Application of Big Data Techniques
2022-08-15
Audio processing workshop:
Analysis of popping corn audioclips
as an exercise in Big Data analysis
CS424 - Big Data
Friday, 8 September 2023
13:30 - 15:00
:::
# Audio files as a data vector
* Audio recordings can be multitrack
* Typically recorded at 44-1000 KHz
## Reading audio files
# TuneR library
<small>
* Process audio files:
* generate or read/write audio filessome data: such as `sine`
* read or write audio files: (such as `readWave`, `writeWave`)
* represent or construct channelled Wave files: (such as `Wave`, `WaveMC`)
* transform Wave objects (`bind`, `channel`, `downsample`, `extractWave`, `mono`, `stereo`)
* play Wave objects (`play`)
* Analysing signals
* calculate periodograms of a signal (`periodogram`, `Wspec`)
* estimate the fundamental frequencies (`FF`, `FFpure`)
* Convert sound to music
* derive the corresponding notes and melody (`noteFromFF`, `melodyplot`)
* quantization and plot corresponding music (`quantize`,`quantplot`)
* create sheet music `lilyinput`
</small>
::: {.cell}
:::
## Loading a sound clip as a data vector
<small>
::: {.cell}
::: {.cell-output .cell-output-stdout}
Wave Object Number of Samples: 2425500 Duration (seconds): 55 Samplingrate (Hertz): 44100 Channels (Mono/Stereo): Stereo PCM (integer format): TRUE Bit (8/16/24/32/64): 24
Summary statistics for channel(s):
Min. 1st Qu. Median Mean 3rd Qu. Max.
left -4843869 -14542 0 -8.73294 15368 4625660 right -4183111 -17246 0 -24.29296 17544 4820805 ``` ::: :::
\[(pop/sec) = \frac{A \cdot t^C}{e^{Bt}}\] \[ \log \left(\frac{pops}{sec}\right) = \log(A)+ C \log(t) - B t\]
\[MAD = \sum_{i=1}^n \frac{|\hat y_i - y_i|}{n}\]
\(MAD_A =\) 4.7673064
\(MAD_B =\) 3.0490908
\(MAD_C =\) 2.4443408
PYU CS355