Error estándar de la media.

\[\large{SEM=\frac{s}{\sqrt{n}}}\]

Desviación estándar.

set.seed(2023)
pH <- runif(1000, 4, 6)
mean(pH)
## [1] 4.976634
sd(pH)
## [1] 0.5697206
# Desviación estándar por definición. 
sd(pH)/sqrt(length(pH))
## [1] 0.01801615
sim1=replicate(10000, runif(1000, 4, 6))
# dim(sim1)
mean_sim1 = colMeans(sim1)
hist(mean_sim1)

# Desviación estándar por simulación. 
sd(mean_sim1)
## [1] 0.01838248
ee = function(n){
  if(n>2){
  simf=replicate(1000,runif(n,4,6))
  e=sd(colMeans(simf)) #Hint: apply
  #Cacular error estandar de la mediana
  formula=sd(simf[,1])/sqrt(length(simf[,1]))
  return(list(e=e,formula=formula))
  }else{
    print("n<=2")
  }
 
}

Calcular error estandar de la mediana.

y_1=c() #Simulacion
y_2=c() #Formula 
n_i=c() #N 
for(i in seq(3,1000,1)){
  y_e=ee(i)$e
  y_1=c(y_1,y_e)
  
  y_f=ee(i)$formula
  y_2=c(y_2,y_f)
  n_i=c(n_i,i)
}


library(ggplot2)
df=data.frame(y_1,y_2,n_i)

  ggplot(data=df,aes(x=y_1,y=y_2,col=n_i))+
  geom_point(size=3)+
  coord_equal()+
  geom_abline(slope=1)+
    labs(x="Simulado",y="Formula")

y=c()
for(i in seq(3,100,1)){
  y_i=ee(i)
  #y=c(y, y_i)
}
plot(y,x=3:100)