63.11              12.04
## 98   2/1/2015            97.00             67.84              13.34
## 99   3/1/2015            97.76             59.53              18.43
## 100  4/1/2015           101.33             79.50              21.04
## 101  5/1/2015           102.87             89.15              21.16
## 102  6/1/2015           106.38             93.85              20.98
## 103  7/1/2015           111.84            114.31              22.01
## 104  8/1/2015            95.51            115.03              25.62
## 105  9/1/2015            95.81            103.26              20.97
## 106 10/1/2015           106.62            108.38              20.22
## 107 11/1/2015           106.37            123.33              19.13
## 108 12/1/2015            98.51            114.38              17.26
## 109  1/1/2016            90.40             91.84              17.57
## 110  2/1/2016            90.12             93.41              17.39
## 111  3/1/2016            93.69            102.23              17.75
## 112  4/1/2016            97.42             90.03              17.06
## 113  5/1/2016            93.61            102.57              18.34
## 114  6/1/2016            92.29             91.48              17.78
## 115  7/1/2016            90.52             91.25              25.78
## 116  8/1/2016            89.77             97.45              27.28
## 117  9/1/2016            88.25             98.55              32.98
## 118 10/1/2016            88.08            124.87              30.09
## 119 11/1/2016            94.19            117.00              30.83
## 120 12/1/2016            99.04            123.80              25.95
## 121  1/1/2017           105.96            140.71              24.73
## 122  2/1/2017           105.42            142.13              26.11
## 123  3/1/2017           108.59            147.81              29.02
## 124  4/1/2017           110.70            152.20              31.68
## 125  5/1/2017           103.37            163.07              37.83
## 126  6/1/2017           101.75            149.41              41.82
## 127  7/1/2017           105.27            181.66              42.46
## 128  8/1/2017            97.63            174.71              41.63
## 129  9/1/2017            95.10            181.35              45.95
## 130 10/1/2017            94.36            196.43              48.65
## 131 11/1/2017           101.12            187.58              50.98
## 132 12/1/2017           103.72            191.96              45.07
## 133  1/1/2018           105.68            270.30              57.08
## 134  2/1/2018           100.32            291.38              57.05
## 135  3/1/2018            97.68            295.35              55.51
## 136  4/1/2018            97.57            312.46              52.48
## 137  5/1/2018            96.74            351.60              51.04
## 138  6/1/2018           101.93            391.43              40.79
## 139  7/1/2018           110.44            337.45              42.67
## 140  8/1/2018           109.82            367.68              44.95
## 141  9/1/2018           114.64            374.13              45.47
## 142 10/1/2018           112.57            301.78              39.13
## 143 11/1/2018           113.22            286.13              37.87
## 144 12/1/2018           107.49            267.66              33.10
## 145  1/1/2019           110.17            339.50              37.24
## 146  2/1/2019           111.48            358.10              34.25
## 147  3/1/2019           109.69            356.56              35.87
## 148  4/1/2019           135.32            370.54              43.08
## 149  5/1/2019           130.45            343.28              44.14
## 150  6/1/2019           137.95            367.32              45.77
## 151  7/1/2019           141.28            322.99              46.19
## 152  8/1/2019           136.44            293.75              47.25
## 153  9/1/2019           129.54            267.62              46.60
## 154 10/1/2019           129.15            287.41              46.52
## 155 11/1/2019           150.68            314.66              48.39
## 156 12/1/2019           143.77            323.57              49.90
## 157  1/1/2020           138.31            345.09              45.90
## 158  2/1/2020           117.65            369.03              41.98
## 159  3/1/2020            96.60            375.50              48.28
## 160  4/1/2020           108.15            419.85              51.44
## 161  5/1/2020           117.30            419.73              50.84
## 162  6/1/2020           111.51            455.04              55.90
## 163  7/1/2020           116.94            488.88              55.01
## 164  8/1/2020           131.87            529.56              67.37
## 165  9/1/2020           124.08            500.03              70.90
## 166 10/1/2020           121.25            475.74              67.73
## 167 11/1/2020           148.01            490.70              70.95
## 168 12/1/2020           181.18            540.73              80.52
## 169  1/1/2021           168.17            532.39              72.27
## 170  2/1/2021           189.04            538.85              77.12
## 171  3/1/2021           184.52            521.66              70.80
## 172  4/1/2021           186.02            513.47              71.89
## 173  5/1/2021           178.65            502.81              77.32
## 174  6/1/2021           175.77            528.21              72.53
## 175  7/1/2021           176.02            517.57              64.25
## 176  8/1/2021           181.30            569.19              60.08
## 177  9/1/2021           169.17            610.34              59.25
## 178 10/1/2021           169.07            690.31              55.25
## 179 11/1/2021           144.90            641.90              55.08
## 180 12/1/2021           154.89            602.44              58.37
## 181  1/1/2022           142.97            427.14              12.22
## 182  2/1/2022           148.46            394.52              12.71
## 183  3/1/2022           137.16            374.59              12.58
## 184  4/1/2022           111.63            190.36              11.40
## 185  5/1/2022           110.44            197.44              11.12
## 186  6/1/2022            94.40            174.87              10.76
## 187  7/1/2022           106.10            224.90              11.20
## 188  8/1/2022           112.08            223.56              10.22
## 189  9/1/2022            94.33            235.44              10.19
## 190 10/1/2022           106.54            291.88              10.12
## 191 11/1/2022            97.87            305.53              10.73
## 192 12/1/2022            86.88            294.88              10.42
##     WBD_Adj_Close EA_Adj_Close Paramount_Adj_Close
## 1            8.47        49.48               22.05
## 2            8.21        49.90               21.48
## 3            9.78        49.84               21.64
## 4           11.11        49.89               22.64
## 5           11.95        48.36               23.70
## 6           11.75        46.83               23.90
## 7           12.12        48.13               22.75
## 8           12.84        52.39               22.60
## 9           14.74        55.41               22.60
## 10          14.57        60.48               20.75
## 11          12.50        55.61               19.84
## 12          12.85        57.80               19.89
## 13          11.87        46.88               18.40
## 14          11.53        46.80               16.66
## 15          10.84        49.40               16.29
## 16          11.83        50.93               17.02
## 17          13.38        49.68               15.92
## 18          11.22        43.97               14.56
## 19          10.16        42.73               12.22
## 20          10.34        48.30               12.08
## 21           7.28        36.61               11.07
## 22           6.97        22.54                7.37
## 23           7.67        18.86                5.06
## 24           7.24        15.87                6.22
## 25           7.41        15.28                4.55
## 26           7.93        16.14                3.40
## 27           8.19        18.00                3.06
## 28           9.70        20.14                5.69
## 29          11.47        22.75                5.96
## 30          11.50        21.49                5.59
## 31          12.52        21.25                6.66
## 32          13.25        18.03                8.41
## 33          14.76        18.85                9.79
## 34          14.05        18.05                9.61
## 35          16.33        16.71               10.46
## 36          15.67        17.57               11.47
## 37          15.16        16.11               10.60
## 38          15.92        16.41               10.64
## 39          17.27        18.47               11.42
## 40          19.79        19.17               13.33
## 41          19.24        16.34               11.97
## 42          18.25        14.25               10.63
## 43          19.73        15.76               12.20
## 44          19.29        15.07               11.41
## 45          22.25        16.28               13.09
## 46          22.83        15.67               14.02
## 47          20.84        14.76               13.95
## 48          21.31        16.21               15.78
## 49          19.93        15.43               16.47
## 50          22.03        18.60               19.81
## 51          20.39        19.33               20.79
## 52          22.62        19.97               20.99
## 53          22.26        24.16               23.26
## 54          20.93        23.35               23.71
## 55          20.34        22.02               22.86
## 56          21.60        22.35               20.93
## 57          19.22        20.24               17.02
## 58          22.21        23.11               21.65
## 59          21.45        22.95               21.85
## 60          20.94        20.39               22.77
## 61          21.91        18.39               23.99
## 62          23.84        16.17               25.18
## 63          25.86        16.32               28.56
## 64          27.81        15.22               28.21
## 65          25.60        13.48               26.97
## 66          27.59        12.22               27.70
## 67          25.87        10.91               28.36
## 68          28.02        13.19               30.80
## 69          30.46        12.56               30.80
## 70          30.16        12.22               27.56
## 71          30.87        14.66               30.60
## 72          32.44        14.37               32.36
## 73          35.45        15.57               35.60
## 74          37.48        17.35               37.03
## 75          40.24        17.52               39.85
## 76          40.28        17.43               39.17
## 77          40.30        22.75               42.36
## 78          39.47        22.75               41.82
## 79          40.74        25.85               45.33
## 80          39.61        26.36               43.84
## 81          43.14        25.28               47.32
## 82          45.41        25.98               50.85
## 83          44.59        21.94               50.35
## 84          46.20        22.70               54.80
## 85          40.77        26.13               50.59
## 86          42.58        28.29               57.79
## 87          42.26        28.71               53.24
## 88          38.78        28.01               49.85
## 89          39.33        34.76               51.45
## 90          37.96        35.50               53.63
## 91          43.54        33.25               49.14
## 92          43.72        37.45               51.27
## 93          37.80        35.24               46.27
## 94          35.35        40.54               47.01
## 95          34.90        43.47               47.58
## 96          34.45        46.53               47.98
## 97          28.99        54.29               47.65
## 98          32.30        56.59               51.38
## 99          30.76        58.21               52.71
## 100         32.36        57.49               54.15
## 101         33.94        62.11               53.79
## 102         33.26        65.81               48.37
## 103         33.02        70.81               46.72
## 104         26.60        65.46               39.53
## 105         26.03        67.05               34.86
## 106         29.44        71.32               40.79
## 107         31.14        67.08               44.26
## 108         26.68        68.01               41.32
## 109         27.59        63.88               41.77
## 110         25.00        63.57               42.55
## 111         28.63        65.42               48.45
## 112         27.31        61.21               49.31
## 113         27.85        75.95               48.69
## 114         25.23        74.97               48.01
## 115         25.09        75.53               46.19
## 116         25.51        80.38               45.13
## 117         26.92        84.51               48.42
## 118         26.11        77.70               50.25
## 119         27.09        78.42               53.89
## 120         27.41        77.94               56.47
## 121         28.35        82.56               57.41
## 122         28.76        85.60               58.68
## 123         29.09        88.59               61.74
## 124         28.78        93.83               59.41
## 125         26.50       112.15               54.54
## 126         25.83       104.62               56.93
## 127         24.60       115.53               58.93
## 128         22.21       120.24               57.35
## 129         21.29       116.83               51.92
## 130         18.88       118.36               50.38
## 131         19.02       105.24               50.33
## 132         22.38       103.97               52.97
## 133         25.07       125.64               51.88
## 134         24.32       122.41               47.71
## 135         21.43       119.98               46.28
## 136         23.65       116.75               44.46
## 137         21.09       129.55               45.52
## 138         27.50       139.55               50.81
## 139         26.58       127.41               47.77
## 140         27.83       112.23               48.09
## 141         32.00       119.24               52.11
## 142         32.39        90.03               52.19
## 143         30.72        83.20               49.30
## 144         24.74        78.09               39.78
## 145         28.38        91.28               45.17
## 146         28.90        94.78               45.85
## 147         27.02       100.57               43.40
## 148         30.90        93.67               46.99
## 149         27.26        92.11               44.25
## 150         30.70       100.21               45.74
## 151         30.31        91.54               47.39
## 152         27.60        92.71               38.69
## 153         26.63        96.80               37.14
## 154         26.96        95.40               33.29
## 155         32.94        99.96               37.30
## 156         32.74       106.39               38.77
## 157         29.26       106.80               31.53
## 158         25.70       100.32               22.73
## 159         19.44        99.13               12.94
## 160         22.42       113.07               16.19
## 161         21.75       121.60               19.45
## 162         21.10       130.68               21.87
## 163         21.10       140.15               24.70
## 164         22.07       138.02               26.38
## 165         21.77       129.05               26.54
## 166         20.24       118.58               27.29
## 167         26.91       126.42               33.70
## 168         30.09       142.11               35.59
## 169         41.42       141.90               46.64
## 170         53.03       132.75               62.02
## 171         43.46       134.14               43.37
## 172         37.66       140.96               39.56
## 173         32.11       141.81               40.91
## 174         30.68       142.70               43.59
## 175         29.01       143.00               39.70
## 176         28.84       144.24               40.20
## 177         25.38       141.47               38.32
## 178         23.44       139.48               35.34
## 179         23.27       123.54               30.20
## 180         23.54       131.17               29.45
## 181         27.91       131.28               31.67
## 182         28.05       128.74               28.98
## 183         24.92       125.20               35.79
## 184         18.15       116.98               27.77
## 185         18.45       137.40               32.74
## 186         13.42       120.55               23.54
## 187         15.00       130.22               22.77
## 188         13.24       125.89               22.52
## 189         11.50       114.99               18.33
## 190         13.00       125.17               17.83
## 191         11.40       129.96               19.54
## 192          9.48       121.60               16.42

Libraries

#Installing libraries
library(readxl)
library(tidyverse)
library(ggplot2)
library(corrplot)
library(gmodels)
library(effects)
library(stargazer)
library(olsrr)        
library(jtools)
library(fastmap)
library(Hmisc)
library(naniar)
library(glmnet)
library(caret)
library(car)
library(lmtest)
library(dplyr)
library(xts)
library(zoo)
library(tseries)
library(stats)
library(forecast)
library(astsa)
library(corrplot)
library(AER)
library(dynlm)
library(vars)
library(TSstudio)
library(tidyverse)
library(sarima)
library(stargazer)
library(forecast)

A) Visualization

  • Plot the stock price / variable using a time series format.
# setting time series format 
st$date_y <- as.yearmon(st$Date, format="%m/%d/%Y")

Netflix <- ts(st$Netflix_Adj_Close,start=c(2007,1),end=c(2022,12),frequency=12)

plot(st$date_y,st$Netflix_Adj_Close,type="l",col="green",lwd=2,xlab="Time Period",ylab="Stock price",main="Netflix_Stock_Price")

  • Decompose the time series data in observed, trend, seasonality, and random.
Netflix_d<-decompose(Netflix)
plot(Netflix_d)

- Briefly comment on the following components: i. Do the time series data show a trend? Based on the graph, if a positive trend can be seen between the periods from 2015 to mid-2022, this tells us that the stock had a good performance over time since, unlike each year, its increase was maintained. We can infer that the drastic increase that occurred during the periods was a consequence of COVID19, due to the total confinement where people could not leave their homes to prevent the virus from spreading through the respiratory tract. This allowed people to be completely at home, which many streaming companies increased their numbers due to the high demand for series, movies, documentaries, among others, to pass the time during the pandemic. This positive increase had an expiration date because in the graph at the beginning of 2023 we can see a decline in the stock due to the incentive of people vaccinated by the COVID vaccine, thus favoring face-to-face social interaction.

  1. Do the time series data show seasonality? How is the change of the seasonal component over time? If at first glance it is possible to identify the seasonality, it is possible to see that the action follows a constant pattern over time, at the beginning of 2007 it is observed that the action decreases and recovers drastically and then decreases for a while, it arrives a point where it reaches a peak and drops drastically and then recovers by rising drastically, this pattern remains constant for all periods.

B) Estimation

  • Detect if the time series data is stationary.
# Stationary Test 
adf.test(st$Netflix_Adj_Close)
## 
##  Augmented Dickey-Fuller Test
## 
## data:  st$Netflix_Adj_Close
## Dickey-Fuller = -2.9019, Lag order = 5, p-value = 0.1987
## alternative hypothesis: stationary
# P-Value > 0.05. Fail to reject the H0. The time series data is non-stationary. 
  • Detect if the time series data shows serial autocorrelation.
# Serial Autocorrelation
acf(st$Netflix_Adj_Close,main="Significant Autocorrelations")

# There is high serial autocorrelation despite the number of lags of the variable
  • Estimate 2 different time series regression models. You might want to consider ARMA (p,q) and / or ARIMA (p,d,q).
plot(st$date_y,st$Netflix,type="l",col="red",lwd=2,xlab="Time Period",ylab="Netflix_Adj_Close",main="Netflix Stock Price")

plot(st$date_y,log(st$Netflix_Adj_Close),type="l",col="red",lwd=2,xlab="Time Period",ylab="Netflix_Adj_Close",main="Netflix Stock Price")

plot(diff(log(st$Netflix_Adj_Close)),type="l",ylab="First Order Difference",main = "Difference- Netflix Stock Price")

adf.test(log(st$Netflix_Adj_Close))
## 
##  Augmented Dickey-Fuller Test
## 
## data:  log(st$Netflix_Adj_Close)
## Dickey-Fuller = -2.314, Lag order = 5, p-value = 0.4447
## alternative hypothesis: stationary
# The p-value is 0.44, is smaller than 0.05 which this means  is H0, stationary.
adf.test(diff(log(st$Netflix_Adj_Close)))
## Warning in adf.test(diff(log(st$Netflix_Adj_Close))): p-value smaller than
## printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff(log(st$Netflix_Adj_Close))
## Dickey-Fuller = -6.0954, Lag order = 5, p-value = 0.01
## alternative hypothesis: stationary
# The p value is still smaller than 0.05 which this means is stationary.
# Estimate 3* different time series regression models. 
# You might want to consider ARMA (p,q) and / or ARIMA (p,d,q).
# Model 1
Net_arima <- Arima(log(st$Netflix_Adj_Close), order = c(1, 1, 1))
print(Net_arima)
## Series: log(st$Netflix_Adj_Close) 
## ARIMA(1,1,1) 
## 
## Coefficients:
##          ar1      ma1
##       0.4445  -0.2920
## s.e.  0.3021   0.3205
## 
## sigma^2 = 0.02406:  log likelihood = 85.92
## AIC=-165.84   AICc=-165.71   BIC=-156.09
plot(Net_arima$residuals, main = "Arima (1,1,1) - Netflix Stock Price")

acf(Net_arima$residuals, main = "ACF - ARIMA (1,1,1) ")

Box.test(Net_arima$residuals, lag = 1, type = "Ljung-Box")
## 
##  Box-Ljung test
## 
## data:  Net_arima$residuals
## X-squared = 0.072524, df = 1, p-value = 0.7877
adf.test(Net_arima$residuals)
## Warning in adf.test(Net_arima$residuals): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  Net_arima$residuals
## Dickey-Fuller = -6.4478, Lag order = 5, p-value = 0.01
## alternative hypothesis: stationary
# p-value is 0.1 being less than .05 so its stationary
# Model 2 ARIMA

Net_arima2<- Arima(st$Netflix_Adj_Clos, order = c(1, 1, 2))
print(Net_arima2)
## Series: st$Netflix_Adj_Clos 
## ARIMA(1,1,2) 
## 
## Coefficients:
##          ar1      ma1     ma2
##       0.4686  -0.3441  0.1161
## s.e.  0.2016   0.2085  0.0762
## 
## sigma^2 = 700.9:  log likelihood = -895.3
## AIC=1798.6   AICc=1798.81   BIC=1811.61
plot(Net_arima2$residuals, main = "ARIMA (1,1,2) - Netflix Stock Price")

acf(Net_arima2$residuals, main = "ACF - ARIMA (1,1,2) ")

Box.test(Net_arima2$residuals, lag = 1, type = "Ljung-Box")
## 
##  Box-Ljung test
## 
## data:  Net_arima2$residuals
## X-squared = 0.0026119, df = 1, p-value = 0.9592
adf.test(Net_arima2$residuals)
## Warning in adf.test(Net_arima2$residuals): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  Net_arima2$residuals
## Dickey-Fuller = -7.3869, Lag order = 5, p-value = 0.01
## alternative hypothesis: stationary
# p-value is 0.01 meaning is still small for .05  is stationary 
# Model 3 ARMA
summary(Net_arma<-arma(log(st$Netflix_Adj_Close),order=c(1,1)))
## 
## Call:
## arma(x = log(st$Netflix_Adj_Close), order = c(1, 1))
## 
## Model:
## ARMA(1,1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.73942 -0.07764  0.01083  0.08273  0.52979 
## 
## Coefficient(s):
##            Estimate  Std. Error  t value Pr(>|t|)    
## ar1        0.990021    0.007347  134.746   <2e-16 ***
## ma1        0.125387    0.068350    1.834   0.0666 .  
## intercept  0.063487    0.031922    1.989   0.0467 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Fit:
## sigma^2 estimated as 0.02343,  Conditional Sum-of-Squares = 4.45,  AIC = -169.81
## Profe, lo agregue como nota, porque tardaba muhco en ejecutar y alentaba mi computadora y dure 2 horas y no tuve exito en mostrarlo
## plot(Net_arma)
Exnetflix<-exp(Net_arma$fitted.values)
plot(Exnetflix)

Net_arma_residuals<-Net_arma$residuals
Box.test(Net_arma_residuals,lag=5,type="Ljung-Box") 
## 
##  Box-Ljung test
## 
## data:  Net_arma_residuals
## X-squared = 4.11, df = 5, p-value = 0.5337
Net_arma$residuals <- na.omit(Net_arma$residuals)
adf.test(Net_arma$residuals)
## Warning in adf.test(Net_arma$residuals): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  Net_arma$residuals
## Dickey-Fuller = -6.1715, Lag order = 5, p-value = 0.01
## alternative hypothesis: stationary
summary(Net_arma)
## 
## Call:
## arma(x = log(st$Netflix_Adj_Close), order = c(1, 1))
## 
## Model:
## ARMA(1,1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.73942 -0.07764  0.01083  0.08273  0.52979 
## 
## Coefficient(s):
##            Estimate  Std. Error  t value Pr(>|t|)    
## ar1        0.990021    0.007347  134.746   <2e-16 ***
## ma1        0.125387    0.068350    1.834   0.0666 .  
## intercept  0.063487    0.031922    1.989   0.0467 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Fit:
## sigma^2 estimated as 0.02343,  Conditional Sum-of-Squares = 4.45,  AIC = -169.81
Box.test(Net_arma_residuals, lag = 5, type = "Ljung-Box")
## 
##  Box-Ljung test
## 
## data:  Net_arma_residuals
## X-squared = 4.11, df = 5, p-value = 0.5337
adf.test(Net_arma$residuals)
## Warning in adf.test(Net_arma$residuals): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  Net_arma$residuals
## Dickey-Fuller = -6.1715, Lag order = 5, p-value = 0.01
## alternative hypothesis: stationary

The p-value of Ljung box is 0.5337 this havng a grader result than 0.05, means that it does not have serial autocorrelation. ADF is telling us that ARMA is stationary since the p-value is 0.01 and its lower than 0.05.

C) Evaluation

  • Based on diagnostic tests, compare the 3 estimated time series regression models, and select the results that you consider might generate the best forecast.
AIC(Net_arima)
## [1] -165.843
fit_v_a1 <- fitted(Net_arima)
nr_arima1 <- sqrt(mean((fit_v_a1 - st$Netflix_Adj_Close)^2))
print(nr_arima1)
## [1] 230.8619
AIC(Net_arima2)
## [1] 1798.597
fit_v_a2 <- fitted(Net_arima2)
nr_arima2 <- sqrt(mean((fit_v_a2 - st$Netflix_Adj_Close)^2))
print(nr_arima2)
## [1] 26.19737
arma_a <- arima(log(st$Netflix_Adj_Close), order = c(1, 1, 1))
AICA <- AIC(arma_a)
AICA
## [1] -165.843
arma_a <- arima(log(st$Netflix_Adj_Close), order = c(1, 1, 1))
residual_arma <- arma_a$residuals
r_arma <- sqrt(mean((log(st$Netflix_Adj_Close) - residual_arma)^2))
print(r_arma)
## [1] 4.341687
AIC(Net_arima)
## [1] -165.843
AIC(Net_arima2)
## [1] 1798.597

Through the evaluation, 3 proposed models were analyzed, for the ARMA model the least AIC was -165.843 and in addition there were low RMSE values, these tell us that the model fits the information in a more precise way. With this model and information we generate a projection of the forecast 5 years into the future.

D) Forecast

  • By using the selected model, make a forecast for the next 5 periods. In doing so, include a time series plot showing your forecast.
Netflix_Model_forecast<-forecast(Exnetflix,h=5)
## Warning in ets(object, lambda = lambda, biasadj = biasadj,
## allow.multiplicative.trend = allow.multiplicative.trend, : Missing values
## encountered. Using longest contiguous portion of time series
Netflix_Model_forecast
##     Point Forecast    Lo 80    Hi 80     Lo 95    Hi 95
## 193       308.3285 238.9173 377.7396 202.17325 414.4837
## 194       308.6563 209.8291 407.4835 157.51312 459.7995
## 195       308.9842 187.0056 430.9628 122.43399 495.5343
## 196       309.3120 167.3302 451.2938  92.16958 526.4544
## 197       309.6399 149.6018 469.6779  64.88276 554.3970
plot(Netflix_Model_forecast)

autoplot(Netflix_Model_forecast)

For the next 5 years, Netflix’s stock is expected to increase over time because it has an upward increase, as the model expects the stock price to continue increasing. This forecast helps us make decisions in a financial sector since we can learn the behavior of a variable and thus make supported investment decisions. The estimate of the share will be constant with an increasing value starting its first year 308.3285, as each year an increase in its value is expected.

LS0tDQp0aXRsZTogIkV4YW1lbiINCmF1dGhvcjogIlNlYmFzdGlhbiBFc3Bpbm96YSBBMDA4MzM3MDQiDQpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiDQpvdXRwdXQ6IA0KICBodG1sX2RvY3VtZW50Og0KICAgIHRvYzogVFJVRQ0KICAgIHRvY19mbG9hdDogVFJVRQ0KICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUNCi0tLQ0KIyBQYXJ0IDMNCg0KPGltZyBzcmM9IkM6XFxVc2Vyc1xcc2ViYXN0aWFuXFxEb3dubG9hZHNcXG5ldGZsaXgucG5nIj4NCg0KYGBge3J9DQpzdDwtIHJlYWQuY3N2KCJDOlxcVXNlcnNcXHNlYmFzdGlhblxcRG93bmxvYWRzXFxlbnRyZXRhaW5tZW50X3N0b2Nrcy5jc3YiKQ0Kc3QNCmBgYA0KDQoNCiMjIExpYnJhcmllcw0KYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0NCiNJbnN0YWxsaW5nIGxpYnJhcmllcw0KbGlicmFyeShyZWFkeGwpDQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmxpYnJhcnkoZ2dwbG90MikNCmxpYnJhcnkoY29ycnBsb3QpDQpsaWJyYXJ5KGdtb2RlbHMpDQpsaWJyYXJ5KGVmZmVjdHMpDQpsaWJyYXJ5KHN0YXJnYXplcikNCmxpYnJhcnkob2xzcnIpICAgICAgICANCmxpYnJhcnkoanRvb2xzKQ0KbGlicmFyeShmYXN0bWFwKQ0KbGlicmFyeShIbWlzYykNCmxpYnJhcnkobmFuaWFyKQ0KbGlicmFyeShnbG1uZXQpDQpsaWJyYXJ5KGNhcmV0KQ0KbGlicmFyeShjYXIpDQpsaWJyYXJ5KGxtdGVzdCkNCmxpYnJhcnkoZHBseXIpDQpsaWJyYXJ5KHh0cykNCmxpYnJhcnkoem9vKQ0KbGlicmFyeSh0c2VyaWVzKQ0KbGlicmFyeShzdGF0cykNCmxpYnJhcnkoZm9yZWNhc3QpDQpsaWJyYXJ5KGFzdHNhKQ0KbGlicmFyeShjb3JycGxvdCkNCmxpYnJhcnkoQUVSKQ0KbGlicmFyeShkeW5sbSkNCmxpYnJhcnkodmFycykNCmxpYnJhcnkoVFNzdHVkaW8pDQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmxpYnJhcnkoc2FyaW1hKQ0KbGlicmFyeShzdGFyZ2F6ZXIpDQpsaWJyYXJ5KGZvcmVjYXN0KQ0KYGBgDQoNCiMjIEEpIFZpc3VhbGl6YXRpb24NCi0gUGxvdCB0aGUgc3RvY2sgcHJpY2UgLyB2YXJpYWJsZSB1c2luZyBhIHRpbWUgc2VyaWVzIGZvcm1hdC4NCmBgYHtyfQ0KIyBzZXR0aW5nIHRpbWUgc2VyaWVzIGZvcm1hdCANCnN0JGRhdGVfeSA8LSBhcy55ZWFybW9uKHN0JERhdGUsIGZvcm1hdD0iJW0vJWQvJVkiKQ0KDQpOZXRmbGl4IDwtIHRzKHN0JE5ldGZsaXhfQWRqX0Nsb3NlLHN0YXJ0PWMoMjAwNywxKSxlbmQ9YygyMDIyLDEyKSxmcmVxdWVuY3k9MTIpDQoNCnBsb3Qoc3QkZGF0ZV95LHN0JE5ldGZsaXhfQWRqX0Nsb3NlLHR5cGU9ImwiLGNvbD0iZ3JlZW4iLGx3ZD0yLHhsYWI9IlRpbWUgUGVyaW9kIix5bGFiPSJTdG9jayBwcmljZSIsbWFpbj0iTmV0ZmxpeF9TdG9ja19QcmljZSIpDQpgYGANCg0KLSBEZWNvbXBvc2UgdGhlIHRpbWUgc2VyaWVzIGRhdGEgaW4gb2JzZXJ2ZWQsIHRyZW5kLCBzZWFzb25hbGl0eSwgYW5kIHJhbmRvbS4NCmBgYHtyfQ0KTmV0ZmxpeF9kPC1kZWNvbXBvc2UoTmV0ZmxpeCkNCnBsb3QoTmV0ZmxpeF9kKQ0KYGBgDQotIEJyaWVmbHkgY29tbWVudCBvbiB0aGUgZm9sbG93aW5nIGNvbXBvbmVudHM6DQppLiBEbyB0aGUgdGltZSBzZXJpZXMgZGF0YSBzaG93IGEgdHJlbmQ/DQpCYXNlZCBvbiB0aGUgZ3JhcGgsIGlmIGEgcG9zaXRpdmUgdHJlbmQgY2FuIGJlIHNlZW4gYmV0d2VlbiB0aGUgcGVyaW9kcyBmcm9tIDIwMTUgdG8gbWlkLTIwMjIsIHRoaXMgdGVsbHMgdXMgdGhhdCB0aGUgc3RvY2sgaGFkIGEgZ29vZCBwZXJmb3JtYW5jZSBvdmVyIHRpbWUgc2luY2UsIHVubGlrZSBlYWNoIHllYXIsIGl0cyBpbmNyZWFzZSB3YXMgbWFpbnRhaW5lZC4gV2UgY2FuIGluZmVyIHRoYXQgdGhlIGRyYXN0aWMgaW5jcmVhc2UgdGhhdCBvY2N1cnJlZCBkdXJpbmcgdGhlIHBlcmlvZHMgd2FzIGEgY29uc2VxdWVuY2Ugb2YgQ09WSUQxOSwgZHVlIHRvIHRoZSB0b3RhbCBjb25maW5lbWVudCB3aGVyZSBwZW9wbGUgY291bGQgbm90IGxlYXZlIHRoZWlyIGhvbWVzIHRvIHByZXZlbnQgdGhlIHZpcnVzIGZyb20gc3ByZWFkaW5nIHRocm91Z2ggdGhlIHJlc3BpcmF0b3J5IHRyYWN0LiBUaGlzIGFsbG93ZWQgcGVvcGxlIHRvIGJlIGNvbXBsZXRlbHkgYXQgaG9tZSwgd2hpY2ggbWFueSBzdHJlYW1pbmcgY29tcGFuaWVzIGluY3JlYXNlZCB0aGVpciBudW1iZXJzIGR1ZSB0byB0aGUgaGlnaCBkZW1hbmQgZm9yIHNlcmllcywgbW92aWVzLCBkb2N1bWVudGFyaWVzLCBhbW9uZyBvdGhlcnMsIHRvIHBhc3MgdGhlIHRpbWUgZHVyaW5nIHRoZSBwYW5kZW1pYy4gVGhpcyBwb3NpdGl2ZSBpbmNyZWFzZSBoYWQgYW4gZXhwaXJhdGlvbiBkYXRlIGJlY2F1c2UgaW4gdGhlIGdyYXBoIGF0IHRoZSBiZWdpbm5pbmcgb2YgMjAyMyB3ZSBjYW4gc2VlIGEgZGVjbGluZSBpbiB0aGUgc3RvY2sgZHVlIHRvIHRoZSBpbmNlbnRpdmUgb2YgcGVvcGxlIHZhY2NpbmF0ZWQgYnkgdGhlIENPVklEIHZhY2NpbmUsIHRodXMgZmF2b3JpbmcgZmFjZS10by1mYWNlIHNvY2lhbCBpbnRlcmFjdGlvbi4NCg0KaWkuIERvIHRoZSB0aW1lIHNlcmllcyBkYXRhIHNob3cgc2Vhc29uYWxpdHk/IEhvdyBpcyB0aGUgY2hhbmdlIG9mIHRoZSBzZWFzb25hbCBjb21wb25lbnQgb3ZlciB0aW1lPw0KSWYgYXQgZmlyc3QgZ2xhbmNlIGl0IGlzIHBvc3NpYmxlIHRvIGlkZW50aWZ5IHRoZSBzZWFzb25hbGl0eSwgaXQgaXMgcG9zc2libGUgdG8gc2VlIHRoYXQgdGhlIGFjdGlvbiBmb2xsb3dzIGEgY29uc3RhbnQgcGF0dGVybiBvdmVyIHRpbWUsIGF0IHRoZSBiZWdpbm5pbmcgb2YgMjAwNyBpdCBpcyBvYnNlcnZlZCB0aGF0IHRoZSBhY3Rpb24gZGVjcmVhc2VzIGFuZCByZWNvdmVycyBkcmFzdGljYWxseSBhbmQgdGhlbiBkZWNyZWFzZXMgZm9yIGEgd2hpbGUsIGl0IGFycml2ZXMgYSBwb2ludCB3aGVyZSBpdCByZWFjaGVzIGEgcGVhayBhbmQgZHJvcHMgZHJhc3RpY2FsbHkgYW5kIHRoZW4gcmVjb3ZlcnMgYnkgcmlzaW5nIGRyYXN0aWNhbGx5LCB0aGlzIHBhdHRlcm4gcmVtYWlucyBjb25zdGFudCBmb3IgYWxsIHBlcmlvZHMuDQoNCiMjIEIpIEVzdGltYXRpb24NCi0gRGV0ZWN0IGlmIHRoZSB0aW1lIHNlcmllcyBkYXRhIGlzIHN0YXRpb25hcnkuDQpgYGB7cn0NCiMgU3RhdGlvbmFyeSBUZXN0IA0KYWRmLnRlc3Qoc3QkTmV0ZmxpeF9BZGpfQ2xvc2UpDQojIFAtVmFsdWUgPiAwLjA1LiBGYWlsIHRvIHJlamVjdCB0aGUgSDAuIFRoZSB0aW1lIHNlcmllcyBkYXRhIGlzIG5vbi1zdGF0aW9uYXJ5LiANCmBgYA0KDQotIERldGVjdCBpZiB0aGUgdGltZSBzZXJpZXMgZGF0YSBzaG93cyBzZXJpYWwgYXV0b2NvcnJlbGF0aW9uLg0KYGBge3J9DQojIFNlcmlhbCBBdXRvY29ycmVsYXRpb24NCmFjZihzdCROZXRmbGl4X0Fkal9DbG9zZSxtYWluPSJTaWduaWZpY2FudCBBdXRvY29ycmVsYXRpb25zIikNCiMgVGhlcmUgaXMgaGlnaCBzZXJpYWwgYXV0b2NvcnJlbGF0aW9uIGRlc3BpdGUgdGhlIG51bWJlciBvZiBsYWdzIG9mIHRoZSB2YXJpYWJsZQ0KYGBgDQoNCg0KLSBFc3RpbWF0ZSAyIGRpZmZlcmVudCB0aW1lIHNlcmllcyByZWdyZXNzaW9uIG1vZGVscy4gWW91IG1pZ2h0IHdhbnQgdG8gY29uc2lkZXINCkFSTUEgKHAscSkgYW5kIC8gb3IgQVJJTUEgKHAsZCxxKS4NCmBgYHtyfQ0KcGxvdChzdCRkYXRlX3ksc3QkTmV0ZmxpeCx0eXBlPSJsIixjb2w9InJlZCIsbHdkPTIseGxhYj0iVGltZSBQZXJpb2QiLHlsYWI9Ik5ldGZsaXhfQWRqX0Nsb3NlIixtYWluPSJOZXRmbGl4IFN0b2NrIFByaWNlIikNCmBgYA0KYGBge3J9DQpwbG90KHN0JGRhdGVfeSxsb2coc3QkTmV0ZmxpeF9BZGpfQ2xvc2UpLHR5cGU9ImwiLGNvbD0icmVkIixsd2Q9Mix4bGFiPSJUaW1lIFBlcmlvZCIseWxhYj0iTmV0ZmxpeF9BZGpfQ2xvc2UiLG1haW49Ik5ldGZsaXggU3RvY2sgUHJpY2UiKQ0KYGBgDQoNCmBgYHtyfQ0KcGxvdChkaWZmKGxvZyhzdCROZXRmbGl4X0Fkal9DbG9zZSkpLHR5cGU9ImwiLHlsYWI9IkZpcnN0IE9yZGVyIERpZmZlcmVuY2UiLG1haW4gPSAiRGlmZmVyZW5jZS0gTmV0ZmxpeCBTdG9jayBQcmljZSIpDQpgYGANCg0KYGBge3J9DQphZGYudGVzdChsb2coc3QkTmV0ZmxpeF9BZGpfQ2xvc2UpKQ0KYGBgDQpgYGB7cn0NCiMgVGhlIHAtdmFsdWUgaXMgMC40NCwgaXMgc21hbGxlciB0aGFuIDAuMDUgd2hpY2ggdGhpcyBtZWFucyAgaXMgSDAsIHN0YXRpb25hcnkuDQphZGYudGVzdChkaWZmKGxvZyhzdCROZXRmbGl4X0Fkal9DbG9zZSkpKQ0KIyBUaGUgcCB2YWx1ZSBpcyBzdGlsbCBzbWFsbGVyIHRoYW4gMC4wNSB3aGljaCB0aGlzIG1lYW5zIGlzIHN0YXRpb25hcnkuDQoNCmBgYA0KDQpgYGB7cn0NCiMgRXN0aW1hdGUgMyogZGlmZmVyZW50IHRpbWUgc2VyaWVzIHJlZ3Jlc3Npb24gbW9kZWxzLiANCiMgWW91IG1pZ2h0IHdhbnQgdG8gY29uc2lkZXIgQVJNQSAocCxxKSBhbmQgLyBvciBBUklNQSAocCxkLHEpLg0KIyBNb2RlbCAxDQpOZXRfYXJpbWEgPC0gQXJpbWEobG9nKHN0JE5ldGZsaXhfQWRqX0Nsb3NlKSwgb3JkZXIgPSBjKDEsIDEsIDEpKQ0KcHJpbnQoTmV0X2FyaW1hKQ0KcGxvdChOZXRfYXJpbWEkcmVzaWR1YWxzLCBtYWluID0gIkFyaW1hICgxLDEsMSkgLSBOZXRmbGl4IFN0b2NrIFByaWNlIikNCg0KDQpgYGANCmBgYHtyfQ0KYWNmKE5ldF9hcmltYSRyZXNpZHVhbHMsIG1haW4gPSAiQUNGIC0gQVJJTUEgKDEsMSwxKSAiKQ0KYGBgDQoNCmBgYHtyfQ0KQm94LnRlc3QoTmV0X2FyaW1hJHJlc2lkdWFscywgbGFnID0gMSwgdHlwZSA9ICJManVuZy1Cb3giKQ0KYGBgDQoNCmBgYHtyfQ0KYWRmLnRlc3QoTmV0X2FyaW1hJHJlc2lkdWFscykNCiMgcC12YWx1ZSBpcyAwLjEgYmVpbmcgbGVzcyB0aGFuIC4wNSBzbyBpdHMgc3RhdGlvbmFyeQ0KYGBgDQpgYGB7cn0NCiMgTW9kZWwgMiBBUklNQQ0KDQpOZXRfYXJpbWEyPC0gQXJpbWEoc3QkTmV0ZmxpeF9BZGpfQ2xvcywgb3JkZXIgPSBjKDEsIDEsIDIpKQ0KcHJpbnQoTmV0X2FyaW1hMikNCmBgYA0KDQpgYGB7cn0NCnBsb3QoTmV0X2FyaW1hMiRyZXNpZHVhbHMsIG1haW4gPSAiQVJJTUEgKDEsMSwyKSAtIE5ldGZsaXggU3RvY2sgUHJpY2UiKQ0KYGBgDQpgYGB7cn0NCmFjZihOZXRfYXJpbWEyJHJlc2lkdWFscywgbWFpbiA9ICJBQ0YgLSBBUklNQSAoMSwxLDIpICIpDQpgYGANCmBgYHtyfQ0KQm94LnRlc3QoTmV0X2FyaW1hMiRyZXNpZHVhbHMsIGxhZyA9IDEsIHR5cGUgPSAiTGp1bmctQm94IikNCmBgYA0KDQpgYGB7cn0NCmFkZi50ZXN0KE5ldF9hcmltYTIkcmVzaWR1YWxzKQ0KIyBwLXZhbHVlIGlzIDAuMDEgbWVhbmluZyBpcyBzdGlsbCBzbWFsbCBmb3IgLjA1ICBpcyBzdGF0aW9uYXJ5IA0KYGBgDQpgYGB7cn0NCiMgTW9kZWwgMyBBUk1BDQpzdW1tYXJ5KE5ldF9hcm1hPC1hcm1hKGxvZyhzdCROZXRmbGl4X0Fkal9DbG9zZSksb3JkZXI9YygxLDEpKSkNCmBgYA0KDQpgYGB7cn0NCiMjIFByb2ZlLCBsbyBhZ3JlZ3VlIGNvbW8gbm90YSwgcG9ycXVlIHRhcmRhYmEgbXVoY28gZW4gZWplY3V0YXIgeSBhbGVudGFiYSBtaSBjb21wdXRhZG9yYSB5IGR1cmUgMiBob3JhcyB5IG5vIHR1dmUgZXhpdG8gZW4gbW9zdHJhcmxvDQojIyBwbG90KE5ldF9hcm1hKQ0KYGBgDQoNCmBgYHtyfQ0KRXhuZXRmbGl4PC1leHAoTmV0X2FybWEkZml0dGVkLnZhbHVlcykNCnBsb3QoRXhuZXRmbGl4KQ0KYGBgDQoNCmBgYHtyfQ0KTmV0X2FybWFfcmVzaWR1YWxzPC1OZXRfYXJtYSRyZXNpZHVhbHMNCkJveC50ZXN0KE5ldF9hcm1hX3Jlc2lkdWFscyxsYWc9NSx0eXBlPSJManVuZy1Cb3giKSANCmBgYA0KDQpgYGB7cn0NCk5ldF9hcm1hJHJlc2lkdWFscyA8LSBuYS5vbWl0KE5ldF9hcm1hJHJlc2lkdWFscykNCmFkZi50ZXN0KE5ldF9hcm1hJHJlc2lkdWFscykNCmBgYA0KYGBge3J9DQpzdW1tYXJ5KE5ldF9hcm1hKQ0KYGBgDQpgYGB7cn0NCkJveC50ZXN0KE5ldF9hcm1hX3Jlc2lkdWFscywgbGFnID0gNSwgdHlwZSA9ICJManVuZy1Cb3giKQ0KYGBgDQpgYGB7cn0NCmFkZi50ZXN0KE5ldF9hcm1hJHJlc2lkdWFscykNCmBgYA0KDQoNCg0KDQpUaGUgcC12YWx1ZSBvZiBManVuZyBib3ggaXMgIDAuNTMzNyB0aGlzIGhhdm5nIGEgIGdyYWRlciByZXN1bHQgdGhhbiAwLjA1LCBtZWFucyB0aGF0IGl0IGRvZXMgbm90IGhhdmUgc2VyaWFsIGF1dG9jb3JyZWxhdGlvbi4gQURGIGlzIHRlbGxpbmcgdXMgdGhhdCBBUk1BIGlzIHN0YXRpb25hcnkgc2luY2UgdGhlIHAtdmFsdWUgaXMgMC4wMSBhbmQgaXRzIGxvd2VyIHRoYW4gMC4wNS4NCg0KIyMgQykgRXZhbHVhdGlvbg0KLSBCYXNlZCBvbiBkaWFnbm9zdGljIHRlc3RzLCBjb21wYXJlIHRoZSAzIGVzdGltYXRlZCB0aW1lIHNlcmllcyByZWdyZXNzaW9uIG1vZGVscywgYW5kIHNlbGVjdCB0aGUgcmVzdWx0cyB0aGF0IHlvdSBjb25zaWRlciBtaWdodCBnZW5lcmF0ZSB0aGUgYmVzdCBmb3JlY2FzdC4NCg0KYGBge3J9DQpBSUMoTmV0X2FyaW1hKQ0KYGBgDQoNCg0KYGBge3J9DQpmaXRfdl9hMSA8LSBmaXR0ZWQoTmV0X2FyaW1hKQ0KbnJfYXJpbWExIDwtIHNxcnQobWVhbigoZml0X3ZfYTEgLSBzdCROZXRmbGl4X0Fkal9DbG9zZSleMikpDQpwcmludChucl9hcmltYTEpDQpgYGANCg0KYGBge3J9DQpBSUMoTmV0X2FyaW1hMikNCmBgYA0KYGBge3J9DQpmaXRfdl9hMiA8LSBmaXR0ZWQoTmV0X2FyaW1hMikNCm5yX2FyaW1hMiA8LSBzcXJ0KG1lYW4oKGZpdF92X2EyIC0gc3QkTmV0ZmxpeF9BZGpfQ2xvc2UpXjIpKQ0KcHJpbnQobnJfYXJpbWEyKQ0KYGBgDQoNCmBgYHtyfQ0KYXJtYV9hIDwtIGFyaW1hKGxvZyhzdCROZXRmbGl4X0Fkal9DbG9zZSksIG9yZGVyID0gYygxLCAxLCAxKSkNCkFJQ0EgPC0gQUlDKGFybWFfYSkNCkFJQ0ENCmBgYA0KYGBge3J9DQphcm1hX2EgPC0gYXJpbWEobG9nKHN0JE5ldGZsaXhfQWRqX0Nsb3NlKSwgb3JkZXIgPSBjKDEsIDEsIDEpKQ0KcmVzaWR1YWxfYXJtYSA8LSBhcm1hX2EkcmVzaWR1YWxzDQpyX2FybWEgPC0gc3FydChtZWFuKChsb2coc3QkTmV0ZmxpeF9BZGpfQ2xvc2UpIC0gcmVzaWR1YWxfYXJtYSleMikpDQpwcmludChyX2FybWEpDQpgYGANCg0KYGBge3J9DQpBSUMoTmV0X2FyaW1hKQ0KYGBgDQoNCmBgYHtyfQ0KQUlDKE5ldF9hcmltYTIpDQpgYGANClRocm91Z2ggdGhlIGV2YWx1YXRpb24sIDMgcHJvcG9zZWQgbW9kZWxzIHdlcmUgYW5hbHl6ZWQsIGZvciB0aGUgQVJNQSBtb2RlbCB0aGUgbGVhc3QgQUlDIHdhcyAtMTY1Ljg0MyBhbmQgaW4gYWRkaXRpb24gdGhlcmUgd2VyZSBsb3cgUk1TRSB2YWx1ZXMsIHRoZXNlIHRlbGwgdXMgdGhhdCB0aGUgbW9kZWwgZml0cyB0aGUgaW5mb3JtYXRpb24gaW4gYSBtb3JlIHByZWNpc2Ugd2F5LiBXaXRoIHRoaXMgbW9kZWwgYW5kIGluZm9ybWF0aW9uIHdlIGdlbmVyYXRlIGEgcHJvamVjdGlvbiBvZiB0aGUgZm9yZWNhc3QgNSB5ZWFycyBpbnRvIHRoZSBmdXR1cmUuDQoNCiMjIEQpIEZvcmVjYXN0DQotIEJ5IHVzaW5nIHRoZSBzZWxlY3RlZCBtb2RlbCwgbWFrZSBhIGZvcmVjYXN0IGZvciB0aGUgbmV4dCA1IHBlcmlvZHMuIEluIGRvaW5nIHNvLCBpbmNsdWRlIGEgdGltZSBzZXJpZXMgcGxvdCBzaG93aW5nIHlvdXIgZm9yZWNhc3QuDQoNCmBgYHtyfQ0KTmV0ZmxpeF9Nb2RlbF9mb3JlY2FzdDwtZm9yZWNhc3QoRXhuZXRmbGl4LGg9NSkNCk5ldGZsaXhfTW9kZWxfZm9yZWNhc3QNCg0KYGBgDQoNCmBgYHtyfQ0KcGxvdChOZXRmbGl4X01vZGVsX2ZvcmVjYXN0KQ0KYGBgDQpgYGB7cn0NCmF1dG9wbG90KE5ldGZsaXhfTW9kZWxfZm9yZWNhc3QpDQpgYGANCkZvciB0aGUgbmV4dCA1IHllYXJzLCBOZXRmbGl4J3Mgc3RvY2sgaXMgZXhwZWN0ZWQgdG8gaW5jcmVhc2Ugb3ZlciB0aW1lIGJlY2F1c2UgaXQgaGFzIGFuIHVwd2FyZCBpbmNyZWFzZSwgYXMgdGhlIG1vZGVsIGV4cGVjdHMgdGhlIHN0b2NrIHByaWNlIHRvIGNvbnRpbnVlIGluY3JlYXNpbmcuIFRoaXMgZm9yZWNhc3QgaGVscHMgdXMgbWFrZSBkZWNpc2lvbnMgaW4gYSBmaW5hbmNpYWwgc2VjdG9yIHNpbmNlIHdlIGNhbiBsZWFybiB0aGUgYmVoYXZpb3Igb2YgYSB2YXJpYWJsZSBhbmQgdGh1cyBtYWtlIHN1cHBvcnRlZCBpbnZlc3RtZW50IGRlY2lzaW9ucy4gVGhlIGVzdGltYXRlIG9mIHRoZSBzaGFyZSB3aWxsIGJlIGNvbnN0YW50IHdpdGggYW4gaW5jcmVhc2luZyB2YWx1ZSBzdGFydGluZyBpdHMgZmlyc3QgeWVhciAzMDguMzI4NSwgYXMgZWFjaCB5ZWFyIGFuIGluY3JlYXNlIGluIGl0cyB2YWx1ZSBpcyBleHBlY3RlZC4NCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg==