The objective is to perform a time series analysis for Netflix stock price.
# Uploading libraries
library(xts)
## Warning: package 'xts' was built under R version 4.3.1
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 4.3.1
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.3.1
##
## ######################### Warning from 'xts' package ##########################
## # #
## # The dplyr lag() function breaks how base R's lag() function is supposed to #
## # work, which breaks lag(my_xts). Calls to lag(my_xts) that you type or #
## # source() into this session won't work correctly. #
## # #
## # Use stats::lag() to make sure you're not using dplyr::lag(), or you can add #
## # conflictRules('dplyr', exclude = 'lag') to your .Rprofile to stop #
## # dplyr from breaking base R's lag() function. #
## # #
## # Code in packages is not affected. It's protected by R's namespace mechanism #
## # Set `options(xts.warn_dplyr_breaks_lag = FALSE)` to suppress this warning. #
## # #
## ###############################################################################
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:xts':
##
## first, last
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(zoo)
library(tseries)
## Warning: package 'tseries' was built under R version 4.3.1
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
library(stats)
library(forecast)
## Warning: package 'forecast' was built under R version 4.3.1
library(astsa)
##
## Attaching package: 'astsa'
## The following object is masked from 'package:forecast':
##
## gas
library(corrplot)
## Warning: package 'corrplot' was built under R version 4.3.1
## corrplot 0.92 loaded
library(AER)
## Warning: package 'AER' was built under R version 4.3.1
## Loading required package: car
## Warning: package 'car' was built under R version 4.3.1
## Loading required package: carData
## Warning: package 'carData' was built under R version 4.3.1
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
## recode
## Loading required package: lmtest
## Warning: package 'lmtest' was built under R version 4.3.1
## Loading required package: sandwich
## Warning: package 'sandwich' was built under R version 4.3.1
## Loading required package: survival
library(vars)
## Warning: package 'vars' was built under R version 4.3.1
## Loading required package: MASS
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
## select
## Loading required package: strucchange
## Warning: package 'strucchange' was built under R version 4.3.1
## Loading required package: urca
## Warning: package 'urca' was built under R version 4.3.1
library(dynlm)
## Warning: package 'dynlm' was built under R version 4.3.1
library(vars)
library(TSstudio)
## Warning: package 'TSstudio' was built under R version 4.3.1
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.3.1
## Warning: package 'ggplot2' was built under R version 4.3.1
## Warning: package 'tidyr' was built under R version 4.3.1
## Warning: package 'readr' was built under R version 4.3.1
## Warning: package 'purrr' was built under R version 4.3.1
## Warning: package 'forcats' was built under R version 4.3.1
## Warning: package 'lubridate' was built under R version 4.3.1
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats 1.0.0 ✔ readr 2.1.4
## ✔ ggplot2 3.4.3 ✔ stringr 1.5.0
## ✔ lubridate 1.9.2 ✔ tibble 3.2.1
## ✔ purrr 1.0.2 ✔ tidyr 1.3.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ stringr::boundary() masks strucchange::boundary()
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::first() masks xts::first()
## ✖ dplyr::lag() masks stats::lag()
## ✖ dplyr::last() masks xts::last()
## ✖ car::recode() masks dplyr::recode()
## ✖ MASS::select() masks dplyr::select()
## ✖ purrr::some() masks car::some()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(sarima)
## Warning: package 'sarima' was built under R version 4.3.1
## Loading required package: stats4
##
## Attaching package: 'sarima'
##
## The following object is masked from 'package:astsa':
##
## sarima
##
## The following object is masked from 'package:stats':
##
## spectrum
library(dygraphs)
## Warning: package 'dygraphs' was built under R version 4.3.1
library(ggplot2)
data <- read.csv("C:\\Users\\naila\\OneDrive\\Documentos\\1 TEC\\5 QUINTO SEMESTRE\\Econometrics\\Exam\\entretainment_stocks.csv")
str(data)
## 'data.frame': 192 obs. of 7 variables:
## $ Date : chr "1/1/2007" "2/1/2007" "3/1/2007" "4/1/2007" ...
## $ Disney_Adj_Close : num 29.1 28.4 28.5 29 29.3 ...
## $ Netflix_Adj_Close : num 3.26 3.22 3.31 3.17 3.13 2.77 2.46 2.5 2.96 3.78 ...
## $ Nintendo_Adj_Close : num 37.1 33.1 36.3 40 43.6 ...
## $ WBD_Adj_Close : num 8.47 8.21 9.78 11.11 11.95 ...
## $ EA_Adj_Close : num 49.5 49.9 49.8 49.9 48.4 ...
## $ Paramount_Adj_Close: num 22.1 21.5 21.6 22.6 23.7 ...
sum(is.na(data))
## [1] 0
data$Date <- as.Date(data$Date,"%m/%d/%Y")
Nxts<-xts(data$Netflix_Adj_Close,order.by=data$Date)
plot(Nxts)
Netflixts<-ts(data$Netflix_Adj_Close,start=c(2007,1),end=c(2022,12),frequency=12)
Netflixdec<-decompose(Netflixts)
plot(Netflixdec)
adf.test(data$Netflix_Adj_Close)
##
## Augmented Dickey-Fuller Test
##
## data: data$Netflix_Adj_Close
## Dickey-Fuller = -2.9019, Lag order = 5, p-value = 0.1987
## alternative hypothesis: stationary
non-stationary
acf(data$Netflix_Adj_Close,main="Significant Autocorrelations")
## ARMA with log
summary(Netflix_ARMA<-arma(log(data$Netflix_Adj_Close),order=c(1,1)))
##
## Call:
## arma(x = log(data$Netflix_Adj_Close), order = c(1, 1))
##
## Model:
## ARMA(1,1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.73942 -0.07764 0.01083 0.08273 0.52979
##
## Coefficient(s):
## Estimate Std. Error t value Pr(>|t|)
## ar1 0.990021 0.007347 134.746 <2e-16 ***
## ma1 0.125387 0.068350 1.834 0.0666 .
## intercept 0.063487 0.031922 1.989 0.0467 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Fit:
## sigma^2 estimated as 0.02343, Conditional Sum-of-Squares = 4.45, AIC = -169.81
Netflix_ARMA$fitted.values <- na.omit(data$fitted.values)
Netflix_ARMA$fitted.values
## NULL
#Netflix_estimated_sp<-exp(Netflix_ARMA$fitted.values)