Instructions:
Your task is to choose one dataset, then study the data and its associated description of the data (i.e. “data dictionary”). You should take the data, and create an R data frame with a subset of the columns (and if you like rows) in the dataset.
Data Set Information:
The original dataset is available here.
The NASA data set comprises different size NACA 0012 airfoils at various wind tunnel speeds and angles of attack. The span of the airfoil and the observer position were the same in all of the experiments.
Dataset Donor: Dr Roberto Lopez robertolopez ‘@’ intelnics.com Intelnics
Creators: Thomas F. Brooks, D. Stuart Pope and Michael A. Marcolini NASA
This file has the variables:
Pull the data from the UCI Machine Learning Repository:
a_Url <- "http://archive.ics.uci.edu/ml/machine-learning-databases/00291/airfoil_self_noise.dat"
foil_data <- read.table(file = a_Url, header = FALSE)
Name the columns and convert the table to a dataframe:
colnames(foil_data) <- c("freq","angle","chord_len","fs_vel","thickness","level")
foil_data <- data.frame(foil_data)
class(foil_data)
## [1] "data.frame"
head(foil_data)
## freq angle chord_len fs_vel thickness level
## 1 800 0 0.3048 71.3 0.00266337 126.201
## 2 1000 0 0.3048 71.3 0.00266337 125.201
## 3 1250 0 0.3048 71.3 0.00266337 125.951
## 4 1600 0 0.3048 71.3 0.00266337 127.591
## 5 2000 0 0.3048 71.3 0.00266337 127.461
## 6 2500 0 0.3048 71.3 0.00266337 125.571
Create a subset of columns in the dataset.
output <- foil_data[,6]
output[1:10]
## [1] 126.201 125.201 125.951 127.591 127.461 125.571 125.201 123.061
## [9] 121.301 119.541