##Question 1 1A

x = c(10, 20, 30, 44, 55, 10, 30, 50, 32, 30, 46)
x
##  [1] 10 20 30 44 55 10 30 50 32 30 46
z = append(x,'26',after=10)
print(z)
##  [1] "10" "20" "30" "44" "55" "10" "30" "50" "32" "30" "26" "46"

1B

sum = sum (x) / 11
sum
## [1] 32.45455

1C

set.seed (1)
x1= rnorm(n= 12, mean= 5, sd= 1)
x1= round(x1, 1)

set.seed (2)
x2= rnorm(n= 12, mean= 5, sd= 1)
x2= round(x2, 1)

y = rep(c('A','B','C'),each = 4)

DFAssg1 = data.frame (y,
                      z,
                     x1,
                     x2
                     )
print(DFAssg1)
##    y  z  x1  x2
## 1  A 10 4.4 4.1
## 2  A 20 5.2 5.2
## 3  A 30 4.2 6.6
## 4  A 44 6.6 3.9
## 5  B 55 5.3 4.9
## 6  B 10 4.2 5.1
## 7  B 30 5.5 5.7
## 8  B 50 5.7 4.8
## 9  C 32 5.6 7.0
## 10 C 30 4.7 4.9
## 11 C 26 6.5 5.4
## 12 C 46 5.4 6.0

1D

min(z, z= c('A','B','C'))
## [1] "10"

1E

mean(c(DFAssg1$x1, DFAssg1$x2))
## [1] 5.2875

1F

1G

Is_high_value<- x1 > mean(x1)
DFAssg1$Is_high_value
## NULL

1H

unique(z)
## [1] "10" "20" "30" "44" "55" "50" "32" "26" "46"

1I i) Write only ONE LINE of code that returns the count of how many elements in x are greater than 30.

sum(x > 30) 
## [1] 5

##Question 2 2A

die1 <-sample(6, 1000, replace=TRUE)
die1
##    [1] 1 6 1 4 3 6 1 6 5 6 6 3 1 5 5 6 6 2 2 3 4 3 1 1 5 1 2 4 5 6 5 4 2 5 6 5 2
##   [38] 6 4 4 4 4 1 2 2 6 6 3 5 3 6 5 5 1 5 6 1 2 1 5 4 1 6 1 5 3 1 2 6 5 3 1 4 1
##   [75] 2 1 4 4 1 4 6 1 5 6 4 6 3 5 4 5 5 1 5 2 3 3 1 6 1 3 5 3 6 3 6 1 4 2 2 5 4
##  [112] 6 3 1 1 3 5 4 4 6 2 5 1 5 4 5 3 2 1 3 5 1 4 2 2 4 5 2 4 6 5 6 6 6 4 3 5 3
##  [149] 5 2 2 6 3 5 2 4 3 2 6 2 5 6 4 4 3 3 6 3 6 1 6 6 1 6 3 6 6 5 6 6 3 2 4 3 3
##  [186] 3 6 2 2 4 1 4 2 3 1 6 1 1 4 5 2 2 3 2 3 5 3 4 3 5 5 4 5 2 6 2 4 4 6 6 2 6
##  [223] 1 5 3 4 5 2 5 4 5 4 6 2 4 1 6 1 2 4 5 2 6 3 2 5 6 6 3 2 6 5 1 1 5 4 5 3 2
##  [260] 3 3 3 1 6 5 2 3 3 5 5 4 4 4 5 3 6 2 1 5 3 6 3 5 1 3 4 4 6 3 3 2 1 1 1 1 3
##  [297] 3 4 5 5 4 5 2 4 6 4 4 3 2 1 5 3 6 6 6 2 4 2 3 5 5 3 4 6 3 1 3 2 3 6 6 4 1
##  [334] 5 2 1 6 5 2 3 2 5 6 6 5 4 4 2 4 2 1 4 1 1 6 2 4 2 4 5 1 5 6 2 3 1 3 1 2 3
##  [371] 4 2 3 5 6 1 2 1 6 6 5 1 3 5 1 4 1 4 2 5 1 2 5 4 1 1 4 6 1 5 4 1 1 1 5 3 5
##  [408] 5 6 1 5 2 2 4 3 6 3 4 1 3 6 3 3 2 6 6 5 5 4 6 3 1 6 4 6 6 3 5 5 3 4 3 5 3
##  [445] 2 1 5 6 6 2 2 2 2 6 6 6 2 5 5 2 5 6 2 4 1 4 6 6 4 1 6 4 6 3 1 4 1 5 6 5 2
##  [482] 4 5 3 5 6 4 2 5 2 2 1 4 6 6 1 3 5 6 1 6 1 6 1 6 5 6 1 2 4 4 2 1 6 2 2 5 1
##  [519] 3 1 3 1 3 6 6 6 5 4 3 4 6 1 3 5 1 2 1 1 4 1 2 4 6 2 1 2 6 2 4 5 4 5 3 5 2
##  [556] 4 4 5 4 6 6 5 6 3 5 1 4 3 5 4 2 3 2 1 2 2 6 4 2 4 5 1 3 1 6 1 3 4 4 6 5 3
##  [593] 6 5 3 3 2 6 5 5 2 6 4 2 3 2 5 2 2 1 1 1 2 4 4 4 6 1 5 3 2 2 4 4 6 5 1 5 2
##  [630] 2 6 5 4 1 4 5 4 6 2 4 5 5 5 5 3 5 3 6 4 3 4 5 5 3 4 4 6 6 6 5 5 5 2 6 6 6
##  [667] 6 5 6 2 4 2 4 5 4 2 5 2 4 2 2 6 3 1 1 3 3 5 5 3 3 3 3 5 6 5 1 4 3 1 2 2 5
##  [704] 5 6 2 1 1 5 5 6 4 2 6 6 4 3 5 1 3 5 4 6 5 3 4 3 1 4 5 1 5 4 4 1 4 4 4 4 1
##  [741] 3 6 3 3 4 3 6 1 3 4 4 5 2 6 2 2 3 6 2 1 4 3 6 2 6 6 5 4 4 3 5 6 5 4 3 4 3
##  [778] 5 3 4 6 4 1 1 5 5 5 5 1 6 1 4 3 4 1 5 2 2 2 1 5 5 5 6 2 2 5 6 1 5 5 6 5 2
##  [815] 4 5 4 4 6 6 2 2 4 6 2 2 4 5 4 4 5 5 5 4 1 5 5 6 2 5 6 4 3 6 2 2 1 4 2 1 4
##  [852] 5 1 3 1 3 4 6 2 1 2 5 2 3 4 4 5 6 1 6 3 6 4 6 4 2 5 4 6 6 3 4 1 6 2 6 5 4
##  [889] 1 3 1 3 2 4 5 4 4 5 6 5 1 5 4 4 4 1 3 1 1 1 6 5 3 5 2 3 2 3 5 4 3 2 1 1 3
##  [926] 5 6 4 4 4 1 4 2 4 2 4 3 3 5 6 2 5 2 5 5 4 5 2 4 2 6 5 4 6 6 6 4 6 3 1 1 1
##  [963] 1 5 3 3 1 1 5 1 6 5 1 2 4 3 5 5 2 4 6 3 3 1 1 4 1 5 1 4 2 6 1 3 5 1 4 3 1
## [1000] 5
die2 <-sample(6, 1000, replace=TRUE)
die2
##    [1] 1 3 1 2 3 4 6 3 4 2 4 3 3 3 5 6 6 5 2 6 4 1 4 2 1 2 4 1 6 6 5 2 4 1 4 6 2
##   [38] 5 6 5 3 6 4 4 1 2 2 6 2 6 6 6 6 6 5 5 3 3 6 3 3 4 6 1 3 1 2 4 4 6 4 5 4 3
##   [75] 1 5 1 3 1 4 6 1 2 2 5 2 1 4 2 3 5 6 3 3 6 5 3 3 5 5 1 1 4 1 3 3 2 6 2 5 5
##  [112] 4 2 6 3 4 6 3 1 3 3 2 4 1 5 2 6 6 5 3 3 4 1 3 6 6 4 1 6 2 2 3 2 6 5 1 1 4
##  [149] 2 5 5 6 6 2 2 6 6 2 5 3 6 4 3 5 2 5 3 5 5 1 3 6 4 6 1 6 4 5 5 3 1 2 5 4 1
##  [186] 5 5 2 5 6 2 2 3 3 5 5 4 5 2 3 5 4 4 2 4 5 6 2 3 2 2 3 1 4 4 5 4 3 1 1 2 4
##  [223] 5 2 3 2 6 6 2 6 6 1 1 1 3 5 6 5 2 2 6 6 4 6 5 3 6 1 2 5 2 6 3 1 3 1 5 2 6
##  [260] 1 6 3 5 6 2 1 4 2 5 2 4 3 1 5 4 6 6 6 4 1 6 2 1 1 3 4 3 1 4 2 3 4 1 4 1 2
##  [297] 3 2 2 2 1 4 5 4 4 6 5 2 3 3 2 2 5 5 2 3 3 4 4 2 1 1 1 3 4 1 1 6 3 1 4 2 1
##  [334] 2 5 4 6 1 4 3 6 3 4 5 3 6 4 2 2 5 4 2 6 6 2 1 5 3 6 5 4 5 6 3 4 1 6 4 1 1
##  [371] 5 1 1 2 3 1 1 1 6 3 6 3 1 1 5 2 3 5 2 5 1 6 2 3 4 3 2 4 3 4 1 1 3 1 1 5 6
##  [408] 6 3 6 5 4 2 3 1 2 4 4 6 2 6 6 1 6 1 5 1 4 2 6 1 4 2 3 3 5 4 6 1 6 2 6 1 6
##  [445] 1 3 2 3 1 5 2 3 1 1 1 5 3 6 1 6 1 6 4 1 1 2 3 6 4 6 1 4 6 2 5 1 3 1 1 1 1
##  [482] 1 3 5 2 4 1 1 6 2 4 1 5 2 6 4 4 2 4 3 5 1 3 3 4 3 6 6 2 2 3 4 2 4 2 2 4 3
##  [519] 6 5 3 4 4 6 2 5 1 1 6 3 5 2 2 1 6 4 2 3 1 6 4 5 5 2 2 2 6 1 5 5 4 4 5 5 2
##  [556] 5 4 4 6 2 6 4 1 3 4 2 6 4 3 1 2 3 4 6 2 3 5 5 4 3 2 5 4 1 2 5 3 4 4 1 6 1
##  [593] 5 3 1 1 6 1 2 2 4 3 1 6 2 3 3 6 2 1 2 6 6 6 3 2 2 5 5 4 3 4 1 6 1 4 3 2 3
##  [630] 6 1 6 6 5 5 5 6 3 5 4 1 6 5 1 5 3 5 5 6 2 3 1 5 3 3 1 3 6 3 4 5 1 5 4 1 5
##  [667] 3 1 2 2 6 1 2 3 2 5 1 6 1 2 2 2 4 5 2 2 3 2 4 5 5 6 1 6 3 6 3 5 5 5 2 2 6
##  [704] 6 5 4 5 1 4 1 2 5 6 4 2 6 3 4 4 6 1 6 1 2 3 4 1 4 4 6 2 1 4 5 2 6 3 3 2 4
##  [741] 6 4 2 3 2 5 4 5 5 5 1 1 5 4 3 4 2 5 4 2 3 2 3 6 3 3 2 4 4 4 5 1 6 4 6 1 1
##  [778] 6 4 4 6 4 4 2 3 4 5 6 3 6 1 3 2 1 1 1 3 2 3 5 6 1 2 3 5 3 3 6 1 6 3 6 2 2
##  [815] 3 4 1 5 6 2 3 1 6 2 6 3 2 6 5 2 3 6 6 3 4 3 4 4 1 5 1 3 5 2 5 5 3 5 6 4 3
##  [852] 6 2 4 4 3 4 4 3 2 2 6 6 3 1 4 1 3 1 1 1 2 1 2 1 1 6 6 5 1 3 6 2 4 2 2 5 3
##  [889] 3 5 2 4 5 3 6 4 3 1 1 4 2 5 6 4 4 2 3 6 1 6 5 2 6 3 3 5 4 1 4 1 3 1 5 2 5
##  [926] 4 6 2 6 5 1 6 1 1 6 1 5 3 2 2 6 4 4 3 6 1 6 2 2 2 6 3 3 2 2 2 6 1 4 2 1 2
##  [963] 6 6 4 6 1 3 3 1 4 3 4 2 6 2 2 4 1 5 4 2 6 6 3 3 2 5 6 3 4 6 2 5 5 2 4 4 4
## [1000] 2

2B

die1.sum <- sum(die1)
die1.sum
## [1] 3626
die2.sum <- sum(die2)
die2.sum
## [1] 3454

2C

table <- table(die1, die2)
table
##     die2
## die1  1  2  3  4  5  6
##    1 33 27 26 26 23 21
##    2 21 36 25 24 20 25
##    3 27 22 26 27 21 24
##    4 32 28 34 30 26 29
##    5 34 36 28 25 28 40
##    6 25 31 28 29 25 38
cumsum_table <- sum(table)  
cumsum_table                                                    
## [1] 1000

##Question 3 3A

sample_of_20 <- sample(x = 1:100, size  = 20)
standardized_values <- (sample_of_20 - mean(sample_of_20)) / sd(sample_of_20)
standardized_values
##  [1] -0.43723211  0.06341534 -1.50528001 -1.33839753 -1.07138555 -1.23826804
##  [7] -0.10346714  1.16483974 -0.97125606 -0.60411459 -0.23697313  0.69756879
## [13]  1.59873420 -0.40385561  1.09808675  1.06471025  0.23029783  1.53198121
## [19] -0.57073810  1.03133376

3B

sum_sample <- sum(sample_of_20)
count_sample <- (sample_of_20)
sum_sample / count_sample
##  [1]  27.939394  19.208333 922.000000 153.666667  65.857143 102.444444
##  [7]  21.441860  11.382716  54.235294  32.928571  23.641026  13.761194
## [13]   9.808511  27.117647  11.670886  11.820513  17.396226  10.021739
## [19]  31.793103  11.974026

3C

sum(( (standardized_values) - mean(standardized_values)) ^ 2) / (length(standardized_values) - 1)
## [1] 1