Load packages

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.2     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.2     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(here) 
## here() starts at /Users/sarahdaniels/Desktop/Total_Analyses_5
library(janitor) 
## 
## Attaching package: 'janitor'
## 
## The following objects are masked from 'package:stats':
## 
##     chisq.test, fisher.test
library(haven) 
library(naniar) 
library(ggpubr) 
library(report) 
library(ggplot2)
library(reshape2)
## 
## Attaching package: 'reshape2'
## 
## The following object is masked from 'package:tidyr':
## 
##     smiths
library(lme4)
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## 
## The following objects are masked from 'package:tidyr':
## 
##     expand, pack, unpack
library(sjPlot)
## Learn more about sjPlot with 'browseVignettes("sjPlot")'.
library(parameters)
library(mediation)
## Loading required package: MASS
## 
## Attaching package: 'MASS'
## 
## The following object is masked from 'package:dplyr':
## 
##     select
## 
## Loading required package: mvtnorm
## Loading required package: sandwich
## mediation: Causal Mediation Analysis
## Version: 4.5.0
library(lavaan)
## This is lavaan 0.6-15
## lavaan is FREE software! Please report any bugs.
library(lmerTest)
## 
## Attaching package: 'lmerTest'
## 
## The following object is masked from 'package:lme4':
## 
##     lmer
## 
## The following object is masked from 'package:stats':
## 
##     step
library(modEvA)
library(report)
library(rsconnect)

Set up

Full_data_all_r <- read_csv("MI_Data_B1W1M1.csv") %>% 
  mutate(B_FI_1r = B_FI_friends-1) %>% 
  mutate(B_FI_2r = B_FI_strangers-1) %>% 
  mutate(B_FI_3r = B_FI_work-1) %>% 
  mutate(B_FI_4r = B_FI_education-1) %>% 
  mutate(B_FI_5r = B_FI_hobbies-1) %>% 
  mutate(B_PHQ_1r = B_PHQ_1-1) %>% 
  mutate(B_PHQ_2r = B_PHQ_2-1) %>% 
  mutate(B_PHQ_3r = B_PHQ_3-1) %>% 
  mutate(B_PHQ_4r = B_PHQ_4-1) %>% 
  mutate(B_PHQ_5r = B_PHQ_5-1) %>% 
  mutate(B_PHQ_6r = B_PHQ_6-1) %>% 
  mutate(B_PHQ_7r = B_PHQ_7-1) %>% 
  mutate(B_PHQ_8r = B_PHQ_8-1) %>% 
  mutate(B_GAD_1r = B_GAD_1-1) %>% 
  mutate(B_GAD_2r = B_GAD_2-1) %>% 
  mutate(B_GAD_3r = B_GAD_3-1) %>% 
  mutate(B_GAD_4r = B_GAD_4-1) %>% 
  mutate(B_GAD_5r = B_GAD_5-1) %>% 
  mutate(B_GAD_6r = B_GAD_6-1) %>% 
  mutate(B_GAD_7r = B_GAD_7-1) %>% 
  mutate(W1_FI_1r = W1_FI_friends-1) %>% 
  mutate(W1_FI_2r = W1_FI_strangers-1) %>% 
  mutate(W1_FI_3r = W1_FI_work-1) %>% 
  mutate(W1_FI_4r = W1_FI_education-1) %>% 
  mutate(W1_FI_5r = W1_FI_hobbies-1) %>% 
  mutate(W1_PHQ_1r = W1_PHQ_1-1) %>% 
  mutate(W1_PHQ_2r = W1_PHQ_2-1) %>% 
  mutate(W1_PHQ_3r = W1_PHQ_3-1) %>% 
  mutate(W1_PHQ_4r = W1_PHQ_4-1) %>% 
  mutate(W1_PHQ_5r = W1_PHQ_5-1) %>% 
  mutate(W1_PHQ_6r = W1_PHQ_6-1) %>% 
  mutate(W1_PHQ_7r = W1_PHQ_7-1) %>% 
  mutate(W1_PHQ_8r = W1_PHQ_8-1) %>% 
  mutate(W1_GAD_1r = W1_GAD_1-1) %>% 
  mutate(W1_GAD_2r = W1_GAD_2-1) %>% 
  mutate(W1_GAD_3r = W1_GAD_3-1) %>% 
  mutate(W1_GAD_4r = W1_GAD_4-1) %>% 
  mutate(W1_GAD_5r = W1_GAD_5-1) %>% 
  mutate(W1_GAD_6r = W1_GAD_6-1) %>% 
  mutate(W1_GAD_7r = W1_GAD_7-1) %>% 
  mutate(M1_FI_1r = M1_FI_friends-1) %>% 
  mutate(M1_FI_2r = M1_FI_strangers-1) %>% 
  mutate(M1_FI_3r = M1_FI_work-1) %>% 
  mutate(M1_FI_4r = M1_FI_education-1) %>% 
  mutate(M1_FI_5r = M1_FI_hobbies-1) %>% 
  mutate(M1_PHQ_1r = M1_PHQ_1-1) %>% 
  mutate(M1_PHQ_2r = M1_PHQ_2-1) %>% 
  mutate(M1_PHQ_3r = M1_PHQ_3-1) %>% 
  mutate(M1_PHQ_4r = M1_PHQ_4-1) %>% 
  mutate(M1_PHQ_5r = M1_PHQ_5-1) %>% 
  mutate(M1_PHQ_6r = M1_PHQ_6-1) %>% 
  mutate(M1_PHQ_7r = M1_PHQ_7-1) %>% 
  mutate(M1_PHQ_8r = M1_PHQ_8-1) %>% 
  mutate(M1_GAD_1r = M1_GAD_1-1) %>% 
  mutate(M1_GAD_2r = M1_GAD_2-1) %>% 
  mutate(M1_GAD_3r = M1_GAD_3-1) %>% 
  mutate(M1_GAD_4r = M1_GAD_4-1) %>% 
  mutate(M1_GAD_5r = M1_GAD_5-1) %>% 
  mutate(M1_GAD_6r = M1_GAD_6-1) %>% 
  mutate(M1_GAD_7r = M1_GAD_7-1)
## New names:
## Rows: 259 Columns: 189
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (2): Prolific_ID, Group dbl (187): ...1, ID, B_IUS_1, B_IUS_2, B_IUS_3,
## B_IUS_4, B_IUS_5, B_IUS_6, B...
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`
Full_data_all_r1 <- read.csv("Full_data_all_r.csv")

Reading the full data (intervention group, psychoeducation control group, and EC group) and calculating total scores

Full_data_all_f <- Full_data_all_r1 %>% 
  rowwise() %>%
  mutate(A_PRE_IUS_total = sum(B_IUS_1, B_IUS_2, B_IUS_3, B_IUS_4, B_IUS_5, B_IUS_6, B_IUS_7, B_IUS_8, B_IUS_9, B_IUS_10, B_IUS_11, B_IUS_12, na.rm = TRUE)) %>%
  mutate(A_PRE_FI_total = sum(B_FI_1r, B_FI_2r, B_FI_3r, B_FI_4r, B_FI_5r)) %>% 
  mutate(A_PRE_RTQ_total = sum(B_RTQ_1, B_RTQ_2, B_RTQ_3, B_RTQ_4, B_RTQ_5, B_RTQ_6, B_RTQ_7, B_RTQ_8, B_RTQ_9, B_RTQ_10, na.rm = TRUE)) %>% 
  mutate(A_PRE_ERQ_Rtotal = sum(B_ERQ_1, B_ERQ_3, B_ERQ_5, B_ERQ_7, B_ERQ_8, B_ERQ_10, na.rm = TRUE)) %>% 
  mutate(A_PRE_PHQ_total = sum(B_PHQ_1r, B_PHQ_2r, B_PHQ_3r, B_PHQ_4r, B_PHQ_5r, B_PHQ_6r, B_PHQ_7r, B_PHQ_8r)) %>% 
  mutate(A_PRE_GAD_total = sum(B_GAD_1r, B_GAD_2r, B_GAD_3r, B_GAD_4r, B_GAD_5r, B_GAD_6r, B_GAD_7r)) %>% 
  mutate(B_POST_IUS_total = sum(POST_IUS_1, POST_IUS_2, POST_IUS_3, POST_IUS_4, POST_IUS_5, POST_IUS_6, POST_IUS_7, POST_IUS_8, POST_IUS_9, POST_IUS_10, POST_IUS_11, POST_IUS_12, na.rm = TRUE)) %>%
  mutate(C_W1_IUS_total = sum(W1_IUS_1, W1_IUS_2, W1_IUS_3, W1_IUS_4, W1_IUS_5, W1_IUS_6, W1_IUS_7, W1_IUS_8, W1_IUS_9, W1_IUS_10, W1_IUS_11, W1_IUS_12, na.rm = TRUE)) %>%
  mutate(C_W1_FI_total = sum(W1_FI_1r, W1_FI_2r, W1_FI_3r, W1_FI_4r, W1_FI_5r)) %>% 
  mutate(C_W1_RTQ_total = sum(W1_RTQ_1, W1_RTQ_2, W1_RTQ_3, W1_RTQ_4, W1_RTQ_5, W1_RTQ_6, W1_RTQ_7, W1_RTQ_8, W1_RTQ_9, W1_RTQ_10, na.rm = TRUE)) %>% 
  mutate(C_W1_ERQ_Rtotal = sum(W1_ERQ_1, W1_ERQ_3, W1_ERQ_5, W1_ERQ_7, W1_ERQ_8, W1_ERQ_10, na.rm = TRUE)) %>% 
  mutate(C_W1_PHQ_total = sum(W1_PHQ_1r, W1_PHQ_2r, W1_PHQ_3r, W1_PHQ_4r, W1_PHQ_5r, W1_PHQ_6r, W1_PHQ_7r, W1_PHQ_8r)) %>% 
  mutate(C_W1_GAD_total = sum(W1_GAD_1r, W1_GAD_2r, W1_GAD_3r, W1_GAD_4r, W1_GAD_5r, W1_GAD_6r, W1_GAD_7r)) %>% 
  mutate(D_M1_IUS_total = sum(M1_IUS_1, M1_IUS_2, M1_IUS_3, M1_IUS_4, M1_IUS_5, M1_IUS_6, M1_IUS_7, M1_IUS_8, M1_IUS_9, M1_IUS_10, M1_IUS_11, M1_IUS_12, na.rm = TRUE)) %>%
  mutate(D_M1_FI_total = sum(M1_FI_1r, M1_FI_2r, M1_FI_3r, M1_FI_4r, M1_FI_5r)) %>% 
  mutate(D_M1_RTQ_total = sum(M1_RTQ_1, M1_RTQ_2, M1_RTQ_3, M1_RTQ_4, M1_RTQ_5, M1_RTQ_6, M1_RTQ_7, M1_RTQ_8, M1_RTQ_9, M1_RTQ_10, na.rm = TRUE)) %>% 
  mutate(D_M1_ERQ_Rtotal = sum(M1_ERQ_1, M1_ERQ_3, M1_ERQ_5, M1_ERQ_7, M1_ERQ_8, M1_ERQ_10, na.rm = TRUE)) %>% 
  mutate(D_M1_PHQ_total = sum(M1_PHQ_1r, M1_PHQ_2r, M1_PHQ_3r, M1_PHQ_4r, M1_PHQ_5r, M1_PHQ_6r, M1_PHQ_7r, M1_PHQ_8r)) %>% 
  mutate(D_M1_GAD_total = sum(M1_GAD_1r, M1_GAD_2r, M1_GAD_3r, M1_GAD_4r, M1_GAD_5r, M1_GAD_6r, M1_GAD_7r)) %>% 
  ungroup()
# People who had not completed a follow-up had total scores of 0 rather than NA - so here I give them NA
Full_data_all_t <- Full_data_all_f %>% 
  mutate_at(c('A_PRE_IUS_total', 'B_POST_IUS_total', 'C_W1_IUS_total', 'D_M1_IUS_total'), ~na_if(., 0)) %>% 
  mutate_at(c('A_PRE_RTQ_total', 'C_W1_RTQ_total', 'D_M1_RTQ_total'), ~na_if(., 0)) %>% 
  mutate_at(c('A_PRE_ERQ_Rtotal', 'C_W1_ERQ_Rtotal', 'D_M1_ERQ_Rtotal'), ~na_if(., 0))

Calculating mood means

Full_data_all <- mutate(Full_data_all_t, A_PRE_mood_mean = rowMeans(dplyr::select(Full_data_all_t, c(B_distressed_pleasant, B_anxious_relaxed)), na.rm = TRUE)) %>% 
  mutate(Full_data_all_t, B_POST_mood_mean = rowMeans(dplyr::select(Full_data_all_t, c(POST_distressed_pleasant, POST_anxious_relaxed)), na.rm = TRUE)) %>%
  mutate(Full_data_all_t, C_W1_mood_mean = rowMeans(dplyr::select(Full_data_all_t, c(W1_distressed_pleasant, W1_anxious_relaxed)), na.rm = TRUE)) %>% 
 mutate(Full_data_all_t, D_M1_mood_mean = rowMeans(dplyr::select(Full_data_all_t, c(M1_distressed_pleasant, M1_anxious_relaxed)), na.rm = TRUE))
write.csv(Full_data_all, "Full_data_all.csv")

Hypothesis 1

H1a: IUS and Mood association at PRE

#Distressed
PRE_IUS_Distress_lm <- lm(A_PRE_IUS_total ~ B_distressed_pleasant, data = Full_data_all)
summary(PRE_IUS_Distress_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ B_distressed_pleasant, data = Full_data_all)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -25.8365  -5.8426   0.4123   6.3128  20.1076 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            44.3702     0.7218  61.471  < 2e-16 ***
## B_distressed_pleasant  -0.0559     0.0129  -4.334 2.11e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.571 on 257 degrees of freedom
## Multiple R-squared:  0.0681, Adjusted R-squared:  0.06448 
## F-statistic: 18.78 on 1 and 257 DF,  p-value: 2.105e-05
anova(PRE_IUS_Distress_lm) %>% 
  report()
## The ANOVA suggests that:
## 
##   - The main effect of B_distressed_pleasant is statistically significant and
## medium (F(1, 257) = 18.78, p < .001; Eta2 = 0.07, 95% CI [0.03, 1.00])
## 
## Effect sizes were labelled following Field's (2013) recommendations.
#Anxious
PRE_IUS_Anxiety_lm <- lm(A_PRE_IUS_total ~ B_anxious_relaxed, data = Full_data_all)
summary(PRE_IUS_Anxiety_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ B_anxious_relaxed, data = Full_data_all)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -26.2289  -5.7679   0.5456   5.9105  20.4901 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       44.00514    0.61670  71.355  < 2e-16 ***
## B_anxious_relaxed -0.05551    0.01021  -5.437 1.26e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.416 on 256 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.1035, Adjusted R-squared:    0.1 
## F-statistic: 29.56 on 1 and 256 DF,  p-value: 1.262e-07
anova(PRE_IUS_Anxiety_lm) %>% 
  report()
## The ANOVA suggests that:
## 
##   - The main effect of B_anxious_relaxed is statistically significant and medium
## (F(1, 256) = 29.56, p < .001; Eta2 = 0.10, 95% CI [0.05, 1.00])
## 
## Effect sizes were labelled following Field's (2013) recommendations.
#Combined
PRE_IUS_mood_lm <- lm(A_PRE_IUS_total ~ A_PRE_mood_mean, data = Full_data_all)
summary(PRE_IUS_mood_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ A_PRE_mood_mean, data = Full_data_all)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -25.2840  -6.0303   0.1752   6.0332  20.9727 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     44.57405    0.67547  65.989  < 2e-16 ***
## A_PRE_mood_mean -0.06646    0.01228  -5.412 1.43e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.412 on 257 degrees of freedom
## Multiple R-squared:  0.1023, Adjusted R-squared:  0.0988 
## F-statistic: 29.29 on 1 and 257 DF,  p-value: 1.431e-07
anova(PRE_IUS_mood_lm) %>% 
  report()
## The ANOVA suggests that:
## 
##   - The main effect of A_PRE_mood_mean is statistically significant and medium
## (F(1, 257) = 29.29, p < .001; Eta2 = 0.10, 95% CI [0.05, 1.00])
## 
## Effect sizes were labelled following Field's (2013) recommendations.

H1a: IUS and mental health association at PRE

#Depression
PRE_IUS_PHQ_lm <- lm(A_PRE_IUS_total ~ A_PRE_PHQ_total, data = Full_data_all)
summary(PRE_IUS_PHQ_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ A_PRE_PHQ_total, data = Full_data_all)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -28.9576  -4.5129   0.0901   4.9155  22.1617 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      35.4890     0.9776  36.303  < 2e-16 ***
## A_PRE_PHQ_total   0.6746     0.0841   8.021 3.72e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.94 on 257 degrees of freedom
## Multiple R-squared:  0.2002, Adjusted R-squared:  0.1971 
## F-statistic: 64.34 on 1 and 257 DF,  p-value: 3.716e-14
anova(PRE_IUS_PHQ_lm)
## Analysis of Variance Table
## 
## Response: A_PRE_IUS_total
##                  Df  Sum Sq Mean Sq F value    Pr(>F)    
## A_PRE_PHQ_total   1  4056.3  4056.3  64.344 3.716e-14 ***
## Residuals       257 16201.4    63.0                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Anxiety
PRE_IUS_GAD_lm <- lm(A_PRE_IUS_total ~ A_PRE_GAD_total,  data = Full_data_all)
summary(PRE_IUS_GAD_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ A_PRE_GAD_total, data = Full_data_all)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -25.3228  -4.8228   0.7116   4.1772  20.6429 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     35.04669    0.88936   39.41   <2e-16 ***
## A_PRE_GAD_total  0.82761    0.08639    9.58   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.621 on 257 degrees of freedom
## Multiple R-squared:  0.2631, Adjusted R-squared:  0.2603 
## F-statistic: 91.78 on 1 and 257 DF,  p-value: < 2.2e-16
anova(PRE_IUS_GAD_lm)
## Analysis of Variance Table
## 
## Response: A_PRE_IUS_total
##                  Df  Sum Sq Mean Sq F value    Pr(>F)    
## A_PRE_GAD_total   1  5330.7  5330.7   91.78 < 2.2e-16 ***
## Residuals       257 14926.9    58.1                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

H1b: IUS and BT at PRE

# Adding in groups + excluding participants who only sampled (never made a choice = did not understand task)
BT_PRE_POST <- merge(BT_full,Full_data_all,
                      by=c("ID"),
                      all = TRUE) %>% 
  dplyr::select("ID", "Group", "A_PRE_samples", "B_POST_samples", "A_PRE_IUS_total", "B_POST_IUS_total") %>% 
  filter(ID != "8892522", ID != "8892570", ID != "8892628", ID != "8892668", ID != "8892681", ID != "8892779", ID != "8892794", ID != "8893157", ID != "8893186", ID != "8892873", ID != "9113535", ID != "9113549", ID != "9113550") # excluding those not making a choice

Keeping those who never sample (only make choices)

#Analysis
PRE_IUS_BT_lm <- lm(A_PRE_IUS_total ~ A_PRE_samples, data = BT_PRE_POST)
summary(PRE_IUS_BT_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ A_PRE_samples, data = BT_PRE_POST)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -29.813  -5.889   1.036   6.280  17.187 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   42.81292    0.61535  69.575  < 2e-16 ***
## A_PRE_samples -0.04991    0.01818  -2.745  0.00651 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.754 on 244 degrees of freedom
## Multiple R-squared:  0.02995,    Adjusted R-squared:  0.02598 
## F-statistic: 7.534 on 1 and 244 DF,  p-value: 0.006505
anova(PRE_IUS_BT_lm) %>% 
  report()
## The ANOVA suggests that:
## 
##   - The main effect of A_PRE_samples is statistically significant and small (F(1,
## 244) = 7.53, p = 0.007; Eta2 = 0.03, 95% CI [4.79e-03, 1.00])
## 
## Effect sizes were labelled following Field's (2013) recommendations.

Excluding those who never sample

BT_removed_PRE <- BT_PRE_POST %>% 
  filter(A_PRE_samples != "0") # only excluding from PRE 
#Analysis
PRE_IUS_BT_removed_lm <- lm(A_PRE_IUS_total ~ A_PRE_samples, data = BT_removed_PRE)
summary(PRE_IUS_BT_removed_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ A_PRE_samples, data = BT_removed_PRE)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -24.606  -5.932   1.014   5.934  15.934 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   43.14794    0.72669  59.376  < 2e-16 ***
## A_PRE_samples -0.05408    0.01801  -3.003  0.00307 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.265 on 171 degrees of freedom
## Multiple R-squared:  0.0501, Adjusted R-squared:  0.04454 
## F-statistic: 9.018 on 1 and 171 DF,  p-value: 0.003074
anova(PRE_IUS_BT_removed_lm)
## Analysis of Variance Table
## 
## Response: A_PRE_IUS_total
##                Df  Sum Sq Mean Sq F value   Pr(>F)   
## A_PRE_samples   1   616.1  616.12  9.0184 0.003074 **
## Residuals     171 11682.4   68.32                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Hypothesis 2

H2a: difference in change in cognitive IUS over time between groups

IUS_alltimepoints <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_IUS_total", "B_POST_IUS_total", "C_W1_IUS_total", "D_M1_IUS_total")
## Formatting table as needed
IUS_alltimepoints_long <- IUS_alltimepoints %>%
  pivot_longer(cols = c(A_PRE_IUS_total, B_POST_IUS_total, C_W1_IUS_total, D_M1_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")
IUS_MEM <- lmer(IUS_Score ~ Group * Time + (1|ID), data = IUS_alltimepoints_long, REML = TRUE)
summary(IUS_MEM)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: IUS_Score ~ Group * Time + (1 | ID)
##    Data: IUS_alltimepoints_long
## 
## REML criterion at convergence: 6622.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.3573 -0.4905 -0.0178  0.4981  4.1217 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 74.25    8.617   
##  Residual             23.72    4.870   
## Number of obs: 997, groups:  ID, 259
## 
## Fixed effects:
##                                          Estimate Std. Error       df t value
## (Intercept)                               41.0800     1.3998 373.3956  29.348
## GroupB_Controls                            0.9483     1.6981 373.3956   0.558
## GroupC_Intervention                        1.9880     1.7060 373.3956   1.165
## TimeB_POST_IUS_total                      -0.2800     0.9741 729.2358  -0.287
## TimeC_W1_IUS_total                         0.9453     0.9872 730.1693   0.958
## TimeD_M1_IUS_total                         2.3445     1.0164 732.1184   2.307
## GroupB_Controls:TimeB_POST_IUS_total      -3.5879     1.1817 729.2358  -3.036
## GroupC_Intervention:TimeB_POST_IUS_total  -6.0722     1.1897 729.3838  -5.104
## GroupB_Controls:TimeC_W1_IUS_total        -2.7704     1.1950 730.0826  -2.318
## GroupC_Intervention:TimeC_W1_IUS_total    -5.4825     1.2018 730.1602  -4.562
## GroupB_Controls:TimeD_M1_IUS_total        -4.0381     1.2321 732.1275  -3.277
## GroupC_Intervention:TimeD_M1_IUS_total    -6.8784     1.2383 732.1595  -5.555
##                                          Pr(>|t|)    
## (Intercept)                               < 2e-16 ***
## GroupB_Controls                           0.57687    
## GroupC_Intervention                       0.24465    
## TimeB_POST_IUS_total                      0.77384    
## TimeC_W1_IUS_total                        0.33860    
## TimeD_M1_IUS_total                        0.02135 *  
## GroupB_Controls:TimeB_POST_IUS_total      0.00248 ** 
## GroupC_Intervention:TimeB_POST_IUS_total 4.24e-07 ***
## GroupB_Controls:TimeC_W1_IUS_total        0.02070 *  
## GroupC_Intervention:TimeC_W1_IUS_total   5.95e-06 ***
## GroupB_Controls:TimeD_M1_IUS_total        0.00110 ** 
## GroupC_Intervention:TimeD_M1_IUS_total   3.89e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TB_POS TC_W1_ TD_M1_ GB_C:TB GC_I:TB GB_C:TC
## GrpB_Cntrls -0.824                                                           
## GrpC_Intrvn -0.820  0.676                                                    
## TB_POST_IUS -0.348  0.287  0.285                                             
## TmC_W1_IUS_ -0.343  0.283  0.282  0.493                                      
## TmD_M1_IUS_ -0.333  0.275  0.274  0.479  0.472                               
## GB_C:TB_POS  0.287 -0.348 -0.235 -0.824 -0.407 -0.395                        
## GC_I:TB_POS  0.285 -0.235 -0.347 -0.819 -0.404 -0.392  0.675                 
## GB_C:TC_W1_  0.284 -0.344 -0.233 -0.408 -0.826 -0.390  0.494   0.334         
## GC_I:TC_W1_  0.282 -0.232 -0.344 -0.405 -0.821 -0.388  0.334   0.493   0.679 
## GB_C:TD_M1_  0.275 -0.334 -0.226 -0.395 -0.389 -0.825  0.480   0.324   0.474 
## GC_I:TD_M1_  0.274 -0.226 -0.334 -0.393 -0.387 -0.821  0.324   0.478   0.320 
##             GC_I:TC GB_C:TD
## GrpB_Cntrls                
## GrpC_Intrvn                
## TB_POST_IUS                
## TmC_W1_IUS_                
## TmD_M1_IUS_                
## GB_C:TB_POS                
## GC_I:TB_POS                
## GB_C:TC_W1_                
## GC_I:TC_W1_                
## GB_C:TD_M1_  0.320         
## GC_I:TD_M1_  0.473   0.677
anova  (IUS_MEM)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Group        68.32   34.16     2 256.33  1.4401    0.2388    
## Time       1437.93  479.31     3 731.09 20.2071 1.371e-12 ***
## Group:Time  983.96  163.99     6 731.08  6.9138 3.702e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(IUS_MEM)
  IUS Score
Predictors Estimates CI p
(Intercept) 41.08 38.33 – 43.83 <0.001
Group [B_Controls] 0.95 -2.38 – 4.28 0.577
Group [C_Intervention] 1.99 -1.36 – 5.34 0.244
Time [B_POST_IUS_total] -0.28 -2.19 – 1.63 0.774
Time [C_W1_IUS_total] 0.95 -0.99 – 2.88 0.339
Time [D_M1_IUS_total] 2.34 0.35 – 4.34 0.021
Group [B_Controls] × Time
[B_POST_IUS_total]
-3.59 -5.91 – -1.27 0.002
Group [C_Intervention] ×
Time [B_POST_IUS_total]
-6.07 -8.41 – -3.74 <0.001
Group [B_Controls] × Time
[C_W1_IUS_total]
-2.77 -5.12 – -0.43 0.021
Group [C_Intervention] ×
Time [C_W1_IUS_total]
-5.48 -7.84 – -3.12 <0.001
Group [B_Controls] × Time
[D_M1_IUS_total]
-4.04 -6.46 – -1.62 0.001
Group [C_Intervention] ×
Time [D_M1_IUS_total]
-6.88 -9.31 – -4.45 <0.001
Random Effects
σ2 23.72
τ00 ID 74.25
ICC 0.76
N ID 259
Observations 997
Marginal R2 / Conditional R2 0.040 / 0.768
parameters::standardise_parameters(IUS_MEM)
## # Standardization method: refit
## 
## Parameter                                | Std. Coef. |         95% CI
## ----------------------------------------------------------------------
## (Intercept)                              |       0.09 | [-0.18,  0.37]
## GroupB_Controls                          |       0.09 | [-0.24,  0.43]
## GroupC_Intervention                      |       0.20 | [-0.14,  0.53]
## TimeB_POST_IUS_total                     |      -0.03 | [-0.22,  0.16]
## TimeC_W1_IUS_total                       |       0.09 | [-0.10,  0.29]
## TimeD_M1_IUS_total                       |       0.23 | [ 0.03,  0.43]
## GroupB_Controls:TimeB_POST_IUS_total     |      -0.36 | [-0.59, -0.13]
## GroupC_Intervention:TimeB_POST_IUS_total |      -0.60 | [-0.84, -0.37]
## GroupB_Controls:TimeC_W1_IUS_total       |      -0.28 | [-0.51, -0.04]
## GroupC_Intervention:TimeC_W1_IUS_total   |      -0.55 | [-0.78, -0.31]
## GroupB_Controls:TimeD_M1_IUS_total       |      -0.40 | [-0.64, -0.16]
## GroupC_Intervention:TimeD_M1_IUS_total   |      -0.68 | [-0.93, -0.44]
report(IUS_MEM)
## We fitted a linear mixed model (estimated using REML and nloptwrap optimizer)
## to predict IUS_Score with Group and Time (formula: IUS_Score ~ Group * Time).
## The model included ID as random effect (formula: ~1 | ID). The model's total
## explanatory power is substantial (conditional R2 = 0.77) and the part related
## to the fixed effects alone (marginal R2) is of 0.04. The model's intercept,
## corresponding to Group = A_ECs and Time = A_PRE_IUS_total, is at 41.08 (95% CI
## [38.33, 43.83], t(983) = 29.35, p < .001). Within this model:
## 
##   - The effect of Group [B_Controls] is statistically non-significant and
## positive (beta = 0.95, 95% CI [-2.38, 4.28], t(983) = 0.56, p = 0.577; Std.
## beta = 0.09, 95% CI [-0.24, 0.43])
##   - The effect of Group [C_Intervention] is statistically non-significant and
## positive (beta = 1.99, 95% CI [-1.36, 5.34], t(983) = 1.17, p = 0.244; Std.
## beta = 0.20, 95% CI [-0.14, 0.53])
##   - The effect of Time [B_POST_IUS_total] is statistically non-significant and
## negative (beta = -0.28, 95% CI [-2.19, 1.63], t(983) = -0.29, p = 0.774; Std.
## beta = -0.03, 95% CI [-0.22, 0.16])
##   - The effect of Time [C_W1_IUS_total] is statistically non-significant and
## positive (beta = 0.95, 95% CI [-0.99, 2.88], t(983) = 0.96, p = 0.339; Std.
## beta = 0.09, 95% CI [-0.10, 0.29])
##   - The effect of Time [D_M1_IUS_total] is statistically significant and positive
## (beta = 2.34, 95% CI [0.35, 4.34], t(983) = 2.31, p = 0.021; Std. beta = 0.23,
## 95% CI [0.03, 0.43])
##   - The effect of Group [B_Controls] × Time [B_POST_IUS_total] is statistically
## significant and negative (beta = -3.59, 95% CI [-5.91, -1.27], t(983) = -3.04,
## p = 0.002; Std. beta = -0.36, 95% CI [-0.59, -0.13])
##   - The effect of Group [C_Intervention] × Time [B_POST_IUS_total] is
## statistically significant and negative (beta = -6.07, 95% CI [-8.41, -3.74],
## t(983) = -5.10, p < .001; Std. beta = -0.60, 95% CI [-0.84, -0.37])
##   - The effect of Group [B_Controls] × Time [C_W1_IUS_total] is statistically
## significant and negative (beta = -2.77, 95% CI [-5.12, -0.43], t(983) = -2.32,
## p = 0.021; Std. beta = -0.28, 95% CI [-0.51, -0.04])
##   - The effect of Group [C_Intervention] × Time [C_W1_IUS_total] is statistically
## significant and negative (beta = -5.48, 95% CI [-7.84, -3.12], t(983) = -4.56,
## p < .001; Std. beta = -0.55, 95% CI [-0.78, -0.31])
##   - The effect of Group [B_Controls] × Time [D_M1_IUS_total] is statistically
## significant and negative (beta = -4.04, 95% CI [-6.46, -1.62], t(983) = -3.28,
## p = 0.001; Std. beta = -0.40, 95% CI [-0.64, -0.16])
##   - The effect of Group [C_Intervention] × Time [D_M1_IUS_total] is statistically
## significant and negative (beta = -6.88, 95% CI [-9.31, -4.45], t(983) = -5.55,
## p < .001; Std. beta = -0.68, 95% CI [-0.93, -0.44])
## 
## Standardized parameters were obtained by fitting the model on a standardized
## version of the dataset. 95% Confidence Intervals (CIs) and p-values were
## computed using a Wald t-distribution approximation.

Effect of time in the intervention group

IUS_I <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_IUS_total", "B_POST_IUS_total", "C_W1_IUS_total", "D_M1_IUS_total") %>% 
  filter(Group == "C_Intervention")
## Formatting table as needed
IUS_I_long <- IUS_I %>%
  pivot_longer(cols = c(A_PRE_IUS_total, B_POST_IUS_total, C_W1_IUS_total, D_M1_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")
IUS_MEM_I <- lmer(IUS_Score ~ Time + (1|ID), data = IUS_I_long, REML = TRUE)
summary(IUS_MEM_I)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: IUS_Score ~ Time + (1 | ID)
##    Data: IUS_I_long
## 
## REML criterion at convergence: 2660.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6094 -0.5072  0.0191  0.4921  3.9112 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 76.66    8.756   
##  Residual             26.24    5.123   
## Number of obs: 395, groups:  ID, 103
## 
## Fixed effects:
##                      Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)           43.0680     0.9995 151.9487  43.088  < 2e-16 ***
## TimeB_POST_IUS_total  -6.3517     0.7184 289.3895  -8.841  < 2e-16 ***
## TimeC_W1_IUS_total    -4.5354     0.7210 289.5807  -6.290 1.17e-09 ***
## TimeD_M1_IUS_total    -4.5350     0.7440 290.4668  -6.095 3.47e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) TB_POS TC_W1_
## TB_POST_IUS -0.355              
## TmC_W1_IUS_ -0.354  0.492       
## TmD_M1_IUS_ -0.343  0.476  0.477
anova  (IUS_MEM_I)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Time 2242.3  747.43     3 290.06  28.481 3.601e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(IUS_MEM_I)
  IUS Score
Predictors Estimates CI p
(Intercept) 43.07 41.10 – 45.03 <0.001
Time [B_POST_IUS_total] -6.35 -7.76 – -4.94 <0.001
Time [C_W1_IUS_total] -4.54 -5.95 – -3.12 <0.001
Time [D_M1_IUS_total] -4.54 -6.00 – -3.07 <0.001
Random Effects
σ2 26.24
τ00 ID 76.66
ICC 0.74
N ID 103
Observations 395
Marginal R2 / Conditional R2 0.053 / 0.758
parameters::standardise_parameters(IUS_MEM_I)
## # Standardization method: refit
## 
## Parameter            | Std. Coef. |         95% CI
## --------------------------------------------------
## (Intercept)          |       0.36 | [ 0.17,  0.55]
## TimeB_POST_IUS_total |      -0.61 | [-0.75, -0.47]
## TimeC_W1_IUS_total   |      -0.44 | [-0.57, -0.30]
## TimeD_M1_IUS_total   |      -0.44 | [-0.58, -0.30]

Effect of time in the control group

IUS_C <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_IUS_total", "B_POST_IUS_total", "C_W1_IUS_total", "D_M1_IUS_total") %>% 
  filter(Group == "B_Controls")
## Formatting table as needed
IUS_C_long <- IUS_C %>%
  pivot_longer(cols = c(A_PRE_IUS_total, B_POST_IUS_total, C_W1_IUS_total, D_M1_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")
IUS_MEM_C <- lmer(IUS_Score ~ Time + (1|ID), data = IUS_C_long, REML = TRUE)
summary(IUS_MEM_C)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: IUS_Score ~ Time + (1 | ID)
##    Data: IUS_C_long
## 
## REML criterion at convergence: 2762.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1699 -0.4765 -0.0261  0.4975  2.9038 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 81.89    9.050   
##  Residual             25.89    5.088   
## Number of obs: 410, groups:  ID, 106
## 
## Fixed effects:
##                      Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)           42.0283     1.0084 152.6590  41.680  < 2e-16 ***
## TimeB_POST_IUS_total  -3.8679     0.6989 300.9847  -5.535 6.79e-08 ***
## TimeC_W1_IUS_total    -1.8251     0.7034 301.2551  -2.595  0.00993 ** 
## TimeD_M1_IUS_total    -1.6938     0.7275 302.1758  -2.328  0.02057 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) TB_POS TC_W1_
## TB_POST_IUS -0.347              
## TmC_W1_IUS_ -0.344  0.497       
## TmD_M1_IUS_ -0.333  0.480  0.479
anova  (IUS_MEM_C)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Time 796.69  265.56     3 301.64  10.259 1.886e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(IUS_MEM_C)
  IUS Score
Predictors Estimates CI p
(Intercept) 42.03 40.05 – 44.01 <0.001
Time [B_POST_IUS_total] -3.87 -5.24 – -2.49 <0.001
Time [C_W1_IUS_total] -1.83 -3.21 – -0.44 0.010
Time [D_M1_IUS_total] -1.69 -3.12 – -0.26 0.020
Random Effects
σ2 25.89
τ00 ID 81.89
ICC 0.76
N ID 106
Observations 410
Marginal R2 / Conditional R2 0.018 / 0.764
parameters::standardise_parameters(IUS_MEM_C)
## # Standardization method: refit
## 
## Parameter            | Std. Coef. |         95% CI
## --------------------------------------------------
## (Intercept)          |       0.17 | [-0.02,  0.36]
## TimeB_POST_IUS_total |      -0.37 | [-0.50, -0.24]
## TimeC_W1_IUS_total   |      -0.17 | [-0.31, -0.04]
## TimeD_M1_IUS_total   |      -0.16 | [-0.30, -0.03]

Effect of time in the EC group

IUS_EC <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_IUS_total", "B_POST_IUS_total", "C_W1_IUS_total", "D_M1_IUS_total") %>% 
  filter(Group == "A_ECs")
## Formatting table as needed
IUS_EC_long <- IUS_EC %>%
  pivot_longer(cols = c(A_PRE_IUS_total, B_POST_IUS_total, C_W1_IUS_total, D_M1_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")
IUS_MEM_EC <- lmer(IUS_Score ~ Time + (1|ID), data = IUS_EC_long, REML = TRUE)
summary(IUS_MEM_EC)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: IUS_Score ~ Time + (1 | ID)
##    Data: IUS_EC_long
## 
## REML criterion at convergence: 1176.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.72869 -0.51486 -0.07816  0.52049  2.97988 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 52.84    7.269   
##  Residual             13.78    3.713   
## Number of obs: 192, groups:  ID, 50
## 
## Fixed effects:
##                      Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)           41.0800     1.1543  67.5040  35.589  < 2e-16 ***
## TimeB_POST_IUS_total  -0.2800     0.7425 139.0560  -0.377  0.70668    
## TimeC_W1_IUS_total     0.9450     0.7526 139.2045   1.256  0.21134    
## TimeD_M1_IUS_total     2.3452     0.7749 139.5143   3.026  0.00295 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) TB_POS TC_W1_
## TB_POST_IUS -0.322              
## TmC_W1_IUS_ -0.317  0.493       
## TmD_M1_IUS_ -0.308  0.479  0.472
anova  (IUS_MEM_EC)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF  DenDF F value   Pr(>F)   
## Time 190.27  63.422     3 139.36  4.6012 0.004206 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(IUS_MEM_EC)
  IUS Score
Predictors Estimates CI p
(Intercept) 41.08 38.80 – 43.36 <0.001
Time [B_POST_IUS_total] -0.28 -1.74 – 1.18 0.707
Time [C_W1_IUS_total] 0.94 -0.54 – 2.43 0.211
Time [D_M1_IUS_total] 2.35 0.82 – 3.87 0.003
Random Effects
σ2 13.78
τ00 ID 52.84
ICC 0.79
N ID 50
Observations 192
Marginal R2 / Conditional R2 0.015 / 0.796
parameters::standardise_parameters(IUS_MEM_EC)
## # Standardization method: refit
## 
## Parameter            | Std. Coef. |        95% CI
## -------------------------------------------------
## (Intercept)          |      -0.09 | [-0.36, 0.19]
## TimeB_POST_IUS_total |      -0.03 | [-0.21, 0.14]
## TimeC_W1_IUS_total   |       0.12 | [-0.07, 0.30]
## TimeD_M1_IUS_total   |       0.29 | [ 0.10, 0.47]

Baseline to post

IUS_BP <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_IUS_total", "B_POST_IUS_total")
## Formatting table as needed
IUS_BP_long <- IUS_BP %>%
  pivot_longer(cols = c(A_PRE_IUS_total, B_POST_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")
IUS_MEM_BP <- lmer(IUS_Score ~ Group * Time + (1|ID), data = IUS_BP_long, REML = TRUE)
summary(IUS_MEM_BP)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: IUS_Score ~ Group * Time + (1 | ID)
##    Data: IUS_BP_long
## 
## REML criterion at convergence: 3592.2
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.95161 -0.44757  0.00781  0.41532  2.86841 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 71.13    8.434   
##  Residual             24.28    4.927   
## Number of obs: 516, groups:  ID, 259
## 
## Fixed effects:
##                                          Estimate Std. Error       df t value
## (Intercept)                               41.0800     1.3814 328.7093  29.738
## GroupB_Controls                            0.9483     1.6758 328.7093   0.566
## GroupC_Intervention                        1.9880     1.6836 328.7093   1.181
## TimeB_POST_IUS_total                      -0.2800     0.9854 254.2485  -0.284
## GroupB_Controls:TimeB_POST_IUS_total      -3.5879     1.1955 254.2485  -3.001
## GroupC_Intervention:TimeB_POST_IUS_total  -6.0437     1.2044 254.6121  -5.018
##                                          Pr(>|t|)    
## (Intercept)                               < 2e-16 ***
## GroupB_Controls                           0.57186    
## GroupC_Intervention                       0.23854    
## TimeB_POST_IUS_total                      0.77654    
## GroupB_Controls:TimeB_POST_IUS_total      0.00296 ** 
## GroupC_Intervention:TimeB_POST_IUS_total 9.81e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TB_POS GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TB_POST_IUS -0.357  0.294  0.293              
## GB_C:TB_POS  0.294 -0.357 -0.241 -0.824       
## GC_I:TB_POS  0.292 -0.241 -0.356 -0.818  0.674
anova  (IUS_MEM_BP)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Group        10.89    5.45     2 256.08  0.2243    0.7992    
## Time       1394.73 1394.73     1 254.53 57.4503 6.459e-13 ***
## Group:Time  617.82  308.91     2 254.58 12.7243 5.407e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(IUS_MEM_BP,
                  pred.labels=c("Intercept", "Active Controls", "Mindset Intervention","Time (Post)", "Active Controls x Time","Mindset Intervention x Time"),
                  dv.labels=c("Intolerance of Uncertainty (IUS-12 Score)"),
                  string.ci="95% CI")
  Intolerance of Uncertainty (IUS-12 Score)
Predictors Estimates 95% CI p
Intercept 41.08 38.37 – 43.79 <0.001
Active Controls 0.95 -2.34 – 4.24 0.572
Mindset Intervention 1.99 -1.32 – 5.30 0.238
Time (Post) -0.28 -2.22 – 1.66 0.776
Active Controls x Time -3.59 -5.94 – -1.24 0.003
Mindset Intervention x Time -6.04 -8.41 – -3.68 <0.001
Random Effects
σ2 24.28
τ00 ID 71.13
ICC 0.75
N ID 259
Observations 516
Marginal R2 / Conditional R2 0.056 / 0.760
parameters::standardise_parameters(IUS_MEM_BP)
## # Standardization method: refit
## 
## Parameter                                | Std. Coef. |         95% CI
## ----------------------------------------------------------------------
## (Intercept)                              |       0.09 | [-0.18,  0.36]
## GroupB_Controls                          |       0.09 | [-0.23,  0.42]
## GroupC_Intervention                      |       0.20 | [-0.13,  0.53]
## TimeB_POST_IUS_total                     |      -0.03 | [-0.22,  0.17]
## GroupB_Controls:TimeB_POST_IUS_total     |      -0.36 | [-0.59, -0.12]
## GroupC_Intervention:TimeB_POST_IUS_total |      -0.60 | [-0.84, -0.37]
plot_model(IUS_MEM_BP, type = "int")

Baseline to 1W

IUS_B1W <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_IUS_total", "C_W1_IUS_total")
## Formatting table as needed
IUS_B1W_long <- IUS_B1W %>%
  pivot_longer(cols = c(A_PRE_IUS_total, C_W1_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")
IUS_MEM_B1W <- lmer(IUS_Score ~ Group * Time + (1|ID), data = IUS_B1W_long, REML = TRUE)
summary(IUS_MEM_B1W)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: IUS_Score ~ Group * Time + (1 | ID)
##    Data: IUS_B1W_long
## 
## REML criterion at convergence: 3541.4
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.05745 -0.40449 -0.00329  0.45694  2.90920 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 64.04    8.003   
##  Residual             24.69    4.969   
## Number of obs: 511, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error       df t value
## (Intercept)                             41.0800     1.3321 334.4251  30.837
## GroupB_Controls                          0.9483     1.6161 334.4251   0.587
## GroupC_Intervention                      1.9880     1.6236 334.4251   1.224
## TimeC_W1_IUS_total                       0.8991     1.0114 251.5502   0.889
## GroupB_Controls:TimeC_W1_IUS_total      -2.7707     1.2233 251.1429  -2.265
## GroupC_Intervention:TimeC_W1_IUS_total  -5.4023     1.2307 251.3348  -4.390
##                                        Pr(>|t|)    
## (Intercept)                             < 2e-16 ***
## GroupB_Controls                          0.5577    
## GroupC_Intervention                      0.2217    
## TimeC_W1_IUS_total                       0.3749    
## GroupB_Controls:TimeC_W1_IUS_total       0.0244 *  
## GroupC_Intervention:TimeC_W1_IUS_total 1.67e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TC_W1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TmC_W1_IUS_ -0.366  0.302  0.301              
## GB_C:TC_W1_  0.303 -0.368 -0.249 -0.827       
## GC_I:TC_W1_  0.301 -0.248 -0.367 -0.822  0.679
anova  (IUS_MEM_B1W)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Group        5.54    2.77     2 256.11  0.1122 0.8938692    
## Time       372.30  372.30     1 251.08 15.0803 0.0001318 ***
## Group:Time 499.29  249.64     2 250.97 10.1120 5.976e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(IUS_MEM_B1W,
                  pred.labels=c("Intercept", "Active Controls", "Mindset Intervention", "Time (1 Week)", "Active Controls x Time","Mindset Intervention x Time"),
                  dv.labels=c("Intolerance of Uncertainty (IUS-12 Score"),
                  string.ci="95% CI",
                  emph.p = TRUE)
  Intolerance of Uncertainty (IUS-12 Score
Predictors Estimates 95% CI p
Intercept 41.08 38.46 – 43.70 <0.001
Active Controls 0.95 -2.23 – 4.12 0.558
Mindset Intervention 1.99 -1.20 – 5.18 0.221
Time (1 Week) 0.90 -1.09 – 2.89 0.374
Active Controls x Time -2.77 -5.17 – -0.37 0.024
Mindset Intervention x Time -5.40 -7.82 – -2.98 <0.001
Random Effects
σ2 24.69
τ00 ID 64.04
ICC 0.72
N ID 259
Observations 511
Marginal R2 / Conditional R2 0.027 / 0.729
parameters::standardise_parameters(IUS_MEM_B1W)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |         95% CI
## --------------------------------------------------------------------
## (Intercept)                            |  -7.24e-03 | [-0.28,  0.27]
## GroupB_Controls                        |       0.10 | [-0.23,  0.43]
## GroupC_Intervention                    |       0.21 | [-0.13,  0.55]
## TimeC_W1_IUS_total                     |       0.09 | [-0.11,  0.30]
## GroupB_Controls:TimeC_W1_IUS_total     |      -0.29 | [-0.55, -0.04]
## GroupC_Intervention:TimeC_W1_IUS_total |      -0.57 | [-0.82, -0.31]
plot_model(IUS_MEM_B1W, type = "int")

Baseline to 1M

IUS_B1M <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_IUS_total", "D_M1_IUS_total")
## Formatting table as needed
IUS_B1M_long <- IUS_B1M %>%
  pivot_longer(cols = c(A_PRE_IUS_total, D_M1_IUS_total),
               names_to = "Time",
               values_to = "IUS_Score")
IUS_MEM_B1M <- lmer(IUS_Score ~ Group * Time + (1|ID), data = IUS_B1M_long, REML = TRUE)
summary(IUS_MEM_B1M)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: IUS_Score ~ Group * Time + (1 | ID)
##    Data: IUS_B1M_long
## 
## REML criterion at convergence: 3427.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.95787 -0.46559  0.01777  0.50003  2.25579 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 59.99    7.745   
##  Residual             29.75    5.454   
## Number of obs: 488, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error       df t value
## (Intercept)                             41.0800     1.3397 343.4368  30.664
## GroupB_Controls                          0.9483     1.6252 343.4368   0.583
## GroupC_Intervention                      1.9880     1.6328 343.4368   1.218
## TimeD_M1_IUS_total                       2.2079     1.1512 235.9671   1.918
## GroupB_Controls:TimeD_M1_IUS_total      -3.9626     1.3951 235.8181  -2.840
## GroupC_Intervention:TimeD_M1_IUS_total  -6.9119     1.4023 235.8887  -4.929
##                                        Pr(>|t|)    
## (Intercept)                             < 2e-16 ***
## GroupB_Controls                          0.5599    
## GroupC_Intervention                      0.2242    
## TimeD_M1_IUS_total                       0.0563 .  
## GroupB_Controls:TimeD_M1_IUS_total       0.0049 ** 
## GroupC_Intervention:TimeD_M1_IUS_total 1.56e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TD_M1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TmD_M1_IUS_ -0.386  0.318  0.317              
## GB_C:TD_M1_  0.318 -0.386 -0.261 -0.825       
## GC_I:TD_M1_  0.317 -0.261 -0.386 -0.821  0.677
anova  (IUS_MEM_B1M)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF  DenDF F value   Pr(>F)    
## Group       28.24   14.12     2 257.23  0.4747 0.622614    
## Time       207.73  207.73     1 235.80  6.9828 0.008781 ** 
## Group:Time 736.40  368.20     2 235.76 12.3767 7.74e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(IUS_MEM_B1M,
                  pred.labels=c("Intercept", "Active Controls", "Mindset Intervention", "Time (1 Month)", "Active Controls x Time","Mindset Intervention x Time"),
                  dv.labels=c("Intolerance of Uncertainty (IUS-12 Score)"),
                  string.ci="95% CI",
                  emph.p = TRUE)
  Intolerance of Uncertainty (IUS-12 Score)
Predictors Estimates 95% CI p
Intercept 41.08 38.45 – 43.71 <0.001
Active Controls 0.95 -2.25 – 4.14 0.560
Mindset Intervention 1.99 -1.22 – 5.20 0.224
Time (1 Month) 2.21 -0.05 – 4.47 0.056
Active Controls x Time -3.96 -6.70 – -1.22 0.005
Mindset Intervention x Time -6.91 -9.67 – -4.16 <0.001
Random Effects
σ2 29.75
τ00 ID 59.99
ICC 0.67
N ID 259
Observations 488
Marginal R2 / Conditional R2 0.032 / 0.679
parameters::standardise_parameters(IUS_MEM_B1M)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |         95% CI
## --------------------------------------------------------------------
## (Intercept)                            |      -0.02 | [-0.30,  0.25]
## GroupB_Controls                        |       0.10 | [-0.23,  0.43]
## GroupC_Intervention                    |       0.21 | [-0.13,  0.54]
## TimeD_M1_IUS_total                     |       0.23 | [-0.01,  0.47]
## GroupB_Controls:TimeD_M1_IUS_total     |      -0.41 | [-0.70, -0.13]
## GroupC_Intervention:TimeD_M1_IUS_total |      -0.72 | [-1.01, -0.43]
plot_model(IUS_MEM_B1M, type = "int")

H2a: difference in change in behavioural IUS over time between groups (baseline to post)

Not excluding never samplers

# Excluding them at pre and post
BT_BP <- BT_PRE_POST %>%
  dplyr::select("ID", "Group", "A_PRE_samples", "B_POST_samples")
## Formatting table as needed
BT_BP_long <- BT_BP %>%
  pivot_longer(cols = c(A_PRE_samples, B_POST_samples),
               names_to = "Time",
               values_to = "BT_Score")
BT_MEM_BP <- lmer(BT_Score ~ Group * Time + (1|ID), data = BT_BP_long, REML = TRUE)
summary(BT_MEM_BP)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BT_Score ~ Group * Time + (1 | ID)
##    Data: BT_BP_long
## 
## REML criterion at convergence: 4395.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.9264 -0.2398 -0.0766  0.0958  8.1574 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 354      18.81   
##  Residual             263      16.22   
## Number of obs: 488, groups:  ID, 246
## 
## Fixed effects:
##                                        Estimate Std. Error       df t value
## (Intercept)                             13.5745     3.6233 364.5272   3.746
## GroupB_Controls                          3.6055     4.3930 364.5272   0.821
## GroupC_Intervention                     -1.9583     4.4001 364.5272  -0.445
## TimeB_POST_samples                      -0.5106     3.3457 240.3829  -0.153
## GroupB_Controls:TimeB_POST_samples      -7.2867     4.0668 240.9058  -1.792
## GroupC_Intervention:TimeB_POST_samples  -2.4873     4.0736 240.9148  -0.611
##                                        Pr(>|t|)    
## (Intercept)                            0.000208 ***
## GroupB_Controls                        0.412330    
## GroupC_Intervention                    0.656542    
## TimeB_POST_samples                     0.878821    
## GroupB_Controls:TimeB_POST_samples     0.074429 .  
## GroupC_Intervention:TimeB_POST_samples 0.542042    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TB_POS GB_C:T
## GrpB_Cntrls -0.825                            
## GrpC_Intrvn -0.823  0.679                     
## TmB_POST_sm -0.462  0.381  0.380              
## GB_C:TB_POS  0.380 -0.461 -0.313 -0.823       
## GC_I:TB_POS  0.379 -0.313 -0.460 -0.821  0.676
anova  (BT_MEM_BP)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)  
## Group       322.16  161.08     2 243.67  0.6124 0.54290  
## Time       1532.59 1532.59     1 241.18  5.8262 0.01653 *
## Group:Time 1018.76  509.38     2 241.35  1.9364 0.14645  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(BT_MEM_BP)
  BT Score
Predictors Estimates CI p
(Intercept) 13.57 6.45 – 20.69 <0.001
Group [B_Controls] 3.61 -5.03 – 12.24 0.412
Group [C_Intervention] -1.96 -10.60 – 6.69 0.656
Time [B_POST_samples] -0.51 -7.08 – 6.06 0.879
Group [B_Controls] × Time
[B_POST_samples]
-7.29 -15.28 – 0.70 0.074
Group [C_Intervention] ×
Time [B_POST_samples]
-2.49 -10.49 – 5.52 0.542
Random Effects
σ2 263.05
τ00 ID 353.98
ICC 0.57
N ID 246
Observations 488
Marginal R2 / Conditional R2 0.015 / 0.580
parameters::standardise_parameters(BT_MEM_BP)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |        95% CI
## -------------------------------------------------------------------
## (Intercept)                            |       0.06 | [-0.23, 0.35]
## GroupB_Controls                        |       0.14 | [-0.20, 0.49]
## GroupC_Intervention                    |      -0.08 | [-0.43, 0.27]
## TimeB_POST_samples                     |      -0.02 | [-0.28, 0.24]
## GroupB_Controls:TimeB_POST_samples     |      -0.29 | [-0.61, 0.03]
## GroupC_Intervention:TimeB_POST_samples |      -0.10 | [-0.42, 0.22]
plot_model(BT_MEM_BP, type = "int")

Excluding never samplers at PRE

# Excluding them at pre and post
BT_BP_removed <- BT_PRE_POST %>% 
  filter(A_PRE_samples != "0") %>% # only excluding from PRE
  dplyr::select("ID", "Group", "A_PRE_samples", "B_POST_samples")
## Formatting table as needed
BT_BP_long_removed <- BT_BP_removed %>%
  pivot_longer(cols = c(A_PRE_samples, B_POST_samples),
               names_to = "Time",
               values_to = "BT_Score")
BT_MEM_BP_removed <- lmer(BT_Score ~ Group * Time + (1|ID), data = BT_BP_long_removed, REML = TRUE)
summary(BT_MEM_BP_removed)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BT_Score ~ Group * Time + (1 | ID)
##    Data: BT_BP_long_removed
## 
## REML criterion at convergence: 3169.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0812 -0.2761 -0.0683  0.1403  6.8856 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 429.4    20.72   
##  Residual             358.4    18.93   
## Number of obs: 343, groups:  ID, 173
## 
## Fixed effects:
##                                        Estimate Std. Error       df t value
## (Intercept)                             16.7895     4.5533 261.0959   3.687
## GroupB_Controls                          9.2408     5.7157 261.0959   1.617
## GroupC_Intervention                     -0.1228     5.6702 261.0959  -0.022
## TimeB_POST_samples                      -1.1053     4.3434 168.0021  -0.254
## GroupB_Controls:TimeB_POST_samples     -11.2692     5.4762 168.6705  -2.058
## GroupC_Intervention:TimeB_POST_samples  -3.4718     5.4196 168.3090  -0.641
##                                        Pr(>|t|)    
## (Intercept)                            0.000276 ***
## GroupB_Controls                        0.107143    
## GroupC_Intervention                    0.982737    
## TimeB_POST_samples                     0.799442    
## GroupB_Controls:TimeB_POST_samples     0.041143 *  
## GroupC_Intervention:TimeB_POST_samples 0.522658    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TB_POS GB_C:T
## GrpB_Cntrls -0.797                            
## GrpC_Intrvn -0.803  0.640                     
## TmB_POST_sm -0.477  0.380  0.383              
## GB_C:TB_POS  0.378 -0.475 -0.304 -0.793       
## GC_I:TB_POS  0.382 -0.304 -0.476 -0.801  0.636
anova  (BT_MEM_BP_removed)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value   Pr(>F)   
## Group       601.59  300.79     2 170.47  0.8392 0.433833   
## Time       2885.84 2885.84     1 168.72  8.0513 0.005105 **
## Group:Time 1785.79  892.90     2 168.82  2.4911 0.085856 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(BT_MEM_BP_removed,
                  pred.labels=c("Intercept", "Active Controls", "Mindset Intervention","Time (Post)", "Active Controls x Time","Mindset Intervention x Time"),
                  dv.labels=c("Behavioural Intolerance of Uncertainty (Sampling)"),
                  string.ci="95% CI",
                  emph.p = TRUE)
  Behavioural Intolerance of Uncertainty (Sampling)
Predictors Estimates 95% CI p
Intercept 16.79 7.83 – 25.75 <0.001
Active Controls 9.24 -2.00 – 20.48 0.107
Mindset Intervention -0.12 -11.28 – 11.03 0.983
Time (Post) -1.11 -9.65 – 7.44 0.799
Active Controls x Time -11.27 -22.04 – -0.50 0.040
Mindset Intervention x Time -3.47 -14.13 – 7.19 0.522
Random Effects
σ2 358.43
τ00 ID 429.41
ICC 0.55
N ID 173
Observations 343
Marginal R2 / Conditional R2 0.028 / 0.558
parameters::standardise_parameters(BT_MEM_BP_removed)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |         95% CI
## --------------------------------------------------------------------
## (Intercept)                            |  -6.00e-03 | [-0.32,  0.31]
## GroupB_Controls                        |       0.33 | [-0.07,  0.72]
## GroupC_Intervention                    |  -4.34e-03 | [-0.40,  0.39]
## TimeB_POST_samples                     |      -0.04 | [-0.34,  0.26]
## GroupB_Controls:TimeB_POST_samples     |      -0.40 | [-0.78, -0.02]
## GroupC_Intervention:TimeB_POST_samples |      -0.12 | [-0.50,  0.25]
plot_model(BT_MEM_BP_removed, type = "int")

sjPlot::tab_model(BT_MEM_BP,BT_MEM_BP_removed,
                  pred.labels=c("Intercept", "Active Controls", "Mindset Intervention","Time (Post)", "Active Controls x Time","Mindset Intervention x Time"),
                  dv.labels=c("Behavioural Intolerance of Uncertainty (Including Never Samplers)", "Behavioural Intolerance of Uncertainty (Excluding Never Samplers)"),
                  string.ci="95% CI",
                  emph.p = FALSE)
  Behavioural Intolerance of Uncertainty (Including Never Samplers) Behavioural Intolerance of Uncertainty (Excluding Never Samplers)
Predictors Estimates 95% CI p Estimates 95% CI p
Intercept 13.57 6.45 – 20.69 <0.001 16.79 7.83 – 25.75 <0.001
Active Controls 3.61 -5.03 – 12.24 0.412 9.24 -2.00 – 20.48 0.107
Mindset Intervention -1.96 -10.60 – 6.69 0.656 -0.12 -11.28 – 11.03 0.983
Time (Post) -0.51 -7.08 – 6.06 0.879 -1.11 -9.65 – 7.44 0.799
Active Controls x Time -7.29 -15.28 – 0.70 0.074 -11.27 -22.04 – -0.50 0.040
Mindset Intervention x Time -2.49 -10.49 – 5.52 0.542 -3.47 -14.13 – 7.19 0.522
Random Effects
σ2 263.05 358.43
τ00 353.98 ID 429.41 ID
ICC 0.57 0.55
N 246 ID 173 ID
Observations 488 343
Marginal R2 / Conditional R2 0.015 / 0.580 0.028 / 0.558

Excluding never samplers at both PRE and POST

# Excluding them at pre and post
BT_BP_removed_both <- BT_PRE_POST %>% 
  filter(A_PRE_samples != "0", B_POST_samples != "0") %>% # only excluding from PRE
  dplyr::select("ID", "Group", "A_PRE_samples", "B_POST_samples")
## Formatting table as needed
BT_BP_long_removed_both <- BT_BP_removed_both %>%
  pivot_longer(cols = c(A_PRE_samples, B_POST_samples),
               names_to = "Time",
               values_to = "BT_Score")
BT_MEM_BP_removed_both <- lmer(BT_Score ~ Group * Time + (1|ID), data = BT_BP_long_removed_both, REML = TRUE)
summary(BT_MEM_BP_removed_both)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BT_Score ~ Group * Time + (1 | ID)
##    Data: BT_BP_long_removed_both
## 
## REML criterion at convergence: 2294.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8069 -0.2375 -0.0513  0.1451  5.7469 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 545.0    23.35   
##  Residual             206.9    14.38   
## Number of obs: 256, groups:  ID, 128
## 
## Fixed effects:
##                                        Estimate Std. Error      df t value
## (Intercept)                              19.250      4.848 163.890   3.971
## GroupB_Controls                           4.990      6.208 163.890   0.804
## GroupC_Intervention                       3.685      6.312 163.890   0.584
## TimeB_POST_samples                       -0.625      3.596 125.000  -0.174
## GroupB_Controls:TimeB_POST_samples       -5.895      4.605 125.000  -1.280
## GroupC_Intervention:TimeB_POST_samples   -4.288      4.683 125.000  -0.916
##                                        Pr(>|t|)    
## (Intercept)                            0.000107 ***
## GroupB_Controls                        0.422661    
## GroupC_Intervention                    0.560191    
## TimeB_POST_samples                     0.862299    
## GroupB_Controls:TimeB_POST_samples     0.202877    
## GroupC_Intervention:TimeB_POST_samples 0.361562    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TB_POS GB_C:T
## GrpB_Cntrls -0.781                            
## GrpC_Intrvn -0.768  0.600                     
## TmB_POST_sm -0.371  0.290  0.285              
## GB_C:TB_POS  0.290 -0.371 -0.222 -0.781       
## GC_I:TB_POS  0.285 -0.222 -0.371 -0.768  0.600
anova  (BT_MEM_BP_removed_both)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF DenDF F value  Pr(>F)  
## Group       26.79   13.40     2   125  0.0647 0.93734  
## Time       996.01  996.01     1   125  4.8141 0.03008 *
## Group:Time 346.12  173.06     2   125  0.8365 0.43565  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(BT_MEM_BP_removed_both)
  BT Score
Predictors Estimates CI p
(Intercept) 19.25 9.70 – 28.80 <0.001
Group [B_Controls] 4.99 -7.24 – 17.22 0.422
Group [C_Intervention] 3.68 -8.75 – 16.12 0.560
Time [B_POST_samples] -0.62 -7.71 – 6.46 0.862
Group [B_Controls] × Time
[B_POST_samples]
-5.90 -14.97 – 3.18 0.202
Group [C_Intervention] ×
Time [B_POST_samples]
-4.29 -13.51 – 4.93 0.361
Random Effects
σ2 206.89
τ00 ID 545.04
ICC 0.72
N ID 128
Observations 256
Marginal R2 / Conditional R2 0.009 / 0.727
parameters::standardise_parameters(BT_MEM_BP_removed_both)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |        95% CI
## -------------------------------------------------------------------
## (Intercept)                            |      -0.04 | [-0.39, 0.31]
## GroupB_Controls                        |       0.18 | [-0.27, 0.63]
## GroupC_Intervention                    |       0.14 | [-0.32, 0.59]
## TimeB_POST_samples                     |      -0.02 | [-0.28, 0.24]
## GroupB_Controls:TimeB_POST_samples     |      -0.22 | [-0.55, 0.12]
## GroupC_Intervention:TimeB_POST_samples |      -0.16 | [-0.50, 0.18]
plot_model(BT_MEM_BP_removed_both, type = "int")

H2a: difference in change in growth mindsets over time between groups

GM_alltimepoints <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GM", "B_POST_GM", "C_W1_GM", "D_M1_GM")
## Formatting table as needed
GM_alltimepoints_long <- GM_alltimepoints %>%
  pivot_longer(cols = c(A_PRE_GM, B_POST_GM, C_W1_GM, D_M1_GM),
               names_to = "Time",
               values_to = "GM_Score")
GM_MEM <- lmer(GM_Score ~ Group * Time + (1|ID), data = GM_alltimepoints_long, REML = TRUE)
summary(GM_MEM)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GM_Score ~ Group * Time + (1 | ID)
##    Data: GM_alltimepoints_long
## 
## REML criterion at convergence: 3110.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1305 -0.5023 -0.0609  0.4554  3.6922 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1.3098   1.1445  
##  Residual             0.7768   0.8814  
## Number of obs: 996, groups:  ID, 259
## 
## Fixed effects:
##                                    Estimate Std. Error        df t value
## (Intercept)                         2.74000    0.20429 463.07671  13.413
## GroupB_Controls                     0.40151    0.24783 463.07671   1.620
## GroupC_Intervention                 0.16291    0.24898 463.07671   0.654
## TimeB_POST_GM                       0.04000    0.17627 728.13424   0.227
## TimeC_W1_GM                        -0.07589    0.17861 729.70994  -0.425
## TimeD_M1_GM                        -0.03987    0.18380 733.00453  -0.217
## GroupB_Controls:TimeB_POST_GM      -0.53057    0.21384 728.13424  -2.481
## GroupC_Intervention:TimeB_POST_GM  -0.71126    0.21528 728.38399  -3.304
## GroupB_Controls:TimeC_W1_GM        -0.23713    0.21621 729.54890  -1.097
## GroupC_Intervention:TimeC_W1_GM    -0.51437    0.21744 729.67920  -2.366
## GroupB_Controls:TimeD_M1_GM        -0.35002    0.22306 733.13394  -1.569
## GroupC_Intervention:TimeD_M1_GM    -0.58867    0.22393 733.05960  -2.629
##                                   Pr(>|t|)    
## (Intercept)                        < 2e-16 ***
## GroupB_Controls                    0.10589    
## GroupC_Intervention                0.51323    
## TimeB_POST_GM                      0.82055    
## TimeC_W1_GM                        0.67105    
## TimeD_M1_GM                        0.82834    
## GroupB_Controls:TimeB_POST_GM      0.01332 *  
## GroupC_Intervention:TimeB_POST_GM  0.00100 ** 
## GroupB_Controls:TimeC_W1_GM        0.27310    
## GroupC_Intervention:TimeC_W1_GM    0.01826 *  
## GroupB_Controls:TimeD_M1_GM        0.11704    
## GroupC_Intervention:TimeD_M1_GM    0.00875 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TB_POS TC_W1_ TD_M1_ GB_C:TB GC_I:TB GB_C:TC
## GrpB_Cntrls -0.824                                                           
## GrpC_Intrvn -0.820  0.676                                                    
## TmB_POST_GM -0.431  0.356  0.354                                             
## TimeC_W1_GM -0.426  0.351  0.349  0.493                                      
## TimeD_M1_GM -0.414  0.341  0.340  0.480  0.472                               
## GB_C:TB_POS  0.356 -0.431 -0.292 -0.824 -0.407 -0.395                        
## GC_I:TB_POS  0.353 -0.291 -0.431 -0.819 -0.404 -0.393  0.675                 
## GB_C:TC_W1_  0.352 -0.427 -0.289 -0.408 -0.826 -0.390  0.495   0.334         
## GC_I:TC_W1_  0.350 -0.288 -0.426 -0.405 -0.821 -0.388  0.334   0.493   0.679 
## GB_C:TD_M1_  0.341 -0.414 -0.280 -0.395 -0.389 -0.824  0.479   0.324   0.474 
## GC_I:TD_M1_  0.340 -0.280 -0.414 -0.394 -0.388 -0.821  0.324   0.479   0.320 
##             GC_I:TC GB_C:TD
## GrpB_Cntrls                
## GrpC_Intrvn                
## TmB_POST_GM                
## TimeC_W1_GM                
## TimeD_M1_GM                
## GB_C:TB_POS                
## GC_I:TB_POS                
## GB_C:TC_W1_                
## GC_I:TC_W1_                
## GB_C:TD_M1_  0.320         
## GC_I:TD_M1_  0.474   0.676
anova  (GM_MEM)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Group       4.6999  2.3499     2 256.22  3.0251   0.05029 .  
## Time       21.1646  7.0549     3 731.30  9.0817 6.584e-06 ***
## Group:Time 10.6523  1.7754     6 731.29  2.2855   0.03414 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(GM_MEM)
  GM Score
Predictors Estimates CI p
(Intercept) 2.74 2.34 – 3.14 <0.001
Group [B_Controls] 0.40 -0.08 – 0.89 0.106
Group [C_Intervention] 0.16 -0.33 – 0.65 0.513
Time [B_POST_GM] 0.04 -0.31 – 0.39 0.821
Time [C_W1_GM] -0.08 -0.43 – 0.27 0.671
Time [D_M1_GM] -0.04 -0.40 – 0.32 0.828
Group [B_Controls] × Time
[B_POST_GM]
-0.53 -0.95 – -0.11 0.013
Group [C_Intervention] ×
Time [B_POST_GM]
-0.71 -1.13 – -0.29 0.001
Group [B_Controls] × Time
[C_W1_GM]
-0.24 -0.66 – 0.19 0.273
Group [C_Intervention] ×
Time [C_W1_GM]
-0.51 -0.94 – -0.09 0.018
Group [B_Controls] × Time
[D_M1_GM]
-0.35 -0.79 – 0.09 0.117
Group [C_Intervention] ×
Time [D_M1_GM]
-0.59 -1.03 – -0.15 0.009
Random Effects
σ2 0.78
τ00 ID 1.31
ICC 0.63
N ID 259
Observations 996
Marginal R2 / Conditional R2 0.037 / 0.641
parameters::standardise_parameters(GM_MEM)
## # Standardization method: refit
## 
## Parameter                         | Std. Coef. |         95% CI
## ---------------------------------------------------------------
## (Intercept)                       |       0.05 | [-0.22,  0.33]
## GroupB_Controls                   |       0.27 | [-0.06,  0.61]
## GroupC_Intervention               |       0.11 | [-0.22,  0.44]
## TimeB_POST_GM                     |       0.03 | [-0.21,  0.26]
## TimeC_W1_GM                       |      -0.05 | [-0.29,  0.19]
## TimeD_M1_GM                       |      -0.03 | [-0.27,  0.22]
## GroupB_Controls:TimeB_POST_GM     |      -0.36 | [-0.65, -0.08]
## GroupC_Intervention:TimeB_POST_GM |      -0.49 | [-0.77, -0.20]
## GroupB_Controls:TimeC_W1_GM       |      -0.16 | [-0.45,  0.13]
## GroupC_Intervention:TimeC_W1_GM   |      -0.35 | [-0.64, -0.06]
## GroupB_Controls:TimeD_M1_GM       |      -0.24 | [-0.54,  0.06]
## GroupC_Intervention:TimeD_M1_GM   |      -0.40 | [-0.70, -0.10]

Effect of time in the intervention group

GM_I <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GM", "B_POST_GM", "C_W1_GM", "D_M1_GM") %>% 
  filter(Group == "C_Intervention")
## Formatting table as needed
GM_I_long <- GM_I %>%
  pivot_longer(cols = c("A_PRE_GM", "B_POST_GM", "C_W1_GM", "D_M1_GM"),
               names_to = "Time",
               values_to = "GM_Score")
GM_MEM_I <- lmer(GM_Score ~ Time + (1|ID), data = GM_I_long, REML = TRUE)
summary(GM_MEM_I)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GM_Score ~ Time + (1 | ID)
##    Data: GM_I_long
## 
## REML criterion at convergence: 1213.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6550 -0.4944 -0.0741  0.3975  3.7670 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1.1927   1.0921  
##  Residual             0.7458   0.8636  
## Number of obs: 395, groups:  ID, 103
## 
## Fixed effects:
##               Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)     2.9029     0.1372 188.3310  21.160  < 2e-16 ***
## TimeB_POST_GM  -0.6714     0.1211 289.4670  -5.544 6.65e-08 ***
## TimeC_W1_GM    -0.5901     0.1215 289.7645  -4.857 1.96e-06 ***
## TimeD_M1_GM    -0.6289     0.1253 291.2381  -5.018 9.11e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) TB_POS TC_W1_
## TmB_POST_GM -0.436              
## TimeC_W1_GM -0.434  0.492       
## TimeD_M1_GM -0.421  0.477  0.477
anova  (GM_MEM_I)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Time 30.463  10.154     3 290.56  13.616 2.459e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(GM_MEM_I)
  GM Score
Predictors Estimates CI p
(Intercept) 2.90 2.63 – 3.17 <0.001
Time [B_POST_GM] -0.67 -0.91 – -0.43 <0.001
Time [C_W1_GM] -0.59 -0.83 – -0.35 <0.001
Time [D_M1_GM] -0.63 -0.88 – -0.38 <0.001
Random Effects
σ2 0.75
τ00 ID 1.19
ICC 0.62
N ID 103
Observations 395
Marginal R2 / Conditional R2 0.038 / 0.630
parameters::standardise_parameters(GM_MEM_I)
## # Standardization method: refit
## 
## Parameter     | Std. Coef. |         95% CI
## -------------------------------------------
## (Intercept)   |       0.33 | [ 0.14,  0.52]
## TimeB_POST_GM |      -0.47 | [-0.64, -0.31]
## TimeC_W1_GM   |      -0.42 | [-0.59, -0.25]
## TimeD_M1_GM   |      -0.44 | [-0.62, -0.27]

Effect of time in the Control group

GM_C <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GM", "B_POST_GM", "C_W1_GM", "D_M1_GM") %>% 
  filter(Group == "B_Controls")
## Formatting table as needed
GM_C_long <- GM_C %>%
  pivot_longer(cols = c("A_PRE_GM", "B_POST_GM", "C_W1_GM", "D_M1_GM"),
               names_to = "Time",
               values_to = "GM_Score")
GM_MEM_C <- lmer(GM_Score ~ Time + (1|ID), data = GM_C_long, REML = TRUE)
summary(GM_MEM_C)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GM_Score ~ Time + (1 | ID)
##    Data: GM_C_long
## 
## REML criterion at convergence: 1264.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2737 -0.5885 -0.0475  0.4550  3.0716 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1.4730   1.2137  
##  Residual             0.7216   0.8495  
## Number of obs: 409, groups:  ID, 106
## 
## Fixed effects:
##               Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)     3.1415     0.1439 176.8207  21.833  < 2e-16 ***
## TimeB_POST_GM  -0.4906     0.1167 300.1011  -4.204 3.46e-05 ***
## TimeC_W1_GM    -0.3131     0.1174 300.4830  -2.666  0.00809 ** 
## TimeD_M1_GM    -0.3916     0.1218 301.9620  -3.214  0.00145 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) TB_POS TC_W1_
## TmB_POST_GM -0.405              
## TimeC_W1_GM -0.403  0.497       
## TimeD_M1_GM -0.388  0.479  0.477
anova  (GM_MEM_C)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Time  14.15  4.7166     3 301.11  6.5365 0.0002697 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(GM_MEM_C)
  GM Score
Predictors Estimates CI p
(Intercept) 3.14 2.86 – 3.42 <0.001
Time [B_POST_GM] -0.49 -0.72 – -0.26 <0.001
Time [C_W1_GM] -0.31 -0.54 – -0.08 0.008
Time [D_M1_GM] -0.39 -0.63 – -0.15 0.001
Random Effects
σ2 0.72
τ00 ID 1.47
ICC 0.67
N ID 106
Observations 409
Marginal R2 / Conditional R2 0.016 / 0.676
parameters::standardise_parameters(GM_MEM_C)
## # Standardization method: refit
## 
## Parameter     | Std. Coef. |         95% CI
## -------------------------------------------
## (Intercept)   |       0.19 | [ 0.00,  0.38]
## TimeB_POST_GM |      -0.33 | [-0.48, -0.18]
## TimeC_W1_GM   |      -0.21 | [-0.37, -0.06]
## TimeD_M1_GM   |      -0.26 | [-0.42, -0.10]

Effect of time in the EC group

GM_EC <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GM", "B_POST_GM", "C_W1_GM", "D_M1_GM") %>% 
  filter(Group == "A_ECs")
## Formatting table as needed
GM_EC_long <- GM_EC %>%
  pivot_longer(cols = c("A_PRE_GM", "B_POST_GM", "C_W1_GM", "D_M1_GM"),
               names_to = "Time",
               values_to = "GM_Score")
GM_MEM_EC <- lmer(GM_Score ~ Time + (1|ID), data = GM_EC_long, REML = TRUE)
summary(GM_MEM_EC)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GM_Score ~ Time + (1 | ID)
##    Data: GM_EC_long
## 
## REML criterion at convergence: 627.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.3600 -0.3960 -0.1004  0.4376  3.3007 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1.201    1.0959  
##  Residual             0.961    0.9803  
## Number of obs: 192, groups:  ID, 50
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     2.74000    0.20794  99.75051  13.177   <2e-16 ***
## TimeB_POST_GM   0.04000    0.19606 138.79973   0.204    0.839    
## TimeC_W1_GM    -0.07574    0.19863 139.18085  -0.381    0.704    
## TimeD_M1_GM    -0.04087    0.20434 139.97855  -0.200    0.842    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) TB_POS TC_W1_
## TmB_POST_GM -0.471              
## TimeC_W1_GM -0.465  0.494       
## TimeD_M1_GM -0.452  0.480  0.473
anova  (GM_MEM_EC)
## Type III Analysis of Variance Table with Satterthwaite's method
##       Sum Sq Mean Sq NumDF  DenDF F value Pr(>F)
## Time 0.36522 0.12174     3 139.57  0.1267 0.9442
sjPlot::tab_model(GM_MEM_EC)
  GM Score
Predictors Estimates CI p
(Intercept) 2.74 2.33 – 3.15 <0.001
Time [B_POST_GM] 0.04 -0.35 – 0.43 0.839
Time [C_W1_GM] -0.08 -0.47 – 0.32 0.703
Time [D_M1_GM] -0.04 -0.44 – 0.36 0.842
Random Effects
σ2 0.96
τ00 ID 1.20
ICC 0.56
N ID 50
Observations 192
Marginal R2 / Conditional R2 0.001 / 0.556
parameters::standardise_parameters(GM_MEM_EC)
## # Standardization method: refit
## 
## Parameter     | Std. Coef. |        95% CI
## ------------------------------------------
## (Intercept)   |       0.01 | [-0.27, 0.30]
## TimeB_POST_GM |       0.03 | [-0.24, 0.29]
## TimeC_W1_GM   |      -0.05 | [-0.32, 0.22]
## TimeD_M1_GM   |      -0.03 | [-0.30, 0.25]

Baseline to post

GM_BP <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GM", "B_POST_GM")
## Formatting table as needed
GM_BP_long <- GM_BP %>%
  pivot_longer(cols = c(A_PRE_GM, B_POST_GM),
               names_to = "Time",
               values_to = "GM_Score")
GM_MEM_BP <- lmer(GM_Score ~ Group * Time + (1|ID), data = GM_BP_long, REML = TRUE)
summary(GM_MEM_BP)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GM_Score ~ Group * Time + (1 | ID)
##    Data: GM_BP_long
## 
## REML criterion at convergence: 1673.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5473 -0.4356 -0.0320  0.4087  2.9611 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1.471    1.2128  
##  Residual             0.614    0.7836  
## Number of obs: 516, groups:  ID, 259
## 
## Fixed effects:
##                                   Estimate Std. Error       df t value Pr(>|t|)
## (Intercept)                         2.7400     0.2042 341.6189  13.418  < 2e-16
## GroupB_Controls                     0.4015     0.2477 341.6189   1.621 0.105989
## GroupC_Intervention                 0.1629     0.2489 341.6189   0.655 0.513178
## TimeB_POST_GM                       0.0400     0.1567 254.5431   0.255 0.798745
## GroupB_Controls:TimeB_POST_GM      -0.5306     0.1901 254.5431  -2.791 0.005657
## GroupC_Intervention:TimeB_POST_GM  -0.7237     0.1915 254.9544  -3.779 0.000196
##                                      
## (Intercept)                       ***
## GroupB_Controls                      
## GroupC_Intervention                  
## TimeB_POST_GM                        
## GroupB_Controls:TimeB_POST_GM     ** 
## GroupC_Intervention:TimeB_POST_GM ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TB_POS GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TmB_POST_GM -0.384  0.316  0.315              
## GB_C:TB_POS  0.316 -0.384 -0.260 -0.824       
## GC_I:TB_POS  0.314 -0.259 -0.383 -0.818  0.674
anova  (GM_MEM_BP)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Group       2.0352  1.0176     2 256.34  1.6574 0.1926771    
## Time       16.3667 16.3667     1 254.86 26.6558   4.9e-07 ***
## Group:Time  8.8331  4.4165     2 254.92  7.1931 0.0009142 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(GM_MEM_BP,
                  pred.labels=c("Intercept", "Active Controls", "Mindset Intervention", "Time (Post)", "Active Controls x Time","Mindset Intervention x Time"),
                  dv.labels=c("Growth Mindsets about Uncertainty Tolerance"),
                  string.ci="95% CI",
                  emph.p = TRUE)
  Growth Mindsets about Uncertainty Tolerance
Predictors Estimates 95% CI p
Intercept 2.74 2.34 – 3.14 <0.001
Active Controls 0.40 -0.09 – 0.89 0.106
Mindset Intervention 0.16 -0.33 – 0.65 0.513
Time (Post) 0.04 -0.27 – 0.35 0.799
Active Controls x Time -0.53 -0.90 – -0.16 0.005
Mindset Intervention x Time -0.72 -1.10 – -0.35 <0.001
Random Effects
σ2 0.61
τ00 ID 1.47
ICC 0.71
N ID 259
Observations 516
Marginal R2 / Conditional R2 0.043 / 0.718
parameters::standardise_parameters(GM_MEM_BP)
## # Standardization method: refit
## 
## Parameter                         | Std. Coef. |         95% CI
## ---------------------------------------------------------------
## (Intercept)                       |   1.11e-03 | [-0.27,  0.27]
## GroupB_Controls                   |       0.27 | [-0.06,  0.60]
## GroupC_Intervention               |       0.11 | [-0.22,  0.44]
## TimeB_POST_GM                     |       0.03 | [-0.18,  0.24]
## GroupB_Controls:TimeB_POST_GM     |      -0.36 | [-0.61, -0.11]
## GroupC_Intervention:TimeB_POST_GM |      -0.49 | [-0.75, -0.24]
plot_model(GM_MEM_BP, type = "int")

Baseline to 1W

GM_B1W <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GM", "C_W1_GM")
## Formatting table as needed
GM_B1W_long <- GM_B1W %>%
  pivot_longer(cols = c(A_PRE_GM, C_W1_GM),
               names_to = "Time",
               values_to = "GM_Score")
GM_MEM_B1W <- lmer(GM_Score ~ Group * Time + (1|ID), data = GM_B1W_long, REML = TRUE)
summary(GM_MEM_B1W)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GM_Score ~ Group * Time + (1 | ID)
##    Data: GM_B1W_long
## 
## REML criterion at convergence: 1747.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2664 -0.5109 -0.1518  0.4940  2.7870 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1.038    1.019   
##  Residual             1.010    1.005   
## Number of obs: 511, groups:  ID, 259
## 
## Fixed effects:
##                                 Estimate Std. Error       df t value Pr(>|t|)
## (Intercept)                       2.7400     0.2024 403.7332  13.539   <2e-16
## GroupB_Controls                   0.4015     0.2455 403.7332   1.635   0.1027
## GroupC_Intervention               0.1629     0.2467 403.7332   0.661   0.5093
## TimeC_W1_GM                      -0.0784     0.2041 253.9941  -0.384   0.7012
## GroupB_Controls:TimeC_W1_GM      -0.2376     0.2470 253.3522  -0.962   0.3370
## GroupC_Intervention:TimeC_W1_GM  -0.5133     0.2484 253.6544  -2.066   0.0398
##                                    
## (Intercept)                     ***
## GroupB_Controls                    
## GroupC_Intervention                
## TimeC_W1_GM                        
## GroupB_Controls:TimeC_W1_GM        
## GroupC_Intervention:TimeC_W1_GM *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TC_W1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TimeC_W1_GM -0.489  0.403  0.401              
## GB_C:TC_W1_  0.404 -0.490 -0.332 -0.826       
## GC_I:TC_W1_  0.402 -0.331 -0.490 -0.822  0.679
anova  (GM_MEM_B1W)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Group       5.0659  2.5329     2 256.72  2.5080 0.0834210 .  
## Time       12.1159 12.1159     1 253.25 11.9969 0.0006256 ***
## Group:Time  4.6763  2.3381     2 253.08  2.3152 0.1008383    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(GM_MEM_B1W,
                  pred.labels=c("Intercept", "Active Controls", "Mindset Intervention", "Time (1 Week)", "Active Controls x Time","Mindset Intervention x Time"),
                  dv.labels=c("Growth Mindsets about Uncertainty Tolerance"),
                  string.ci="95% CI",
                  emph.p = FALSE)
  Growth Mindsets about Uncertainty Tolerance
Predictors Estimates 95% CI p
Intercept 2.74 2.34 – 3.14 <0.001
Active Controls 0.40 -0.08 – 0.88 0.103
Mindset Intervention 0.16 -0.32 – 0.65 0.509
Time (1 Week) -0.08 -0.48 – 0.32 0.701
Active Controls x Time -0.24 -0.72 – 0.25 0.337
Mindset Intervention x Time -0.51 -1.00 – -0.03 0.039
Random Effects
σ2 1.01
τ00 ID 1.04
ICC 0.51
N ID 259
Observations 511
Marginal R2 / Conditional R2 0.035 / 0.524
parameters::standardise_parameters(GM_MEM_B1W)
## # Standardization method: refit
## 
## Parameter                       | Std. Coef. |         95% CI
## -------------------------------------------------------------
## (Intercept)                     |      -0.03 | [-0.31,  0.24]
## GroupB_Controls                 |       0.28 | [-0.06,  0.61]
## GroupC_Intervention             |       0.11 | [-0.22,  0.45]
## TimeC_W1_GM                     |      -0.05 | [-0.33,  0.22]
## GroupB_Controls:TimeC_W1_GM     |      -0.16 | [-0.50,  0.17]
## GroupC_Intervention:TimeC_W1_GM |      -0.35 | [-0.69, -0.02]
plot_model(GM_MEM_B1W, type = "int")

Baseline to 1M

GM_B1M <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GM", "D_M1_GM")
## Formatting table as needed
GM_B1M_long <- GM_B1M %>%
  pivot_longer(cols = c(A_PRE_GM, D_M1_GM),
               names_to = "Time",
               values_to = "GM_Score")
GM_MEM_B1M <- lmer(GM_Score ~ Group * Time + (1|ID), data = GM_B1M_long, REML = TRUE)
summary(GM_MEM_B1M)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GM_Score ~ Group * Time + (1 | ID)
##    Data: GM_B1M_long
## 
## REML criterion at convergence: 1639.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.3875 -0.5367 -0.1142  0.4999  2.8661 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1.0920   1.0450  
##  Residual             0.8918   0.9444  
## Number of obs: 487, groups:  ID, 259
## 
## Fixed effects:
##                                  Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)                       2.74000    0.19919 375.54541  13.756   <2e-16
## GroupB_Controls                   0.40151    0.24164 375.54541   1.662   0.0974
## GroupC_Intervention               0.16291    0.24277 375.54541   0.671   0.5026
## TimeD_M1_GM                      -0.03867    0.19861 235.43449  -0.195   0.8458
## GroupB_Controls:TimeD_M1_GM      -0.30728    0.24103 235.51016  -1.275   0.2036
## GroupC_Intervention:TimeD_M1_GM  -0.59125    0.24193 235.33298  -2.444   0.0153
##                                    
## (Intercept)                     ***
## GroupB_Controls                 .  
## GroupC_Intervention                
## TimeD_M1_GM                        
## GroupB_Controls:TimeD_M1_GM        
## GroupC_Intervention:TimeD_M1_GM *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TD_M1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TimeD_M1_GM -0.451  0.372  0.370              
## GB_C:TD_M1_  0.372 -0.451 -0.305 -0.824       
## GC_I:TD_M1_  0.370 -0.305 -0.451 -0.821  0.676
anova  (GM_MEM_B1M)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value   Pr(>F)    
## Group       4.3400  2.1700     2 254.05  2.4332 0.089803 .  
## Time       11.8930 11.8930     1 235.41 13.3353 0.000321 ***
## Group:Time  5.5615  2.7807     2 235.41  3.1180 0.046079 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(GM_MEM_B1M,
                  pred.labels=c("Intercept", "Active Controls", "Mindset Intervention", "Time (1 Month)", "Active Controls x Time","Mindset Intervention x Time"),
                  dv.labels=c("Growth Mindsets about Uncertainty Tolerance"),
                  string.ci="95% CI",
                  emph.p = TRUE)
  Growth Mindsets about Uncertainty Tolerance
Predictors Estimates 95% CI p
Intercept 2.74 2.35 – 3.13 <0.001
Active Controls 0.40 -0.07 – 0.88 0.097
Mindset Intervention 0.16 -0.31 – 0.64 0.503
Time (1 Month) -0.04 -0.43 – 0.35 0.846
Active Controls x Time -0.31 -0.78 – 0.17 0.203
Mindset Intervention x Time -0.59 -1.07 – -0.12 0.015
Random Effects
σ2 0.89
τ00 ID 1.09
ICC 0.55
N ID 259
Observations 487
Marginal R2 / Conditional R2 0.039 / 0.568
parameters::standardise_parameters(GM_MEM_B1M)
## # Standardization method: refit
## 
## Parameter                       | Std. Coef. |         95% CI
## -------------------------------------------------------------
## (Intercept)                     |      -0.03 | [-0.30,  0.25]
## GroupB_Controls                 |       0.28 | [-0.05,  0.61]
## GroupC_Intervention             |       0.11 | [-0.22,  0.45]
## TimeD_M1_GM                     |      -0.03 | [-0.30,  0.25]
## GroupB_Controls:TimeD_M1_GM     |      -0.21 | [-0.55,  0.12]
## GroupC_Intervention:TimeD_M1_GM |      -0.41 | [-0.75, -0.08]
plot_model(GM_MEM_B1M, type = "int")

H2b: difference in change in PHQ over time between groups

PHQ_alltimepoints <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_PHQ_total", "C_W1_PHQ_total", "D_M1_PHQ_total")
## Formatting table as needed
PHQ_alltimepoints_long <- PHQ_alltimepoints %>%
  pivot_longer(cols = c(A_PRE_PHQ_total, C_W1_PHQ_total, D_M1_PHQ_total),
               names_to = "Time",
               values_to = "PHQ_Score")
PHQ_MEM <- lmer(PHQ_Score ~ Group * Time + (1|ID), data = PHQ_alltimepoints_long, REML = TRUE)
summary(PHQ_MEM)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PHQ_Score ~ Group * Time + (1 | ID)
##    Data: PHQ_alltimepoints_long
## 
## REML criterion at convergence: 4431
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0848 -0.5178 -0.1105  0.4839  3.1316 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 23.09    4.805   
##  Residual             12.85    3.584   
## Number of obs: 738, groups:  ID, 259
## 
## Fixed effects:
##                                         Estimate Std. Error        df t value
## (Intercept)                              9.96000    0.84777 413.57028  11.748
## GroupB_Controls                         -0.51660    1.02847 413.57027  -0.502
## GroupC_Intervention                      0.71961    1.03325 413.57027   0.696
## TimeC_W1_PHQ_total                      -0.02818    0.72719 476.89051  -0.039
## TimeD_M1_PHQ_total                       0.65044    0.75641 482.04856   0.860
## GroupB_Controls:TimeC_W1_PHQ_total      -0.89100    0.88115 476.94535  -1.011
## GroupC_Intervention:TimeC_W1_PHQ_total  -1.43926    0.88515 476.71330  -1.626
## GroupB_Controls:TimeD_M1_PHQ_total      -1.81031    0.91454 481.81570  -1.979
## GroupC_Intervention:TimeD_M1_PHQ_total  -3.00912    0.91898 481.64066  -3.274
##                                        Pr(>|t|)    
## (Intercept)                             < 2e-16 ***
## GroupB_Controls                         0.61572    
## GroupC_Intervention                     0.48654    
## TimeC_W1_PHQ_total                      0.96910    
## TimeD_M1_PHQ_total                      0.39027    
## GroupB_Controls:TimeC_W1_PHQ_total      0.31244    
## GroupC_Intervention:TimeC_W1_PHQ_total  0.10461    
## GroupB_Controls:TimeD_M1_PHQ_total      0.04833 *  
## GroupC_Intervention:TimeD_M1_PHQ_total  0.00113 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TC_W1_ TD_M1_ GB_C:TC GC_I:TC GB_C:TD
## GrpB_Cntrls -0.824                                                    
## GrpC_Intrvn -0.820  0.676                                             
## TmC_W1_PHQ_ -0.417  0.344  0.342                                      
## TmD_M1_PHQ_ -0.401  0.330  0.329  0.465                               
## GB_C:TC_W1_  0.344 -0.417 -0.282 -0.825 -0.384                        
## GC_I:TC_W1_  0.342 -0.282 -0.417 -0.822 -0.382  0.678                 
## GB_C:TD_M1_  0.331 -0.402 -0.272 -0.385 -0.827  0.469   0.316         
## GC_I:TD_M1_  0.330 -0.272 -0.402 -0.383 -0.823  0.316   0.468   0.681
anova  (PHQ_MEM)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)  
## Group       32.744  16.372     2 258.10  1.2743 0.28137  
## Time       115.215  57.608     2 480.45  4.4840 0.01177 *
## Group:Time 139.414  34.854     4 480.31  2.7129 0.02949 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(PHQ_MEM)
  PHQ Score
Predictors Estimates CI p
(Intercept) 9.96 8.30 – 11.62 <0.001
Group [B_Controls] -0.52 -2.54 – 1.50 0.616
Group [C_Intervention] 0.72 -1.31 – 2.75 0.486
Time [C_W1_PHQ_total] -0.03 -1.46 – 1.40 0.969
Time [D_M1_PHQ_total] 0.65 -0.83 – 2.14 0.390
Group [B_Controls] × Time
[C_W1_PHQ_total]
-0.89 -2.62 – 0.84 0.312
Group [C_Intervention] ×
Time [C_W1_PHQ_total]
-1.44 -3.18 – 0.30 0.104
Group [B_Controls] × Time
[D_M1_PHQ_total]
-1.81 -3.61 – -0.01 0.048
Group [C_Intervention] ×
Time [D_M1_PHQ_total]
-3.01 -4.81 – -1.20 0.001
Random Effects
σ2 12.85
τ00 ID 23.09
ICC 0.64
N ID 259
Observations 738
Marginal R2 / Conditional R2 0.021 / 0.650
parameters::standardise_parameters(PHQ_MEM)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |         95% CI
## --------------------------------------------------------------------
## (Intercept)                            |       0.11 | [-0.16,  0.39]
## GroupB_Controls                        |      -0.09 | [-0.42,  0.25]
## GroupC_Intervention                    |       0.12 | [-0.22,  0.45]
## TimeC_W1_PHQ_total                     |  -4.66e-03 | [-0.24,  0.23]
## TimeD_M1_PHQ_total                     |       0.11 | [-0.14,  0.35]
## GroupB_Controls:TimeC_W1_PHQ_total     |      -0.15 | [-0.43,  0.14]
## GroupC_Intervention:TimeC_W1_PHQ_total |      -0.24 | [-0.53,  0.05]
## GroupB_Controls:TimeD_M1_PHQ_total     |      -0.30 | [-0.60,  0.00]
## GroupC_Intervention:TimeD_M1_PHQ_total |      -0.50 | [-0.80, -0.20]

Effect of time in the intervention group

PHQ_I <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_PHQ_total", "C_W1_PHQ_total", "D_M1_PHQ_total") %>% 
  filter(Group == "C_Intervention")
## Formatting table as needed
PHQ_I_long <- PHQ_I %>%
  pivot_longer(cols = c("A_PRE_PHQ_total", "C_W1_PHQ_total", "D_M1_PHQ_total"),
               names_to = "Time",
               values_to = "PHQ_Score")
PHQ_MEM_I <- lmer(PHQ_Score ~ Time + (1|ID), data = PHQ_I_long, REML = TRUE)
summary(PHQ_MEM_I)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PHQ_Score ~ Time + (1 | ID)
##    Data: PHQ_I_long
## 
## REML criterion at convergence: 1764.2
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.98786 -0.51733 -0.09949  0.48087  2.91165 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 20.47    4.525   
##  Residual             13.32    3.650   
## Number of obs: 294, groups:  ID, 103
## 
## Fixed effects:
##                    Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)         10.6796     0.5728 173.5178  18.645  < 2e-16 ***
## TimeC_W1_PHQ_total  -1.4672     0.5139 190.6547  -2.855  0.00478 ** 
## TimeD_M1_PHQ_total  -2.3572     0.5312 192.6366  -4.437 1.53e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) TC_W1_
## TmC_W1_PHQ_ -0.439       
## TmD_M1_PHQ_ -0.425  0.473
anova  (PHQ_MEM_I)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
## Time 272.15  136.08     2 192.2  10.214 6.088e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(PHQ_MEM_I)
  PHQ Score
Predictors Estimates CI p
(Intercept) 10.68 9.55 – 11.81 <0.001
Time [C_W1_PHQ_total] -1.47 -2.48 – -0.46 0.005
Time [D_M1_PHQ_total] -2.36 -3.40 – -1.31 <0.001
Random Effects
σ2 13.32
τ00 ID 20.47
ICC 0.61
N ID 103
Observations 294
Marginal R2 / Conditional R2 0.027 / 0.616
parameters::standardise_parameters(PHQ_MEM_I)
## # Standardization method: refit
## 
## Parameter          | Std. Coef. |         95% CI
## ------------------------------------------------
## (Intercept)        |       0.21 | [ 0.01,  0.40]
## TimeC_W1_PHQ_total |      -0.25 | [-0.42, -0.08]
## TimeD_M1_PHQ_total |      -0.40 | [-0.58, -0.22]

Effect of time in the Control group

PHQ_C <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_PHQ_total", "C_W1_PHQ_total", "D_M1_PHQ_total") %>% 
  filter(Group == "B_Controls")
## Formatting table as needed
PHQ_C_long <- PHQ_C %>%
  pivot_longer(cols = c("A_PRE_PHQ_total", "C_W1_PHQ_total", "D_M1_PHQ_total"),
               names_to = "Time",
               values_to = "PHQ_Score")
PHQ_MEM_C <- lmer(PHQ_Score ~ Time + (1|ID), data = PHQ_C_long, REML = TRUE)
summary(PHQ_MEM_C)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PHQ_Score ~ Time + (1 | ID)
##    Data: PHQ_C_long
## 
## REML criterion at convergence: 1844.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6395 -0.5101 -0.1211  0.4373  2.9851 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 23.96    4.895   
##  Residual             14.15    3.762   
## Number of obs: 303, groups:  ID, 106
## 
## Fixed effects:
##                    Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)          9.4434     0.5996 172.5470  15.748   <2e-16 ***
## TimeC_W1_PHQ_total  -0.9180     0.5223 196.3922  -1.758   0.0804 .  
## TimeD_M1_PHQ_total  -1.1616     0.5395 198.2254  -2.153   0.0325 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) TC_W1_
## TmC_W1_PHQ_ -0.426       
## TmD_M1_PHQ_ -0.413  0.476
anova  (PHQ_MEM_C)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF  DenDF F value Pr(>F)  
## Time 75.444  37.722     2 197.59  2.6649 0.0721 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(PHQ_MEM_C)
  PHQ Score
Predictors Estimates CI p
(Intercept) 9.44 8.26 – 10.62 <0.001
Time [C_W1_PHQ_total] -0.92 -1.95 – 0.11 0.080
Time [D_M1_PHQ_total] -1.16 -2.22 – -0.10 0.032
Random Effects
σ2 14.15
τ00 ID 23.96
ICC 0.63
N ID 106
Observations 303
Marginal R2 / Conditional R2 0.007 / 0.631
parameters::standardise_parameters(PHQ_MEM_C)
## # Standardization method: refit
## 
## Parameter          | Std. Coef. |         95% CI
## ------------------------------------------------
## (Intercept)        |       0.11 | [-0.08,  0.30]
## TimeC_W1_PHQ_total |      -0.15 | [-0.31,  0.02]
## TimeD_M1_PHQ_total |      -0.19 | [-0.36, -0.02]

Effect of time in the EC group

PHQ_EC <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_PHQ_total", "C_W1_PHQ_total", "D_M1_PHQ_total") %>% 
  filter(Group == "A_ECs")
## Formatting table as needed
PHQ_EC_long <- PHQ_EC %>%
  pivot_longer(cols = c(A_PRE_PHQ_total, C_W1_PHQ_total, D_M1_PHQ_total),
               names_to = "Time",
               values_to = "PHQ_Score")
PHQ_MEM_EC <- lmer(PHQ_Score ~ Time + (1|ID), data = PHQ_EC_long, REML = TRUE)
summary(PHQ_MEM_EC)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PHQ_Score ~ Time + (1 | ID)
##    Data: PHQ_EC_long
## 
## REML criterion at convergence: 815.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.22885 -0.45729 -0.09372  0.47723  2.64602 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 26.681   5.165   
##  Residual              8.978   2.996   
## Number of obs: 141, groups:  ID, 50
## 
## Fixed effects:
##                    Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)         9.96000    0.84450 68.57677  11.794   <2e-16 ***
## TimeC_W1_PHQ_total -0.02719    0.60814 89.64275  -0.045    0.964    
## TimeD_M1_PHQ_total  0.67500    0.63319 90.29754   1.066    0.289    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) TC_W1_
## TmC_W1_PHQ_ -0.350       
## TmD_M1_PHQ_ -0.336  0.464
anova  (PHQ_MEM_EC)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF  DenDF F value Pr(>F)
## Time 13.538  6.7691     2 90.172  0.7539 0.4735
sjPlot::tab_model(PHQ_MEM_EC)
  PHQ Score
Predictors Estimates CI p
(Intercept) 9.96 8.29 – 11.63 <0.001
Time [C_W1_PHQ_total] -0.03 -1.23 – 1.18 0.964
Time [D_M1_PHQ_total] 0.67 -0.58 – 1.93 0.288
Random Effects
σ2 8.98
τ00 ID 26.68
ICC 0.75
N ID 50
Observations 141
Marginal R2 / Conditional R2 0.003 / 0.749
parameters::standardise_parameters(PHQ_MEM_EC)
## # Standardization method: refit
## 
## Parameter          | Std. Coef. |        95% CI
## -----------------------------------------------
## (Intercept)        |      -0.02 | [-0.30, 0.26]
## TimeC_W1_PHQ_total |  -4.54e-03 | [-0.21, 0.20]
## TimeD_M1_PHQ_total |       0.11 | [-0.10, 0.32]

Baseline to 1W

PHQ_B1W <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_PHQ_total", "C_W1_PHQ_total")
## Formatting table as needed
PHQ_B1W_long <- PHQ_B1W %>%
  pivot_longer(cols = c(A_PRE_PHQ_total, C_W1_PHQ_total),
               names_to = "Time",
               values_to = "PHQ_Score")
PHQ_MEM_B1W <- lmer(PHQ_Score ~ Group * Time + (1|ID), data = PHQ_B1W_long, REML = TRUE)
summary(PHQ_MEM_B1W)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PHQ_Score ~ Group * Time + (1 | ID)
##    Data: PHQ_B1W_long
## 
## REML criterion at convergence: 3069.4
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.70427 -0.49822 -0.04073  0.44204  3.13898 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 24.53    4.953   
##  Residual             10.07    3.173   
## Number of obs: 510, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error       df t value
## (Intercept)                              9.9600     0.8318 339.2793  11.974
## GroupB_Controls                         -0.5166     1.0091 339.2793  -0.512
## GroupC_Intervention                      0.7196     1.0138 339.2793   0.710
## TimeC_W1_PHQ_total                      -0.1012     0.6458 252.0371  -0.157
## GroupB_Controls:TimeC_W1_PHQ_total      -0.7976     0.7821 251.8019  -1.020
## GroupC_Intervention:TimeC_W1_PHQ_total  -1.3587     0.7858 251.8141  -1.729
##                                        Pr(>|t|)    
## (Intercept)                              <2e-16 ***
## GroupB_Controls                           0.609    
## GroupC_Intervention                       0.478    
## TimeC_W1_PHQ_total                        0.876    
## GroupB_Controls:TimeC_W1_PHQ_total        0.309    
## GroupC_Intervention:TimeC_W1_PHQ_total    0.085 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TC_W1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TmC_W1_PHQ_ -0.375  0.309  0.308              
## GB_C:TC_W1_  0.309 -0.375 -0.254 -0.826       
## GC_I:TC_W1_  0.308 -0.254 -0.375 -0.822  0.679
anova  (PHQ_MEM_B1W)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)   
## Group      18.876   9.438     2 257.38  0.9375 0.39294   
## Time       75.005  75.005     1 251.69  7.4503 0.00679 **
## Group:Time 30.533  15.266     2 251.61  1.5164 0.22149   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(PHQ_MEM_B1W,
                  pred.labels=c("Intercept", "Active Controls", "Mindset Intervention", "Time (1 Week)", "Active Controls x Time","Mindset Intervention x Time"),
                  dv.labels=c("Depression (PHQ-8 Score)"),
                  string.ci="95% CI",
                  emph.p = TRUE)
  Depression (PHQ-8 Score)
Predictors Estimates 95% CI p
Intercept 9.96 8.33 – 11.59 <0.001
Active Controls -0.52 -2.50 – 1.47 0.609
Mindset Intervention 0.72 -1.27 – 2.71 0.478
Time (1 Week) -0.10 -1.37 – 1.17 0.875
Active Controls x Time -0.80 -2.33 – 0.74 0.308
Mindset Intervention x Time -1.36 -2.90 – 0.19 0.084
Random Effects
σ2 10.07
τ00 ID 24.53
ICC 0.71
N ID 259
Observations 510
Marginal R2 / Conditional R2 0.015 / 0.713
parameters::standardise_parameters(PHQ_MEM_B1W)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |        95% CI
## -------------------------------------------------------------------
## (Intercept)                            |       0.07 | [-0.21, 0.34]
## GroupB_Controls                        |      -0.09 | [-0.42, 0.25]
## GroupC_Intervention                    |       0.12 | [-0.22, 0.46]
## TimeC_W1_PHQ_total                     |      -0.02 | [-0.23, 0.20]
## GroupB_Controls:TimeC_W1_PHQ_total     |      -0.13 | [-0.39, 0.13]
## GroupC_Intervention:TimeC_W1_PHQ_total |      -0.23 | [-0.49, 0.03]
plot_model(PHQ_MEM_B1W, type = "int")

Baseline to 1M

PHQ_B1M <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_PHQ_total", "D_M1_PHQ_total")
## Formatting table as needed
PHQ_B1M_long <- PHQ_B1M %>%
  pivot_longer(cols = c(A_PRE_PHQ_total, D_M1_PHQ_total),
               names_to = "Time",
               values_to = "PHQ_Score")
PHQ_MEM_B1M <- lmer(PHQ_Score ~ Group * Time + (1|ID), data = PHQ_B1M_long, REML = TRUE)
summary(PHQ_MEM_B1M)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PHQ_Score ~ Group * Time + (1 | ID)
##    Data: PHQ_B1M_long
## 
## REML criterion at convergence: 3028.1
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.64448 -0.55044 -0.09744  0.49965  2.79846 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 21.46    4.633   
##  Residual             15.15    3.892   
## Number of obs: 487, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error       df t value
## (Intercept)                              9.9600     0.8557 367.8141  11.640
## GroupB_Controls                         -0.5166     1.0381 367.8141  -0.498
## GroupC_Intervention                      0.7196     1.0429 367.8141   0.690
## TimeD_M1_PHQ_total                       0.6244     0.8271 240.0648   0.755
## GroupB_Controls:TimeD_M1_PHQ_total      -1.8086     0.9995 239.3565  -1.810
## GroupC_Intervention:TimeD_M1_PHQ_total  -2.9746     1.0045 239.4295  -2.961
##                                        Pr(>|t|)    
## (Intercept)                             < 2e-16 ***
## GroupB_Controls                         0.61902    
## GroupC_Intervention                     0.49062    
## TimeD_M1_PHQ_total                      0.45104    
## GroupB_Controls:TimeD_M1_PHQ_total      0.07161 .  
## GroupC_Intervention:TimeD_M1_PHQ_total  0.00337 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TD_M1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TmD_M1_PHQ_ -0.428  0.353  0.351              
## GB_C:TD_M1_  0.354 -0.430 -0.291 -0.828       
## GC_I:TD_M1_  0.352 -0.291 -0.430 -0.823  0.681
anova  (PHQ_MEM_B1M)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)  
## Group       35.957  17.979     2 258.66  1.1869 0.30684  
## Time        96.897  96.897     1 239.05  6.3966 0.01208 *
## Group:Time 134.059  67.029     2 238.81  4.4250 0.01297 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(PHQ_MEM_B1M,
                  pred.labels=c("Intercept", "Active Controls", "Mindset Intervention", "Time (1 Month)", "Active Controls x Time","Mindset Intervention x Time"),
                  dv.labels=c("Depression (PHQ-8 Score)"),
                  string.ci="95% CI",
                  emph.p = TRUE)
  Depression (PHQ-8 Score)
Predictors Estimates 95% CI p
Intercept 9.96 8.28 – 11.64 <0.001
Active Controls -0.52 -2.56 – 1.52 0.619
Mindset Intervention 0.72 -1.33 – 2.77 0.491
Time (1 Month) 0.62 -1.00 – 2.25 0.451
Active Controls x Time -1.81 -3.77 – 0.16 0.071
Mindset Intervention x Time -2.97 -4.95 – -1.00 0.003
Random Effects
σ2 15.15
τ00 ID 21.46
ICC 0.59
N ID 259
Observations 487
Marginal R2 / Conditional R2 0.026 / 0.597
parameters::standardise_parameters(PHQ_MEM_B1M)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |         95% CI
## --------------------------------------------------------------------
## (Intercept)                            |       0.09 | [-0.18,  0.37]
## GroupB_Controls                        |      -0.08 | [-0.42,  0.25]
## GroupC_Intervention                    |       0.12 | [-0.22,  0.45]
## TimeD_M1_PHQ_total                     |       0.10 | [-0.16,  0.37]
## GroupB_Controls:TimeD_M1_PHQ_total     |      -0.30 | [-0.62,  0.03]
## GroupC_Intervention:TimeD_M1_PHQ_total |      -0.49 | [-0.81, -0.16]
plot_model(PHQ_MEM_B1M, type = "int")

H2b: difference in change in GAD over time between groups

# Merging across timepoints
GAD_alltimepoints <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GAD_total", "C_W1_GAD_total", "D_M1_GAD_total")
## Formatting table as needed
GAD_alltimepoints_long <- GAD_alltimepoints %>%
  pivot_longer(cols = c(A_PRE_GAD_total, C_W1_GAD_total, D_M1_GAD_total),
               names_to = "Time",
               values_to = "GAD_Score")
GAD_MEM <- lmer(GAD_Score ~ Group * Time + (1|ID), data = GAD_alltimepoints_long, REML = TRUE)
summary(GAD_MEM)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GAD_Score ~ Group * Time + (1 | ID)
##    Data: GAD_alltimepoints_long
## 
## REML criterion at convergence: 4328.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8624 -0.4778 -0.0791  0.5074  3.3297 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 21.33    4.619   
##  Residual             11.00    3.316   
## Number of obs: 737, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error       df t value
## (Intercept)                              8.0200     0.8041 404.0648   9.974
## GroupB_Controls                          0.4706     0.9754 404.0648   0.482
## GroupC_Intervention                      1.2616     0.9800 404.0648   1.287
## TimeC_W1_GAD_total                       0.4486     0.6728 475.9352   0.667
## TimeD_M1_GAD_total                       1.3098     0.6999 480.7965   1.871
## GroupB_Controls:TimeC_W1_GAD_total      -1.0910     0.8152 475.9947  -1.338
## GroupC_Intervention:TimeC_W1_GAD_total  -1.4673     0.8189 475.7681  -1.792
## GroupB_Controls:TimeD_M1_GAD_total      -2.2734     0.8473 480.7294  -2.683
## GroupC_Intervention:TimeD_M1_GAD_total  -3.1116     0.8503 480.4121  -3.659
##                                        Pr(>|t|)    
## (Intercept)                             < 2e-16 ***
## GroupB_Controls                        0.629772    
## GroupC_Intervention                    0.198718    
## TimeC_W1_GAD_total                     0.505237    
## TimeD_M1_GAD_total                     0.061903 .  
## GroupB_Controls:TimeC_W1_GAD_total     0.181430    
## GroupC_Intervention:TimeC_W1_GAD_total 0.073803 .  
## GroupB_Controls:TimeD_M1_GAD_total     0.007544 ** 
## GroupC_Intervention:TimeD_M1_GAD_total 0.000281 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TC_W1_ TD_M1_ GB_C:TC GC_I:TC GB_C:TD
## GrpB_Cntrls -0.824                                                    
## GrpC_Intrvn -0.820  0.676                                             
## TmC_W1_GAD_ -0.407  0.335  0.334                                      
## TmD_M1_GAD_ -0.391  0.322  0.321  0.465                               
## GB_C:TC_W1_  0.335 -0.407 -0.275 -0.825 -0.384                        
## GC_I:TC_W1_  0.334 -0.275 -0.407 -0.822 -0.382  0.678                 
## GB_C:TD_M1_  0.323 -0.392 -0.265 -0.384 -0.826  0.468   0.316         
## GC_I:TD_M1_  0.322 -0.265 -0.392 -0.383 -0.823  0.316   0.468   0.680
anova  (GAD_MEM)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value   Pr(>F)   
## Group        7.101   3.551     2 258.25  0.3229 0.724313   
## Time        29.410  14.705     2 479.37  1.3374 0.263498   
## Group:Time 148.130  37.033     4 479.25  3.3681 0.009839 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(GAD_MEM)
  GAD Score
Predictors Estimates CI p
(Intercept) 8.02 6.44 – 9.60 <0.001
Group [B_Controls] 0.47 -1.44 – 2.39 0.630
Group [C_Intervention] 1.26 -0.66 – 3.19 0.198
Time [C_W1_GAD_total] 0.45 -0.87 – 1.77 0.505
Time [D_M1_GAD_total] 1.31 -0.06 – 2.68 0.062
Group [B_Controls] × Time
[C_W1_GAD_total]
-1.09 -2.69 – 0.51 0.181
Group [C_Intervention] ×
Time [C_W1_GAD_total]
-1.47 -3.07 – 0.14 0.074
Group [B_Controls] × Time
[D_M1_GAD_total]
-2.27 -3.94 – -0.61 0.007
Group [C_Intervention] ×
Time [D_M1_GAD_total]
-3.11 -4.78 – -1.44 <0.001
Random Effects
σ2 11.00
τ00 ID 21.33
ICC 0.66
N ID 259
Observations 737
Marginal R2 / Conditional R2 0.012 / 0.664
parameters::standardise_parameters(GAD_MEM)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |         95% CI
## --------------------------------------------------------------------
## (Intercept)                            |      -0.04 | [-0.31,  0.24]
## GroupB_Controls                        |       0.08 | [-0.25,  0.42]
## GroupC_Intervention                    |       0.22 | [-0.12,  0.56]
## TimeC_W1_GAD_total                     |       0.08 | [-0.15,  0.31]
## TimeD_M1_GAD_total                     |       0.23 | [-0.01,  0.47]
## GroupB_Controls:TimeC_W1_GAD_total     |      -0.19 | [-0.47,  0.09]
## GroupC_Intervention:TimeC_W1_GAD_total |      -0.26 | [-0.54,  0.02]
## GroupB_Controls:TimeD_M1_GAD_total     |      -0.40 | [-0.69, -0.11]
## GroupC_Intervention:TimeD_M1_GAD_total |      -0.54 | [-0.84, -0.25]

Effect of time in the intervention group

GAD_I <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GAD_total", "C_W1_GAD_total", "D_M1_GAD_total") %>% 
  filter(Group == "C_Intervention")
## Formatting table as needed
GAD_I_long <- GAD_I %>%
  pivot_longer(cols = c("A_PRE_GAD_total", "C_W1_GAD_total", "D_M1_GAD_total"),
               names_to = "Time",
               values_to = "GAD_Score")
GAD_MEM_I <- lmer(GAD_Score ~ Time + (1|ID), data = GAD_I_long, REML = TRUE)
summary(GAD_MEM_I)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GAD_Score ~ Time + (1 | ID)
##    Data: GAD_I_long
## 
## REML criterion at convergence: 1726.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8905 -0.4758 -0.0769  0.5231  2.7194 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 21.53    4.640   
##  Residual             10.86    3.296   
## Number of obs: 294, groups:  ID, 103
## 
## Fixed effects:
##                    Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)          9.2816     0.5608 160.4682  16.552  < 2e-16 ***
## TimeC_W1_GAD_total  -1.0187     0.4640 190.5491  -2.195 0.029351 *  
## TimeD_M1_GAD_total  -1.8024     0.4800 192.1943  -3.755 0.000229 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) TC_W1_
## TmC_W1_GAD_ -0.405       
## TmD_M1_GAD_ -0.392  0.472
anova  (GAD_MEM_I)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Time 155.64  77.819     2 191.83  7.1649 0.0009978 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(GAD_MEM_I)
  GAD Score
Predictors Estimates CI p
(Intercept) 9.28 8.18 – 10.39 <0.001
Time [C_W1_GAD_total] -1.02 -1.93 – -0.11 0.029
Time [D_M1_GAD_total] -1.80 -2.75 – -0.86 <0.001
Random Effects
σ2 10.86
τ00 ID 21.53
ICC 0.66
N ID 103
Observations 294
Marginal R2 / Conditional R2 0.016 / 0.670
parameters::standardise_parameters(GAD_MEM_I)
## # Standardization method: refit
## 
## Parameter          | Std. Coef. |         95% CI
## ------------------------------------------------
## (Intercept)        |       0.15 | [-0.04,  0.34]
## TimeC_W1_GAD_total |      -0.18 | [-0.34, -0.02]
## TimeD_M1_GAD_total |      -0.31 | [-0.48, -0.15]

Effect of time in the Control group

GAD_C <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GAD_total", "C_W1_GAD_total", "D_M1_GAD_total") %>% 
  filter(Group == "B_Controls")
## Formatting table as needed
GAD_C_long <- GAD_C %>%
  pivot_longer(cols = c("A_PRE_GAD_total", "C_W1_GAD_total", "D_M1_GAD_total"),
               names_to = "Time",
               values_to = "GAD_Score")
GAD_MEM_C <- lmer(GAD_Score ~ Time + (1|ID), data = GAD_C_long, REML = TRUE)
summary(GAD_MEM_C)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GAD_Score ~ Time + (1 | ID)
##    Data: GAD_C_long
## 
## REML criterion at convergence: 1788.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7651 -0.4670 -0.1016  0.5054  3.2095 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 22.48    4.741   
##  Residual             11.47    3.387   
## Number of obs: 302, groups:  ID, 106
## 
## Fixed effects:
##                    Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)          8.4906     0.5659 164.7207  15.003   <2e-16 ***
## TimeC_W1_GAD_total  -0.6425     0.4703 195.2577  -1.366   0.1734    
## TimeD_M1_GAD_total  -0.9632     0.4877 197.0825  -1.975   0.0497 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) TC_W1_
## TmC_W1_GAD_ -0.407       
## TmD_M1_GAD_ -0.392  0.474
anova  (GAD_MEM_C)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF  DenDF F value Pr(>F)
## Time 47.478  23.739     2 196.44  2.0693  0.129
sjPlot::tab_model(GAD_MEM_C)
  GAD Score
Predictors Estimates CI p
(Intercept) 8.49 7.38 – 9.60 <0.001
Time [C_W1_GAD_total] -0.64 -1.57 – 0.28 0.173
Time [D_M1_GAD_total] -0.96 -1.92 – -0.00 0.049
Random Effects
σ2 11.47
τ00 ID 22.48
ICC 0.66
N ID 106
Observations 302
Marginal R2 / Conditional R2 0.005 / 0.664
parameters::standardise_parameters(GAD_MEM_C)
## # Standardization method: refit
## 
## Parameter          | Std. Coef. |         95% CI
## ------------------------------------------------
## (Intercept)        |       0.09 | [-0.10,  0.29]
## TimeC_W1_GAD_total |      -0.11 | [-0.27,  0.05]
## TimeD_M1_GAD_total |      -0.17 | [-0.33,  0.00]

Effect of time in the EC group

GAD_EC <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GAD_total", "C_W1_GAD_total", "D_M1_GAD_total") %>% 
  filter(Group == "A_ECs")
## Formatting table as needed
GAD_EC_long <- GAD_EC %>%
  pivot_longer(cols = c(A_PRE_GAD_total, C_W1_GAD_total, D_M1_GAD_total),
               names_to = "Time",
               values_to = "GAD_Score")
GAD_MEM_EC <- lmer(GAD_Score ~ Time + (1|ID), data = GAD_EC_long, REML = TRUE)
summary(GAD_MEM_EC)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GAD_Score ~ Time + (1 | ID)
##    Data: GAD_EC_long
## 
## REML criterion at convergence: 812.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.4036 -0.4894 -0.0713  0.4865  3.4462 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 18.47    4.297   
##  Residual             10.24    3.200   
## Number of obs: 141, groups:  ID, 50
## 
## Fixed effects:
##                    Estimate Std. Error      df t value Pr(>|t|)    
## (Intercept)          8.0200     0.7577 79.1032  10.584   <2e-16 ***
## TimeC_W1_GAD_total   0.4472     0.6492 90.0523   0.689    0.493    
## TimeD_M1_GAD_total   1.3070     0.6753 91.0193   1.935    0.056 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) TC_W1_
## TmC_W1_GAD_ -0.416       
## TmD_M1_GAD_ -0.400  0.465
anova  (GAD_MEM_EC)
## Type III Analysis of Variance Table with Satterthwaite's method
##      Sum Sq Mean Sq NumDF  DenDF F value Pr(>F)
## Time 38.943  19.472     2 90.832  1.9017 0.1552
sjPlot::tab_model(GAD_MEM_EC)
  GAD Score
Predictors Estimates CI p
(Intercept) 8.02 6.52 – 9.52 <0.001
Time [C_W1_GAD_total] 0.45 -0.84 – 1.73 0.492
Time [D_M1_GAD_total] 1.31 -0.03 – 2.64 0.055
Random Effects
σ2 10.24
τ00 ID 18.47
ICC 0.64
N ID 50
Observations 141
Marginal R2 / Conditional R2 0.010 / 0.647
parameters::standardise_parameters(GAD_MEM_EC)
## # Standardization method: refit
## 
## Parameter          | Std. Coef. |        95% CI
## -----------------------------------------------
## (Intercept)        |      -0.09 | [-0.36, 0.19]
## TimeC_W1_GAD_total |       0.08 | [-0.16, 0.32]
## TimeD_M1_GAD_total |       0.24 | [-0.01, 0.49]

Baseline to 1W

# Merging across timepoints
GAD_B1W <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GAD_total", "C_W1_GAD_total")
## Formatting table as needed
GAD_B1W_long <- GAD_B1W %>%
  pivot_longer(cols = c(A_PRE_GAD_total, C_W1_GAD_total),
               names_to = "Time",
               values_to = "GAD_Score")
GAD_MEM_B1W <- lmer(GAD_Score ~ Group * Time + (1|ID), data = GAD_B1W_long, REML = TRUE)
summary(GAD_MEM_B1W)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GAD_Score ~ Group * Time + (1 | ID)
##    Data: GAD_B1W_long
## 
## REML criterion at convergence: 3025.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0453 -0.4584 -0.0843  0.4595  3.1840 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 22.202   4.712   
##  Residual              9.297   3.049   
## Number of obs: 510, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error       df t value
## (Intercept)                              8.0200     0.7937 340.7093  10.104
## GroupB_Controls                          0.4706     0.9629 340.7093   0.489
## GroupC_Intervention                      1.2616     0.9674 340.7093   1.304
## TimeC_W1_GAD_total                       0.3104     0.6206 252.2282   0.500
## GroupB_Controls:TimeC_W1_GAD_total      -0.9286     0.7516 251.9901  -1.236
## GroupC_Intervention:TimeC_W1_GAD_total  -1.3167     0.7551 252.0024  -1.744
##                                        Pr(>|t|)    
## (Intercept)                              <2e-16 ***
## GroupB_Controls                          0.6254    
## GroupC_Intervention                      0.1931    
## TimeC_W1_GAD_total                       0.6174    
## GroupB_Controls:TimeC_W1_GAD_total       0.2178    
## GroupC_Intervention:TimeC_W1_GAD_total   0.0824 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TC_W1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TmC_W1_GAD_ -0.378  0.311  0.310              
## GB_C:TC_W1_  0.312 -0.378 -0.256 -0.826       
## GC_I:TC_W1_  0.310 -0.256 -0.378 -0.822  0.679
anova  (GAD_MEM_B1W)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF  DenDF F value Pr(>F)
## Group       7.671  3.8355     2 257.54  0.4125 0.6624
## Time       21.411 21.4112     1 251.88  2.3030 0.1304
## Group:Time 28.314 14.1572     2 251.80  1.5228 0.2201
sjPlot::tab_model(GAD_MEM_B1W,
                  pred.labels=c("Intercept", "Active Controls", "Mindset Intervention", "Time (1 Week)", "Active Controls x Time","Mindset Intervention x Time"),
                  dv.labels=c("Anxiety (GAD-7 Score)"),
                  string.ci="95% CI",
                  emph.p = TRUE)
  Anxiety (GAD-7 Score)
Predictors Estimates 95% CI p
Intercept 8.02 6.46 – 9.58 <0.001
Active Controls 0.47 -1.42 – 2.36 0.625
Mindset Intervention 1.26 -0.64 – 3.16 0.193
Time (1 Week) 0.31 -0.91 – 1.53 0.617
Active Controls x Time -0.93 -2.41 – 0.55 0.217
Mindset Intervention x Time -1.32 -2.80 – 0.17 0.082
Random Effects
σ2 9.30
τ00 ID 22.20
ICC 0.70
N ID 259
Observations 510
Marginal R2 / Conditional R2 0.007 / 0.707
parameters::standardise_parameters(GAD_MEM_B1W)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |        95% CI
## -------------------------------------------------------------------
## (Intercept)                            |      -0.07 | [-0.35, 0.20]
## GroupB_Controls                        |       0.08 | [-0.25, 0.42]
## GroupC_Intervention                    |       0.22 | [-0.11, 0.56]
## TimeC_W1_GAD_total                     |       0.06 | [-0.16, 0.27]
## GroupB_Controls:TimeC_W1_GAD_total     |      -0.17 | [-0.43, 0.10]
## GroupC_Intervention:TimeC_W1_GAD_total |      -0.23 | [-0.50, 0.03]
plot_model(GAD_MEM_B1W, type = "int")

Baseline to 1M

# Merging across timepoints
GAD_B1M <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_GAD_total", "D_M1_GAD_total")
## Formatting table as needed
GAD_B1M_long <- GAD_B1M %>%
  pivot_longer(cols = c(A_PRE_GAD_total, D_M1_GAD_total),
               names_to = "Time",
               values_to = "GAD_Score")
GAD_MEM_B1M <- lmer(GAD_Score ~ Group * Time + (1|ID), data = GAD_B1M_long, REML = TRUE)
summary(GAD_MEM_B1M)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: GAD_Score ~ Group * Time + (1 | ID)
##    Data: GAD_B1M_long
## 
## REML criterion at convergence: 2951
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.26184 -0.51370 -0.07266  0.47118  2.72886 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 19.51    4.417   
##  Residual             12.64    3.555   
## Number of obs: 486, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error       df t value
## (Intercept)                              8.0200     0.8018 361.1090  10.002
## GroupB_Controls                          0.4706     0.9727 361.1090   0.484
## GroupC_Intervention                      1.2616     0.9772 361.1090   1.291
## TimeD_M1_GAD_total                       1.2587     0.7560 238.1128   1.665
## GroupB_Controls:TimeD_M1_GAD_total      -2.2184     0.9147 237.6716  -2.425
## GroupC_Intervention:TimeD_M1_GAD_total  -3.0251     0.9181 237.5072  -3.295
##                                        Pr(>|t|)    
## (Intercept)                             < 2e-16 ***
## GroupB_Controls                         0.62884    
## GroupC_Intervention                     0.19755    
## TimeD_M1_GAD_total                      0.09724 .  
## GroupB_Controls:TimeD_M1_GAD_total      0.01605 *  
## GroupC_Intervention:TimeD_M1_GAD_total  0.00113 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TD_M1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TmD_M1_GAD_ -0.417  0.344  0.342              
## GB_C:TD_M1_  0.345 -0.418 -0.283 -0.826       
## GC_I:TD_M1_  0.343 -0.283 -0.418 -0.823  0.681
anova  (GAD_MEM_B1M)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value   Pr(>F)   
## Group        7.574   3.787     2 258.32  0.2997 0.741299   
## Time        24.554  24.554     1 237.32  1.9431 0.164633   
## Group:Time 137.971  68.986     2 237.14  5.4594 0.004808 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(GAD_MEM_B1M,
                  pred.labels=c("Intercept", "Active Controls", "Mindset Intervention", "Time (1 Month)", "Active Controls x Time","Mindset Intervention x Time"),
                  dv.labels=c("Anxiety (GAD-7 Score)"),
                  string.ci="95% CI",
                  emph.p = TRUE)
  Anxiety (GAD-7 Score)
Predictors Estimates 95% CI p
Intercept 8.02 6.44 – 9.60 <0.001
Active Controls 0.47 -1.44 – 2.38 0.629
Mindset Intervention 1.26 -0.66 – 3.18 0.197
Time (1 Month) 1.26 -0.23 – 2.74 0.097
Active Controls x Time -2.22 -4.02 – -0.42 0.016
Mindset Intervention x Time -3.03 -4.83 – -1.22 0.001
Random Effects
σ2 12.64
τ00 ID 19.51
ICC 0.61
N ID 259
Observations 486
Marginal R2 / Conditional R2 0.016 / 0.613
parameters::standardise_parameters(GAD_MEM_B1M)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |         95% CI
## --------------------------------------------------------------------
## (Intercept)                            |      -0.05 | [-0.32,  0.23]
## GroupB_Controls                        |       0.08 | [-0.25,  0.42]
## GroupC_Intervention                    |       0.22 | [-0.12,  0.56]
## TimeD_M1_GAD_total                     |       0.22 | [-0.04,  0.48]
## GroupB_Controls:TimeD_M1_GAD_total     |      -0.39 | [-0.70, -0.07]
## GroupC_Intervention:TimeD_M1_GAD_total |      -0.53 | [-0.85, -0.21]
plot_model(GAD_MEM_B1M, type = "int")

H2b: difference in change in mood over time between groups

Mood_alltimepoints <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_mood_mean", "B_POST_mood_mean", "C_W1_mood_mean", "D_M1_mood_mean")
## Formatting tables as needed
Mood_alltimepoints_long <- Mood_alltimepoints %>%
  pivot_longer(cols = c("A_PRE_mood_mean", "B_POST_mood_mean", "C_W1_mood_mean", "D_M1_mood_mean"),
               names_to = "Time",
               values_to = "Mood_Score")
Mood_MEM <- lmer(Mood_Score ~ Group * Time + (1|ID), data = Mood_alltimepoints_long, REML = TRUE)
summary(Mood_MEM)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Mood_Score ~ Group * Time + (1 | ID)
##    Data: Mood_alltimepoints_long
## 
## REML criterion at convergence: 9998.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9245 -0.4840  0.0543  0.5791  3.4075 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 892.9    29.88   
##  Residual             982.7    31.35   
## Number of obs: 995, groups:  ID, 259
## 
## Fixed effects:
##                                          Estimate Std. Error      df t value
## (Intercept)                                40.300      6.125 599.204   6.580
## GroupB_Controls                            -2.984      7.430 599.204  -0.402
## GroupC_Intervention                       -10.669      7.465 599.204  -1.429
## TimeB_POST_mood_mean                       -0.020      6.270 729.243  -0.003
## TimeC_W1_mood_mean                        -14.945      6.350 731.731  -2.353
## TimeD_M1_mood_mean                        -21.095      6.579 738.302  -3.206
## GroupB_Controls:TimeB_POST_mood_mean       19.992      7.606 729.243   2.628
## GroupC_Intervention:TimeB_POST_mood_mean   29.483      7.649 729.438   3.855
## GroupB_Controls:TimeC_W1_mood_mean          8.695      7.695 731.631   1.130
## GroupC_Intervention:TimeC_W1_mood_mean      9.945      7.739 731.707   1.285
## GroupB_Controls:TimeD_M1_mood_mean         14.488      7.957 737.849   1.821
## GroupC_Intervention:TimeD_M1_mood_mean     14.299      7.996 737.788   1.788
##                                          Pr(>|t|)    
## (Intercept)                              1.03e-10 ***
## GroupB_Controls                          0.688120    
## GroupC_Intervention                      0.153456    
## TimeB_POST_mood_mean                     0.997456    
## TimeC_W1_mood_mean                       0.018866 *  
## TimeD_M1_mood_mean                       0.001403 ** 
## GroupB_Controls:TimeB_POST_mood_mean     0.008758 ** 
## GroupC_Intervention:TimeB_POST_mood_mean 0.000126 ***
## GroupB_Controls:TimeC_W1_mood_mean       0.258872    
## GroupC_Intervention:TimeC_W1_mood_mean   0.199181    
## GroupB_Controls:TimeD_M1_mood_mean       0.069040 .  
## GroupC_Intervention:TimeD_M1_mood_mean   0.074150 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TB_POS TC_W1_ TD_M1_ GB_C:TB GC_I:TB GB_C:TC
## GrpB_Cntrls -0.824                                                           
## GrpC_Intrvn -0.820  0.676                                                    
## TmB_POST_m_ -0.512  0.422  0.420                                             
## TmC_W1_md_m -0.505  0.417  0.415  0.494                                      
## TmD_M1_md_m -0.488  0.402  0.400  0.476  0.469                               
## GB_C:TB_POS  0.422 -0.512 -0.346 -0.824 -0.407 -0.393                        
## GC_I:TB_POS  0.420 -0.346 -0.511 -0.820 -0.405 -0.391  0.676                 
## GB_C:TC_W1_  0.417 -0.506 -0.342 -0.407 -0.825 -0.387  0.494   0.334         
## GC_I:TC_W1_  0.415 -0.342 -0.505 -0.405 -0.821 -0.385  0.334   0.493   0.677 
## GB_C:TD_M1_  0.403 -0.489 -0.331 -0.394 -0.388 -0.827  0.478   0.323   0.472 
## GC_I:TD_M1_  0.401 -0.331 -0.489 -0.392 -0.386 -0.823  0.323   0.477   0.319 
##             GC_I:TC GB_C:TD
## GrpB_Cntrls                
## GrpC_Intrvn                
## TmB_POST_m_                
## TmC_W1_md_m                
## TmD_M1_md_m                
## GB_C:TB_POS                
## GC_I:TB_POS                
## GB_C:TC_W1_                
## GC_I:TC_W1_                
## GB_C:TD_M1_  0.319         
## GC_I:TD_M1_  0.471   0.680
anova  (Mood_MEM)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)    
## Group        2110    1055     2 258.46  1.0734 0.34336    
## Time       104490   34830     3 734.51 35.4434 < 2e-16 ***
## Group:Time  15983    2664     6 734.42  2.7107 0.01307 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(Mood_MEM)
  Mood Score
Predictors Estimates CI p
(Intercept) 40.30 28.28 – 52.32 <0.001
Group [B_Controls] -2.98 -17.56 – 11.60 0.688
Group [C_Intervention] -10.67 -25.32 – 3.98 0.153
Time [B_POST_mood_mean] -0.02 -12.32 – 12.28 0.997
Time [C_W1_mood_mean] -14.94 -27.41 – -2.48 0.019
Time [D_M1_mood_mean] -21.09 -34.01 – -8.18 0.001
Group [B_Controls] × Time
[B_POST_mood_mean]
19.99 5.07 – 34.92 0.009
Group [C_Intervention] ×
Time [B_POST_mood_mean]
29.48 14.47 – 44.49 <0.001
Group [B_Controls] × Time
[C_W1_mood_mean]
8.69 -6.41 – 23.80 0.259
Group [C_Intervention] ×
Time [C_W1_mood_mean]
9.94 -5.24 – 25.13 0.199
Group [B_Controls] × Time
[D_M1_mood_mean]
14.49 -1.13 – 30.10 0.069
Group [C_Intervention] ×
Time [D_M1_mood_mean]
14.30 -1.39 – 29.99 0.074
Random Effects
σ2 982.69
τ00 ID 892.93
ICC 0.48
N ID 259
Observations 995
Marginal R2 / Conditional R2 0.079 / 0.517
parameters::standardise_parameters(Mood_MEM)
## # Standardization method: refit
## 
## Parameter                                | Std. Coef. |         95% CI
## ----------------------------------------------------------------------
## (Intercept)                              |       0.10 | [-0.17,  0.36]
## GroupB_Controls                          |      -0.07 | [-0.39,  0.26]
## GroupC_Intervention                      |      -0.24 | [-0.56,  0.09]
## TimeB_POST_mood_mean                     |  -4.45e-04 | [-0.27,  0.27]
## TimeC_W1_mood_mean                       |      -0.33 | [-0.61, -0.06]
## TimeD_M1_mood_mean                       |      -0.47 | [-0.76, -0.18]
## GroupB_Controls:TimeB_POST_mood_mean     |       0.44 | [ 0.11,  0.78]
## GroupC_Intervention:TimeB_POST_mood_mean |       0.66 | [ 0.32,  0.99]
## GroupB_Controls:TimeC_W1_mood_mean       |       0.19 | [-0.14,  0.53]
## GroupC_Intervention:TimeC_W1_mood_mean   |       0.22 | [-0.12,  0.56]
## GroupB_Controls:TimeD_M1_mood_mean       |       0.32 | [-0.03,  0.67]
## GroupC_Intervention:TimeD_M1_mood_mean   |       0.32 | [-0.03,  0.67]

Baseline to post

Mood_BP <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_mood_mean", "B_POST_mood_mean")
## Formatting tables as needed
Mood_BP_long <- Mood_BP %>%
  pivot_longer(cols = c("A_PRE_mood_mean", "B_POST_mood_mean"),
               names_to = "Time",
               values_to = "Mood_Score")
Mood_MEM_BP <- lmer(Mood_Score ~ Group * Time + (1|ID), data = Mood_BP_long, REML = TRUE)
summary(Mood_MEM_BP)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Mood_Score ~ Group * Time + (1 | ID)
##    Data: Mood_BP_long
## 
## REML criterion at convergence: 5079
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1547 -0.3855  0.0476  0.4451  3.3781 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1035.6   32.18   
##  Residual              513.4   22.66   
## Number of obs: 517, groups:  ID, 259
## 
## Fixed effects:
##                                          Estimate Std. Error      df t value
## (Intercept)                                40.300      5.566 353.535   7.240
## GroupB_Controls                            -2.984      6.752 353.535  -0.442
## GroupC_Intervention                       -10.669      6.784 353.535  -1.573
## TimeB_POST_mood_mean                       -0.020      4.532 255.115  -0.004
## GroupB_Controls:TimeB_POST_mood_mean       19.992      5.498 255.115   3.637
## GroupC_Intervention:TimeB_POST_mood_mean   29.341      5.530 255.341   5.305
##                                          Pr(>|t|)    
## (Intercept)                              2.81e-12 ***
## GroupB_Controls                          0.658816    
## GroupC_Intervention                      0.116674    
## TimeB_POST_mood_mean                     0.996482    
## GroupB_Controls:TimeB_POST_mood_mean     0.000334 ***
## GroupC_Intervention:TimeB_POST_mood_mean 2.44e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TB_POS GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TmB_POST_m_ -0.407  0.336  0.334              
## GB_C:TB_POS  0.336 -0.407 -0.275 -0.824       
## GC_I:TB_POS  0.334 -0.275 -0.407 -0.819  0.675
anova  (Mood_MEM_BP)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Group        677.9   339.0     2 255.99  0.6603    0.5176    
## Time       30949.7 30949.7     1 255.29 60.2843 1.989e-13 ***
## Group:Time 14453.2  7226.6     2 255.32 14.0761 1.588e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(Mood_MEM_BP)
  Mood Score
Predictors Estimates CI p
(Intercept) 40.30 29.36 – 51.24 <0.001
Group [B_Controls] -2.98 -16.25 – 10.28 0.659
Group [C_Intervention] -10.67 -24.00 – 2.66 0.116
Time [B_POST_mood_mean] -0.02 -8.92 – 8.88 0.996
Group [B_Controls] × Time
[B_POST_mood_mean]
19.99 9.19 – 30.79 <0.001
Group [C_Intervention] ×
Time [B_POST_mood_mean]
29.34 18.48 – 40.21 <0.001
Random Effects
σ2 513.40
τ00 ID 1035.58
ICC 0.67
N ID 259
Observations 517
Marginal R2 / Conditional R2 0.079 / 0.695
parameters::standardise_parameters(Mood_MEM_BP)
## # Standardization method: refit
## 
## Parameter                                | Std. Coef. |        95% CI
## ---------------------------------------------------------------------
## (Intercept)                              |      -0.11 | [-0.38, 0.16]
## GroupB_Controls                          |      -0.07 | [-0.40, 0.25]
## GroupC_Intervention                      |      -0.26 | [-0.59, 0.07]
## TimeB_POST_mood_mean                     |  -4.90e-04 | [-0.22, 0.22]
## GroupB_Controls:TimeB_POST_mood_mean     |       0.49 | [ 0.23, 0.75]
## GroupC_Intervention:TimeB_POST_mood_mean |       0.72 | [ 0.45, 0.98]
plot_model(Mood_MEM_BP, type = "int")

Baseline to 1W

Mood_B1W <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_mood_mean", "C_W1_mood_mean")
## Formatting tables as needed
Mood_B1W_long <- Mood_B1W %>%
  pivot_longer(cols = c("A_PRE_mood_mean", "C_W1_mood_mean"),
               names_to = "Time",
               values_to = "Mood_Score")
Mood_MEM_B1W <- lmer(Mood_Score ~ Group * Time + (1|ID), data = Mood_B1W_long, REML = TRUE)
summary(Mood_MEM_B1W)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Mood_Score ~ Group * Time + (1 | ID)
##    Data: Mood_B1W_long
## 
## REML criterion at convergence: 5220.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1570 -0.4429  0.1159  0.5899  2.4716 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)  866.2   29.43   
##  Residual             1117.7   33.43   
## Number of obs: 509, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error      df t value
## (Intercept)                              40.300      6.299 424.920   6.398
## GroupB_Controls                          -2.984      7.641 424.920  -0.390
## GroupC_Intervention                     -10.669      7.677 424.920  -1.390
## TimeC_W1_mood_mean                      -14.705      6.786 253.748  -2.167
## GroupB_Controls:TimeC_W1_mood_mean        8.265      8.220 253.359   1.005
## GroupC_Intervention:TimeC_W1_mood_mean    9.377      8.269 253.708   1.134
##                                        Pr(>|t|)    
## (Intercept)                            4.16e-10 ***
## GroupB_Controls                          0.6964    
## GroupC_Intervention                      0.1653    
## TimeC_W1_mood_mean                       0.0312 *  
## GroupB_Controls:TimeC_W1_mood_mean       0.3157    
## GroupC_Intervention:TimeC_W1_mood_mean   0.2579    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TC_W1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TmC_W1_md_m -0.523  0.431  0.429              
## GB_C:TC_W1_  0.432 -0.524 -0.354 -0.825       
## GC_I:TC_W1_  0.429 -0.354 -0.523 -0.821  0.677
anova  (Mood_MEM_B1W)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)   
## Group      2236.2  1118.1     2 257.40  1.0004 0.36916   
## Time       8711.4  8711.4     1 253.43  7.7944 0.00564 **
## Group:Time 1553.5   776.7     2 253.35  0.6950 0.50003   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(Mood_MEM_B1W)
  Mood Score
Predictors Estimates CI p
(Intercept) 40.30 27.92 – 52.68 <0.001
Group [B_Controls] -2.98 -18.00 – 12.03 0.696
Group [C_Intervention] -10.67 -25.75 – 4.41 0.165
Time [C_W1_mood_mean] -14.70 -28.04 – -1.37 0.031
Group [B_Controls] × Time
[C_W1_mood_mean]
8.26 -7.89 – 24.42 0.315
Group [C_Intervention] ×
Time [C_W1_mood_mean]
9.38 -6.87 – 25.62 0.257
Random Effects
σ2 1117.65
τ00 ID 866.19
ICC 0.44
N ID 259
Observations 509
Marginal R2 / Conditional R2 0.014 / 0.445
parameters::standardise_parameters(Mood_MEM_B1W)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |         95% CI
## --------------------------------------------------------------------
## (Intercept)                            |       0.20 | [-0.07,  0.48]
## GroupB_Controls                        |      -0.07 | [-0.40,  0.27]
## GroupC_Intervention                    |      -0.24 | [-0.58,  0.10]
## TimeC_W1_mood_mean                     |      -0.33 | [-0.63, -0.03]
## GroupB_Controls:TimeC_W1_mood_mean     |       0.19 | [-0.18,  0.55]
## GroupC_Intervention:TimeC_W1_mood_mean |       0.21 | [-0.15,  0.57]
plot_model(Mood_MEM_B1W, type = "int")

Baseline to 1M

Mood_B1M <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_mood_mean", "D_M1_mood_mean")
## Formatting tables as needed
Mood_B1M_long <- Mood_B1M %>%
  pivot_longer(cols = c("A_PRE_mood_mean", "D_M1_mood_mean"),
               names_to = "Time",
               values_to = "Mood_Score")
Mood_MEM_B1M <- lmer(Mood_Score ~ Group * Time + (1|ID), data = Mood_B1M_long, REML = TRUE)
summary(Mood_MEM_B1M)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Mood_Score ~ Group * Time + (1 | ID)
##    Data: Mood_B1M_long
## 
## REML criterion at convergence: 5011.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.91923 -0.51813  0.07265  0.59296  2.42299 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)  893.6   29.89   
##  Residual             1156.5   34.01   
## Number of obs: 487, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error      df t value
## (Intercept)                              40.300      6.403 411.735   6.294
## GroupB_Controls                          -2.984      7.768 411.735  -0.384
## GroupC_Intervention                     -10.669      7.804 411.735  -1.367
## TimeD_M1_mood_mean                      -20.875      7.188 246.670  -2.904
## GroupB_Controls:TimeD_M1_mood_mean       14.198      8.688 245.758   1.634
## GroupC_Intervention:TimeD_M1_mood_mean   14.331      8.732 245.852   1.641
##                                        Pr(>|t|)    
## (Intercept)                            7.95e-10 ***
## GroupB_Controls                         0.70108    
## GroupC_Intervention                     0.17236    
## TimeD_M1_mood_mean                      0.00402 ** 
## GroupB_Controls:TimeD_M1_mood_mean      0.10351    
## GroupC_Intervention:TimeD_M1_mood_mean  0.10205    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TD_M1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TmD_M1_md_m -0.503  0.414  0.412              
## GB_C:TD_M1_  0.416 -0.504 -0.341 -0.827       
## GC_I:TD_M1_  0.414 -0.341 -0.504 -0.823  0.681
anova  (Mood_MEM_B1M)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## Group       2302.4  1151.2     2 260.11  0.9954 0.3709746    
## Time       13435.3 13435.3     1 245.36 11.6170 0.0007637 ***
## Group:Time  3690.3  1845.2     2 245.06  1.5954 0.2049198    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(Mood_MEM_B1M)
  Mood Score
Predictors Estimates CI p
(Intercept) 40.30 27.72 – 52.88 <0.001
Group [B_Controls] -2.98 -18.25 – 12.28 0.701
Group [C_Intervention] -10.67 -26.00 – 4.67 0.172
Time [D_M1_mood_mean] -20.87 -35.00 – -6.75 0.004
Group [B_Controls] × Time
[D_M1_mood_mean]
14.20 -2.87 – 31.27 0.103
Group [C_Intervention] ×
Time [D_M1_mood_mean]
14.33 -2.83 – 31.49 0.101
Random Effects
σ2 1156.52
τ00 ID 893.64
ICC 0.44
N ID 259
Observations 487
Marginal R2 / Conditional R2 0.020 / 0.447
parameters::standardise_parameters(Mood_MEM_B1M)
## # Standardization method: refit
## 
## Parameter                              | Std. Coef. |         95% CI
## --------------------------------------------------------------------
## (Intercept)                            |       0.22 | [-0.06,  0.49]
## GroupB_Controls                        |      -0.07 | [-0.40,  0.27]
## GroupC_Intervention                    |      -0.23 | [-0.57,  0.10]
## TimeD_M1_mood_mean                     |      -0.46 | [-0.77, -0.15]
## GroupB_Controls:TimeD_M1_mood_mean     |       0.31 | [-0.06,  0.69]
## GroupC_Intervention:TimeD_M1_mood_mean |       0.31 | [-0.06,  0.69]
plot_model(Mood_MEM_B1M, type = "int")

Hypothesis 3

# Baseline to 1W/1M changes (creating new columns)
changeinvariables <- mutate(Full_data_all,
                      IUS_BP_change = B_POST_IUS_total - A_PRE_IUS_total,
                      IUS_B1W_change = C_W1_IUS_total - A_PRE_IUS_total,
                      IUS_B1M_change = D_M1_IUS_total - A_PRE_IUS_total,
                      PHQ_B1W_change = C_W1_PHQ_total - A_PRE_PHQ_total,
                      PHQ_B1M_change = D_M1_PHQ_total - A_PRE_PHQ_total,
                      GAD_B1W_change = C_W1_GAD_total - A_PRE_GAD_total,
                      GAD_B1M_change = D_M1_GAD_total - A_PRE_GAD_total,
                      Mood_BP_change = B_POST_mood_mean - A_PRE_mood_mean,
                      Mood_B1W_change = C_W1_mood_mean - A_PRE_mood_mean,
                      Mood_B1M_change = D_M1_mood_mean - A_PRE_mood_mean)
# Separating out each group + excluding outliers
Intervention_group <- changeinvariables %>% 
  filter(Group == "C_Intervention") %>% 
  filter(IUS_B1W_change != "-34", IUS_B1W_change != "24", IUS_B1W_change != "-22", IUS_B1W_change != "-21")

Psychoed_group <- changeinvariables %>% 
  filter(Group == "B_Controls") %>% 
  filter(IUS_B1W_change != "18")

ECs_group <- changeinvariables %>% 
  filter(Group == "A_ECs")%>% 
  filter(IUS_B1M_change != "-11", IUS_B1M_change != "14")
cor.test(Intervention_group$IUS_B1W_change, Intervention_group$PHQ_B1W_change)
## 
##  Pearson's product-moment correlation
## 
## data:  Intervention_group$IUS_B1W_change and Intervention_group$PHQ_B1W_change
## t = 1.4048, df = 94, p-value = 0.1634
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.05877766  0.33427390
## sample estimates:
##       cor 
## 0.1433981
cor.test(Intervention_group$IUS_B1M_change, Intervention_group$PHQ_B1M_change)
## 
##  Pearson's product-moment correlation
## 
## data:  Intervention_group$IUS_B1M_change and Intervention_group$PHQ_B1M_change
## t = 2.657, df = 82, p-value = 0.009475
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.0714621 0.4677073
## sample estimates:
##       cor 
## 0.2815437
cor.test(Psychoed_group$IUS_B1W_change, Psychoed_group$PHQ_B1W_change)
## 
##  Pearson's product-moment correlation
## 
## data:  Psychoed_group$IUS_B1W_change and Psychoed_group$PHQ_B1W_change
## t = 2.1893, df = 100, p-value = 0.0309
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.02023202 0.39203502
## sample estimates:
##       cor 
## 0.2138654
cor.test(Psychoed_group$IUS_B1M_change, Psychoed_group$PHQ_B1M_change)
## 
##  Pearson's product-moment correlation
## 
## data:  Psychoed_group$IUS_B1M_change and Psychoed_group$PHQ_B1M_change
## t = 1.8879, df = 89, p-value = 0.0623
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.01012637  0.38655121
## sample estimates:
##       cor 
## 0.1962277
cor.test(ECs_group$IUS_B1W_change, ECs_group$PHQ_B1W_change)
## 
##  Pearson's product-moment correlation
## 
## data:  ECs_group$IUS_B1W_change and ECs_group$PHQ_B1W_change
## t = 1.0826, df = 38, p-value = 0.2858
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1464254  0.4597125
## sample estimates:
##       cor 
## 0.1729738
cor.test(ECs_group$IUS_B1M_change, ECs_group$PHQ_B1M_change)
## 
##  Pearson's product-moment correlation
## 
## data:  ECs_group$IUS_B1M_change and ECs_group$PHQ_B1M_change
## t = 1.861, df = 39, p-value = 0.0703
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.02418946  0.54532414
## sample estimates:
##       cor 
## 0.2855863

H3: IUS mediating change in PHQ over time between groups

Full sample at 1 week: Group to change in PHQ via change in IUS

Mediation.PHQchange.1W <-
  '#regressions
PHQ_B1W_change ~ c1 * Group  
IUS_B1W_change ~ a1 * Group 
PHQ_B1W_change ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
group.IUS.PHQ.1W <- lavaan::sem(Mediation.PHQchange.1W, data=changeinvariables, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(group.IUS.PHQ.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 18 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           259
##   Number of missing patterns                         3
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   PHQ_B1W_change ~                                                      
##     Group     (c1)   -0.096    0.086   -1.108    0.268   -0.096   -0.071
##   IUS_B1W_change ~                                                      
##     Group     (a1)   -0.374    0.076   -4.913    0.000   -0.374   -0.278
##   PHQ_B1W_change ~                                                      
##     IUS_B1W_c (b1)    0.128    0.076    1.686    0.092    0.128    0.128
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .PHQ_B1W_change    0.211    0.190    1.109    0.268    0.211    0.211
##    .IUS_B1W_change    0.826    0.161    5.135    0.000    0.826    0.827
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .PHQ_B1W_change    0.970    0.124    7.850    0.000    0.970    0.974
##    .IUS_B1W_change    0.920    0.116    7.943    0.000    0.920    0.923
## 
## R-Square:
##                    Estimate
##     PHQ_B1W_change    0.026
##     IUS_B1W_change    0.077
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.048    0.029   -1.665    0.096   -0.048   -0.036
##     direct           -0.096    0.086   -1.108    0.268   -0.096   -0.071
##     total            -0.144    0.082   -1.754    0.079   -0.144   -0.107
cor.test(Intervention_group$IUS_B1M_change, Intervention_group$GAD_B1M_change)
## 
##  Pearson's product-moment correlation
## 
## data:  Intervention_group$IUS_B1M_change and Intervention_group$GAD_B1M_change
## t = 4.4749, df = 82, p-value = 2.441e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2526257 0.6003940
## sample estimates:
##       cor 
## 0.4430258
cor.test(Psychoed_group$IUS_B1M_change, Psychoed_group$GAD_B1M_change)
## 
##  Pearson's product-moment correlation
## 
## data:  Psychoed_group$IUS_B1M_change and Psychoed_group$GAD_B1M_change
## t = 3.3444, df = 88, p-value = 0.001213
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.1383388 0.5076004
## sample estimates:
##       cor 
## 0.3358094
cor.test(ECs_group$IUS_B1M_change, ECs_group$GAD_B1M_change)
## 
##  Pearson's product-moment correlation
## 
## data:  ECs_group$IUS_B1M_change and ECs_group$GAD_B1M_change
## t = 1.8079, df = 39, p-value = 0.07834
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.03234452  0.53956411
## sample estimates:
##      cor 
## 0.278073

Intervention group at 1 week: pre PHQ to 1 week PHQ via change in IU

Mediation.PHQ.intervention.1W <-
  '#regressions
C_W1_PHQ_total ~ c1 * A_PRE_PHQ_total  
IUS_B1W_change ~ a1 * A_PRE_PHQ_total 
C_W1_PHQ_total ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
PHQ.IUS.intervention.1W <- lavaan::sem(Mediation.PHQ.intervention.1W, data=Intervention_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(PHQ.IUS.intervention.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 22 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                            96
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   C_W1_PHQ_total ~                                                      
##     A_PRE_PHQ (c1)    0.111    0.016    7.033    0.000    0.111    0.627
##   IUS_B1W_change ~                                                      
##     A_PRE_PHQ (a1)   -0.004    0.018   -0.223    0.824   -0.004   -0.023
##   C_W1_PHQ_total ~                                                      
##     IUS_B1W_c (b1)    0.115    0.083    1.382    0.167    0.115    0.115
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_PHQ_total   -1.200    0.146   -8.202    0.000   -1.200   -1.206
##    .IUS_B1W_change    0.044    0.226    0.196    0.844    0.044    0.045
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_PHQ_total    0.590    0.104    5.682    0.000    0.590    0.597
##    .IUS_B1W_change    0.989    0.138    7.154    0.000    0.989    0.999
## 
## R-Square:
##                    Estimate
##     C_W1_PHQ_total    0.403
##     IUS_B1W_change    0.001
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.000    0.002   -0.222    0.825   -0.000   -0.003
##     direct            0.111    0.016    7.033    0.000    0.111    0.627
##     total             0.110    0.016    6.908    0.000    0.110    0.625

Psychoeducation group at 1 week: pre PHQ to 1 week PHQ via change in IU

Mediation.PHQ.psychoed.1W <-
  '#regressions
C_W1_PHQ_total ~ c1 * A_PRE_PHQ_total  
IUS_B1W_change ~ a1 * A_PRE_PHQ_total 
C_W1_PHQ_total ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
PHQ.IUS.psychoed.1W <- sem(Mediation.PHQ.psychoed.1W, data=Psychoed_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(PHQ.IUS.psychoed.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 26 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           103
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   C_W1_PHQ_total ~                                                      
##     A_PRE_PHQ (c1)    0.122    0.012   10.607    0.000    0.122    0.759
##   IUS_B1W_change ~                                                      
##     A_PRE_PHQ (a1)   -0.009    0.015   -0.575    0.566   -0.009   -0.053
##   C_W1_PHQ_total ~                                                      
##     IUS_B1W_c (b1)    0.136    0.076    1.792    0.073    0.136    0.136
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_PHQ_total   -1.171    0.098  -11.991    0.000   -1.171   -1.176
##    .IUS_B1W_change    0.081    0.158    0.513    0.608    0.081    0.081
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_PHQ_total    0.414    0.071    5.836    0.000    0.414    0.417
##    .IUS_B1W_change    0.988    0.152    6.487    0.000    0.988    0.997
## 
## R-Square:
##                    Estimate
##     C_W1_PHQ_total    0.583
##     IUS_B1W_change    0.003
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.001    0.002   -0.538    0.591   -0.001   -0.007
##     direct            0.122    0.012   10.607    0.000    0.122    0.759
##     total             0.121    0.012   10.145    0.000    0.121    0.751

EC group at 1 week: pre PHQ to 1 week PHQ via change in IU

Mediation.PHQ.ECs.1W <-
  '#regressions
C_W1_PHQ_total ~ c1 * A_PRE_PHQ_total  
IUS_B1W_change ~ a1 * A_PRE_PHQ_total 
C_W1_PHQ_total ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
PHQ.IUS.ECs.1W <- sem(Mediation.PHQ.ECs.1W, data=ECs_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(PHQ.IUS.ECs.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 22 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                            42
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   C_W1_PHQ_total ~                                                      
##     A_PRE_PHQ (c1)    0.122    0.010   11.906    0.000    0.122    0.728
##   IUS_B1W_change ~                                                      
##     A_PRE_PHQ (a1)    0.040    0.020    1.947    0.052    0.040    0.234
##   C_W1_PHQ_total ~                                                      
##     IUS_B1W_c (b1)    0.180    0.078    2.310    0.021    0.180    0.182
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_PHQ_total   -1.215    0.121  -10.033    0.000   -1.215   -1.245
##    .IUS_B1W_change   -0.394    0.195   -2.027    0.043   -0.394   -0.400
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_PHQ_total    0.358    0.105    3.397    0.001    0.358    0.375
##    .IUS_B1W_change    0.920    0.202    4.560    0.000    0.920    0.945
## 
## R-Square:
##                    Estimate
##     C_W1_PHQ_total    0.625
##     IUS_B1W_change    0.055
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1         0.007    0.004    1.745    0.081    0.007    0.043
##     direct            0.122    0.010   11.906    0.000    0.122    0.728
##     total             0.130    0.010   12.976    0.000    0.130    0.770

Full sample at 1 month: Group to change in PHQ via change in IUS

Mediation.PHQchange.1M <-
  '#regressions
PHQ_B1M_change ~ c1 * Group  
IUS_B1M_change ~ a1 * Group 
PHQ_B1M_change ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
group.IUS.PHQ.1M <- lavaan::sem(Mediation.PHQchange.1M, data=changeinvariables, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(group.IUS.PHQ.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 18 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           259
##   Number of missing patterns                         4
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   PHQ_B1M_change ~                                                      
##     Group     (c1)   -0.174    0.087   -1.994    0.046   -0.174   -0.129
##   IUS_B1M_change ~                                                      
##     Group     (a1)   -0.413    0.076   -5.465    0.000   -0.413   -0.307
##   PHQ_B1M_change ~                                                      
##     IUS_B1M_c (b1)    0.237    0.087    2.717    0.007    0.237    0.236
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .PHQ_B1M_change    0.383    0.196    1.950    0.051    0.383    0.383
##    .IUS_B1M_change    0.911    0.163    5.574    0.000    0.911    0.913
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .PHQ_B1M_change    0.907    0.104    8.708    0.000    0.907    0.909
##    .IUS_B1M_change    0.901    0.101    8.897    0.000    0.901    0.906
## 
## R-Square:
##                    Estimate
##     PHQ_B1M_change    0.091
##     IUS_B1M_change    0.094
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.098    0.040   -2.426    0.015   -0.098   -0.073
##     direct           -0.174    0.087   -1.994    0.046   -0.174   -0.129
##     total            -0.272    0.078   -3.464    0.001   -0.272   -0.202

Intervention group at 1 month: pre PHQ to 1 month PHQ via change in IU

Mediation.PHQ.intervention.1M <-
  '#regressions
D_M1_PHQ_total ~ c1 * A_PRE_PHQ_total  
IUS_B1M_change ~ a1 * A_PRE_PHQ_total 
D_M1_PHQ_total ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
PHQ.IUS.intervention.1M <- lavaan::sem(Mediation.PHQ.intervention.1M, data=Intervention_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(PHQ.IUS.intervention.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 22 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                            96
##   Number of missing patterns                         3
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   D_M1_PHQ_total ~                                                      
##     A_PRE_PHQ (c1)    0.108    0.012    9.180    0.000    0.108    0.616
##   IUS_B1M_change ~                                                      
##     A_PRE_PHQ (a1)   -0.018    0.018   -1.002    0.316   -0.018   -0.100
##   D_M1_PHQ_total ~                                                      
##     IUS_B1M_c (b1)    0.210    0.108    1.952    0.051    0.210    0.212
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_PHQ_total   -1.175    0.145   -8.083    0.000   -1.175   -1.193
##    .IUS_B1M_change    0.192    0.214    0.897    0.370    0.192    0.193
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_PHQ_total    0.584    0.104    5.609    0.000    0.584    0.602
##    .IUS_B1M_change    0.978    0.129    7.608    0.000    0.978    0.990
## 
## R-Square:
##                    Estimate
##     D_M1_PHQ_total    0.398
##     IUS_B1M_change    0.010
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.004    0.004   -0.836    0.403   -0.004   -0.021
##     direct            0.108    0.012    9.180    0.000    0.108    0.616
##     total             0.104    0.013    8.173    0.000    0.104    0.595

Psychoeducation group at 1 month: pre PHQ to 1 month PHQ via change in IU

Mediation.PHQ.psychoed.1M <-
  '#regressions
D_M1_PHQ_total ~ c1 * A_PRE_PHQ_total  
IUS_B1M_change ~ a1 * A_PRE_PHQ_total 
D_M1_PHQ_total ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
PHQ.IUS.psychoed.1M <- sem(Mediation.PHQ.psychoed.1M, data=Psychoed_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(PHQ.IUS.psychoed.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 21 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           103
##   Number of missing patterns                         4
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   D_M1_PHQ_total ~                                                      
##     A_PRE_PHQ (c1)    0.087    0.015    5.988    0.000    0.087    0.543
##   IUS_B1M_change ~                                                      
##     A_PRE_PHQ (a1)   -0.011    0.016   -0.671    0.502   -0.011   -0.068
##   D_M1_PHQ_total ~                                                      
##     IUS_B1M_c (b1)    0.175    0.115    1.515    0.130    0.175    0.175
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_PHQ_total   -0.817    0.142   -5.741    0.000   -0.817   -0.823
##    .IUS_B1M_change    0.102    0.172    0.590    0.555    0.102    0.102
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_PHQ_total    0.677    0.101    6.719    0.000    0.677    0.687
##    .IUS_B1M_change    0.984    0.180    5.470    0.000    0.984    0.995
## 
## R-Square:
##                    Estimate
##     D_M1_PHQ_total    0.313
##     IUS_B1M_change    0.005
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.002    0.003   -0.595    0.552   -0.002   -0.012
##     direct            0.087    0.015    5.988    0.000    0.087    0.543
##     total             0.085    0.015    5.727    0.000    0.085    0.531

EC group at 1 month: pre PHQ to 1 month PHQ via change in IU

Mediation.PHQ.ECs.1M <-
  '#regressions
D_M1_PHQ_total ~ c1 * A_PRE_PHQ_total  
IUS_B1M_change ~ a1 * A_PRE_PHQ_total 
D_M1_PHQ_total ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
PHQ.IUS.ECs.1M <- sem(Mediation.PHQ.ECs.1M, data=ECs_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(PHQ.IUS.ECs.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 23 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                            42
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   D_M1_PHQ_total ~                                                      
##     A_PRE_PHQ (c1)    0.121    0.015    8.346    0.000    0.121    0.712
##   IUS_B1M_change ~                                                      
##     A_PRE_PHQ (a1)    0.016    0.024    0.677    0.498    0.016    0.096
##   D_M1_PHQ_total ~                                                      
##     IUS_B1M_c (b1)    0.216    0.093    2.332    0.020    0.216    0.216
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_PHQ_total   -1.173    0.188   -6.233    0.000   -1.173   -1.186
##    .IUS_B1M_change   -0.161    0.252   -0.636    0.525   -0.161   -0.162
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_PHQ_total    0.408    0.088    4.636    0.000    0.408    0.417
##    .IUS_B1M_change    0.967    0.165    5.861    0.000    0.967    0.991
## 
## R-Square:
##                    Estimate
##     D_M1_PHQ_total    0.583
##     IUS_B1M_change    0.009
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1         0.004    0.005    0.658    0.511    0.004    0.021
##     direct            0.121    0.015    8.346    0.000    0.121    0.712
##     total             0.125    0.015    8.324    0.000    0.125    0.732

H3: IUS mediating change in GAD over time between groups

Full sample at 1 week: Group to change in GAD via change in IUS

Mediation.GADchange.1W <-
  '#regressions
GAD_B1W_change ~ c1 * Group  
IUS_B1W_change ~ a1 * Group 
GAD_B1W_change ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
group.IUS.GAD.1W <- sem(Mediation.GADchange.1W, data=changeinvariables, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(group.IUS.GAD.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 17 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           259
##   Number of missing patterns                         3
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   GAD_B1W_change ~                                                      
##     Group     (c1)   -0.059    0.083   -0.713    0.476   -0.059   -0.044
##   IUS_B1W_change ~                                                      
##     Group     (a1)   -0.374    0.076   -4.913    0.000   -0.374   -0.278
##   GAD_B1W_change ~                                                      
##     IUS_B1W_c (b1)    0.212    0.082    2.592    0.010    0.212    0.212
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .GAD_B1W_change    0.130    0.178    0.731    0.465    0.130    0.130
##    .IUS_B1W_change    0.826    0.161    5.135    0.000    0.826    0.827
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .GAD_B1W_change    0.944    0.138    6.823    0.000    0.944    0.948
##    .IUS_B1W_change    0.920    0.116    7.943    0.000    0.920    0.923
## 
## R-Square:
##                    Estimate
##     GAD_B1W_change    0.052
##     IUS_B1W_change    0.077
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.079    0.036   -2.235    0.025   -0.079   -0.059
##     direct           -0.059    0.083   -0.713    0.476   -0.059   -0.044
##     total            -0.139    0.079   -1.759    0.079   -0.139   -0.103

Intervention group at 1 week: pre GAD to 1 week GAD via change in IU

Mediation.GAD.intervention.1W <-
  '#regressions
C_W1_GAD_total ~ c1 * A_PRE_GAD_total  
IUS_B1W_change ~ a1 * A_PRE_GAD_total 
C_W1_GAD_total ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
GAD.IUS.intervention.1W <- sem(Mediation.GAD.intervention.1W, data=Intervention_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(GAD.IUS.intervention.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 21 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                            96
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   C_W1_GAD_total ~                                                      
##     A_PRE_GAD (c1)    0.125    0.015    8.379    0.000    0.125    0.684
##   IUS_B1W_change ~                                                      
##     A_PRE_GAD (a1)   -0.032    0.018   -1.781    0.075   -0.032   -0.175
##   C_W1_GAD_total ~                                                      
##     IUS_B1W_c (b1)    0.166    0.093    1.781    0.075    0.166    0.166
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_GAD_total   -1.184    0.126   -9.395    0.000   -1.184   -1.190
##    .IUS_B1W_change    0.303    0.200    1.512    0.130    0.303    0.305
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_GAD_total    0.538    0.118    4.556    0.000    0.538    0.544
##    .IUS_B1W_change    0.959    0.127    7.541    0.000    0.959    0.969
## 
## R-Square:
##                    Estimate
##     C_W1_GAD_total    0.456
##     IUS_B1W_change    0.031
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.005    0.004   -1.269    0.205   -0.005   -0.029
##     direct            0.125    0.015    8.379    0.000    0.125    0.684
##     total             0.120    0.015    7.762    0.000    0.120    0.655

Psychoeducation group at 1 week: pre GAD to 1 week GAD via change in IU

Mediation.GAD.psychoed.1W <-
  '#regressions
C_W1_GAD_total ~ c1 * A_PRE_GAD_total  
IUS_B1W_change ~ a1 * A_PRE_GAD_total 
C_W1_GAD_total ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
GAD.IUS.psychoed.1W <- sem(Mediation.GAD.psychoed.1W, data=Psychoed_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(GAD.IUS.psychoed.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 26 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           103
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   C_W1_GAD_total ~                                                      
##     A_PRE_GAD (c1)    0.126    0.011   11.753    0.000    0.126    0.741
##   IUS_B1W_change ~                                                      
##     A_PRE_GAD (a1)   -0.011    0.016   -0.714    0.475   -0.011   -0.066
##   C_W1_GAD_total ~                                                      
##     IUS_B1W_c (b1)    0.200    0.055    3.612    0.000    0.200    0.201
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_GAD_total   -1.085    0.102  -10.589    0.000   -1.085   -1.092
##    .IUS_B1W_change    0.096    0.162    0.592    0.554    0.096    0.096
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_GAD_total    0.426    0.087    4.910    0.000    0.426    0.431
##    .IUS_B1W_change    0.986    0.152    6.507    0.000    0.986    0.996
## 
## R-Square:
##                    Estimate
##     C_W1_GAD_total    0.569
##     IUS_B1W_change    0.004
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.002    0.003   -0.708    0.479   -0.002   -0.013
##     direct            0.126    0.011   11.753    0.000    0.126    0.741
##     total             0.124    0.011   10.861    0.000    0.124    0.727

EC group at 1 week: pre GAD to 1 week GAD via change in IU

Mediation.GAD.ECs.1W <-
  '#regressions
C_W1_GAD_total ~ c1 * A_PRE_GAD_total  
IUS_B1W_change ~ a1 * A_PRE_GAD_total 
C_W1_GAD_total ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
GAD.IUS.ECs.1W <- sem(Mediation.GAD.ECs.1W, data=ECs_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(GAD.IUS.ECs.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 23 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                            42
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   C_W1_GAD_total ~                                                      
##     A_PRE_GAD (c1)    0.149    0.014   10.978    0.000    0.149    0.785
##   IUS_B1W_change ~                                                      
##     A_PRE_GAD (a1)    0.027    0.029    0.949    0.343    0.027    0.142
##   C_W1_GAD_total ~                                                      
##     IUS_B1W_c (b1)    0.162    0.082    1.975    0.048    0.162    0.165
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_GAD_total   -1.206    0.115  -10.513    0.000   -1.206   -1.238
##    .IUS_B1W_change   -0.221    0.228   -0.972    0.331   -0.221   -0.224
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_GAD_total    0.304    0.072    4.192    0.000    0.304    0.320
##    .IUS_B1W_change    0.954    0.203    4.702    0.000    0.954    0.980
## 
## R-Square:
##                    Estimate
##     C_W1_GAD_total    0.680
##     IUS_B1W_change    0.020
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1         0.004    0.005    0.938    0.348    0.004    0.023
##     direct            0.149    0.014   10.978    0.000    0.149    0.785
##     total             0.153    0.013   11.404    0.000    0.153    0.809

Full sample at 1 month: Group to change in GAD via change in IUS

Mediation.GADchange.1M <-
  '#regressions
GAD_B1M_change ~ c1 * Group  
IUS_B1M_change ~ a1 * Group 
GAD_B1M_change ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
group.IUS.GAD.1M <- sem(Mediation.GADchange.1M, data=changeinvariables, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(group.IUS.GAD.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 18 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           259
##   Number of missing patterns                         4
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   GAD_B1M_change ~                                                      
##     Group     (c1)   -0.147    0.093   -1.587    0.113   -0.147   -0.109
##   IUS_B1M_change ~                                                      
##     Group     (a1)   -0.413    0.076   -5.463    0.000   -0.413   -0.307
##   GAD_B1M_change ~                                                      
##     IUS_B1M_c (b1)    0.338    0.091    3.714    0.000    0.338    0.337
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .GAD_B1M_change    0.320    0.217    1.473    0.141    0.320    0.319
##    .IUS_B1M_change    0.909    0.163    5.566    0.000    0.909    0.912
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .GAD_B1M_change    0.854    0.104    8.239    0.000    0.854    0.852
##    .IUS_B1M_change    0.901    0.101    8.900    0.000    0.901    0.906
## 
## R-Square:
##                    Estimate
##     GAD_B1M_change    0.148
##     IUS_B1M_change    0.094
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.140    0.046   -3.048    0.002   -0.140   -0.103
##     direct           -0.147    0.093   -1.587    0.113   -0.147   -0.109
##     total            -0.287    0.084   -3.405    0.001   -0.287   -0.212

Intervention group at 1 month: pre GAD to 1 month GAD via change in IU

Mediation.GAD.intervention.1M <-
  '#regressions
D_M1_GAD_total ~ c1 * A_PRE_GAD_total  
IUS_B1M_change ~ a1 * A_PRE_GAD_total 
D_M1_GAD_total ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
GAD.IUS.intervention.1M <- sem(Mediation.GAD.intervention.1M, data=Intervention_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(GAD.IUS.intervention.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 21 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                            96
##   Number of missing patterns                         3
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   D_M1_GAD_total ~                                                      
##     A_PRE_GAD (c1)    0.129    0.012   10.612    0.000    0.129    0.713
##   IUS_B1M_change ~                                                      
##     A_PRE_GAD (a1)   -0.029    0.018   -1.651    0.099   -0.029   -0.161
##   D_M1_GAD_total ~                                                      
##     IUS_B1M_c (b1)    0.311    0.088    3.541    0.000    0.311    0.314
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_GAD_total   -1.242    0.122  -10.201    0.000   -1.242   -1.263
##    .IUS_B1M_change    0.281    0.184    1.529    0.126    0.281    0.283
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_GAD_total    0.450    0.070    6.394    0.000    0.450    0.466
##    .IUS_B1M_change    0.961    0.122    7.870    0.000    0.961    0.974
## 
## R-Square:
##                    Estimate
##     D_M1_GAD_total    0.534
##     IUS_B1M_change    0.026
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.009    0.006   -1.430    0.153   -0.009   -0.051
##     direct            0.129    0.012   10.612    0.000    0.129    0.713
##     total             0.120    0.013    8.903    0.000    0.120    0.662

Psychoeducation group at 1 month: pre GAD to 1 month GAD via change in IU

Mediation.GAD.psychoed.1M <-
  '#regressions
D_M1_GAD_total ~ c1 * A_PRE_GAD_total  
IUS_B1M_change ~ a1 * A_PRE_GAD_total 
D_M1_GAD_total ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
GAD.IUS.psychoed.1M <- sem(Mediation.GAD.psychoed.1M, data=Psychoed_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(GAD.IUS.psychoed.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 18 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           103
##   Number of missing patterns                         4
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   D_M1_GAD_total ~                                                      
##     A_PRE_GAD (c1)    0.102    0.013    7.595    0.000    0.102    0.599
##   IUS_B1M_change ~                                                      
##     A_PRE_GAD (a1)   -0.007    0.019   -0.362    0.718   -0.007   -0.040
##   D_M1_GAD_total ~                                                      
##     IUS_B1M_c (b1)    0.340    0.105    3.233    0.001    0.340    0.339
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_GAD_total   -0.865    0.110   -7.836    0.000   -0.865   -0.868
##    .IUS_B1M_change    0.056    0.175    0.318    0.751    0.056    0.056
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_GAD_total    0.539    0.080    6.721    0.000    0.539    0.543
##    .IUS_B1M_change    0.986    0.180    5.463    0.000    0.986    0.998
## 
## R-Square:
##                    Estimate
##     D_M1_GAD_total    0.457
##     IUS_B1M_change    0.002
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.002    0.007   -0.351    0.726   -0.002   -0.014
##     direct            0.102    0.013    7.595    0.000    0.102    0.599
##     total             0.100    0.016    6.327    0.000    0.100    0.585

EC group at 1 month: pre GAD to 1 month GAD via change in IU

Mediation.GAD.ECs.1M <-
  '#regressions
D_M1_GAD_total ~ c1 * A_PRE_GAD_total  
IUS_B1M_change ~ a1 * A_PRE_GAD_total 
D_M1_GAD_total ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
GAD.IUS.ECs.1M <- sem(Mediation.GAD.ECs.1M, data=ECs_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(GAD.IUS.ECs.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 23 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                            42
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   D_M1_GAD_total ~                                                      
##     A_PRE_GAD (c1)    0.117    0.022    5.308    0.000    0.117    0.605
##   IUS_B1M_change ~                                                      
##     A_PRE_GAD (a1)    0.007    0.030    0.232    0.817    0.007    0.036
##   D_M1_GAD_total ~                                                      
##     IUS_B1M_c (b1)    0.237    0.079    2.999    0.003    0.237    0.236
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_GAD_total   -0.916    0.259   -3.543    0.000   -0.916   -0.923
##    .IUS_B1M_change   -0.056    0.270   -0.206    0.836   -0.056   -0.056
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_GAD_total    0.559    0.183    3.051    0.002    0.559    0.568
##    .IUS_B1M_change    0.975    0.167    5.841    0.000    0.975    0.999
## 
## R-Square:
##                    Estimate
##     D_M1_GAD_total    0.432
##     IUS_B1M_change    0.001
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1         0.002    0.007    0.231    0.817    0.002    0.009
##     direct            0.117    0.022    5.308    0.000    0.117    0.605
##     total             0.118    0.021    5.639    0.000    0.118    0.613

H3: IUS mediating change in mood over time between groups

Full sample at post: Group to change in mood via change in IUS

Mediation.Moodchange.post <-
  '#regressions
Mood_BP_change ~ c1 * Group  
IUS_BP_change ~ a1 * Group 
Mood_BP_change ~ b1*IUS_BP_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
group.IUS.Mood.post <- sem(Mediation.Moodchange.post, data=changeinvariables, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(group.IUS.Mood.post, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 18 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           259
##   Number of missing patterns                         3
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Mood_BP_change ~                                                      
##     Group     (c1)    0.315    0.076    4.119    0.000    0.315    0.233
##   IUS_BP_change ~                                                       
##     Group     (a1)   -0.403    0.079   -5.103    0.000   -0.403   -0.299
##   Mood_BP_change ~                                                      
##     IUS_BP_ch (b1)   -0.246    0.070   -3.524    0.000   -0.246   -0.246
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Mood_BP_change   -0.693    0.164   -4.220    0.000   -0.693   -0.694
##    .IUS_BP_change     0.887    0.165    5.388    0.000    0.887    0.889
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Mood_BP_change    0.847    0.143    5.912    0.000    0.847    0.850
##    .IUS_BP_change     0.906    0.114    7.947    0.000    0.906    0.910
## 
## R-Square:
##                    Estimate
##     Mood_BP_change    0.150
##     IUS_BP_change     0.090
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1         0.099    0.032    3.152    0.002    0.099    0.074
##     direct            0.315    0.076    4.119    0.000    0.315    0.233
##     total             0.414    0.072    5.736    0.000    0.414    0.307

Intervention group at post: pre mood to post mood via change in IU

Mediation.Mood.intervention.post <-
  '#regressions
B_POST_mood_mean ~ c1 * A_PRE_mood_mean  
IUS_BP_change ~ a1 * A_PRE_mood_mean 
B_POST_mood_mean ~ b1*IUS_BP_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
Mood.IUS.intervention.post <- sem(Mediation.Mood.intervention.post, data=Intervention_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(Mood.IUS.intervention.post, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 15 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                            96
##   Number of missing patterns                         3
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                      Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   B_POST_mood_mean ~                                                      
##     A_PRE_md_ (c1)      0.014    0.003    4.350    0.000    0.014    0.604
##   IUS_BP_change ~                                                         
##     A_PRE_md_ (a1)      0.004    0.002    1.481    0.139    0.004    0.152
##   B_POST_mood_mean ~                                                      
##     IUS_BP_ch (b1)     -0.190    0.094   -2.010    0.044   -0.190   -0.190
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .B_POST_mood_mn   -0.398    0.154   -2.580    0.010   -0.398   -0.400
##    .IUS_BP_change    -0.098    0.126   -0.777    0.437   -0.098   -0.099
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .B_POST_mood_mn    0.627    0.135    4.643    0.000    0.627    0.634
##    .IUS_BP_change     0.966    0.156    6.176    0.000    0.966    0.977
## 
## R-Square:
##                    Estimate
##     B_POST_mood_mn    0.366
##     IUS_BP_change     0.023
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.001    0.001   -1.118    0.263   -0.001   -0.029
##     direct            0.014    0.003    4.350    0.000    0.014    0.604
##     total             0.013    0.003    4.411    0.000    0.013    0.575

Psychoeducation group at post: pre mood to post mood via change in IU

Mediation.Mood.psychoed.post <-
  '#regressions
B_POST_mood_mean ~ c1 * A_PRE_mood_mean  
IUS_BP_change ~ a1 * A_PRE_mood_mean 
B_POST_mood_mean ~ b1*IUS_BP_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
Mood.IUS.psychoed.post <- sem(Mediation.Mood.psychoed.post, data=Psychoed_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(Mood.IUS.psychoed.post, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 19 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           103
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                      Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   B_POST_mood_mean ~                                                      
##     A_PRE_md_ (c1)      0.016    0.002    7.787    0.000    0.016    0.691
##   IUS_BP_change ~                                                         
##     A_PRE_md_ (a1)      0.001    0.002    0.605    0.545    0.001    0.059
##   B_POST_mood_mean ~                                                      
##     IUS_BP_ch (b1)     -0.243    0.070   -3.460    0.001   -0.243   -0.243
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .B_POST_mood_mn   -0.577    0.120   -4.815    0.000   -0.577   -0.580
##    .IUS_BP_change    -0.050    0.140   -0.353    0.724   -0.050   -0.050
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .B_POST_mood_mn    0.479    0.084    5.734    0.000    0.479    0.484
##    .IUS_BP_change     0.987    0.200    4.936    0.000    0.987    0.996
## 
## R-Square:
##                    Estimate
##     B_POST_mood_mn    0.516
##     IUS_BP_change     0.004
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.000    0.001   -0.567    0.571   -0.000   -0.014
##     direct            0.016    0.002    7.787    0.000    0.016    0.691
##     total             0.015    0.002    6.945    0.000    0.015    0.677

EC group at post: pre mood to post mood via change in IU

Mediation.Mood.ECs.post <-
  '#regressions
B_POST_mood_mean ~ c1 * A_PRE_mood_mean  
IUS_BP_change ~ a1 * A_PRE_mood_mean 
B_POST_mood_mean ~ b1*IUS_BP_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
Mood.IUS.ECs.post <- sem(Mediation.Mood.ECs.post, data=ECs_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(Mood.IUS.ECs.post, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 26 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                            42
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                      Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   B_POST_mood_mean ~                                                      
##     A_PRE_md_ (c1)      0.021    0.002   11.775    0.000    0.021    0.853
##   IUS_BP_change ~                                                         
##     A_PRE_md_ (a1)      0.001    0.003    0.317    0.751    0.001    0.037
##   B_POST_mood_mean ~                                                      
##     IUS_BP_ch (b1)     -0.074    0.069   -1.069    0.285   -0.074   -0.074
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .B_POST_mood_mn   -0.824    0.113   -7.314    0.000   -0.824   -0.834
##    .IUS_BP_change    -0.035    0.192   -0.184    0.854   -0.035   -0.036
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .B_POST_mood_mn    0.264    0.069    3.840    0.000    0.264    0.271
##    .IUS_BP_change     0.975    0.255    3.828    0.000    0.975    0.999
## 
## R-Square:
##                    Estimate
##     B_POST_mood_mn    0.729
##     IUS_BP_change     0.001
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.000    0.000   -0.308    0.758   -0.000   -0.003
##     direct            0.021    0.002   11.775    0.000    0.021    0.853
##     total             0.021    0.002   11.762    0.000    0.021    0.851

Full sample at 1 week: Group to change in mood via change in IUS

Mediation.Moodchange.1W <-
  '#regressions
Mood_B1W_change ~ c1 * Group  
IUS_B1W_change ~ a1 * Group 
Mood_B1W_change ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
group.IUS.Mood.1W <- sem(Mediation.Moodchange.1W, data=changeinvariables, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(group.IUS.Mood.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 17 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           259
##   Number of missing patterns                         3
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Mood_B1W_change ~                                                      
##     Group     (c1)     0.020    0.088    0.223    0.823    0.020    0.015
##   IUS_B1W_change ~                                                       
##     Group     (a1)    -0.374    0.076   -4.913    0.000   -0.374   -0.278
##   Mood_B1W_change ~                                                      
##     IUS_B1W_c (b1)    -0.170    0.076   -2.246    0.025   -0.170   -0.171
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Mood_B1W_chang   -0.042    0.202   -0.207    0.836   -0.042   -0.042
##    .IUS_B1W_change    0.826    0.161    5.135    0.000    0.826    0.827
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Mood_B1W_chang    0.966    0.121    7.987    0.000    0.966    0.969
##    .IUS_B1W_change    0.920    0.116    7.943    0.000    0.920    0.923
## 
## R-Square:
##                    Estimate
##     Mood_B1W_chang    0.031
##     IUS_B1W_change    0.077
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1         0.064    0.030    2.158    0.031    0.064    0.047
##     direct            0.020    0.088    0.223    0.823    0.020    0.015
##     total             0.084    0.081    1.035    0.301    0.084    0.062

Intervention group at 1 week: pre mood to 1 week mood via change in IU

Mediation.Mood.intervention.1W <-
  '#regressions
C_W1_mood_mean ~ c1 * A_PRE_mood_mean  
IUS_B1W_change ~ a1 * A_PRE_mood_mean 
C_W1_mood_mean ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
Mood.IUS.intervention.1W <- sem(Mediation.Mood.intervention.1W, data=Intervention_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(Mood.IUS.intervention.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 18 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                            96
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   C_W1_mood_mean ~                                                      
##     A_PRE_md_ (c1)    0.010    0.002    4.257    0.000    0.010    0.445
##   IUS_B1W_change ~                                                      
##     A_PRE_md_ (a1)    0.001    0.002    0.408    0.683    0.001    0.041
##   C_W1_mood_mean ~                                                      
##     IUS_B1W_c (b1)   -0.156    0.106   -1.472    0.141   -0.156   -0.156
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_mood_mean   -0.298    0.109   -2.725    0.006   -0.298   -0.300
##    .IUS_B1W_change   -0.027    0.112   -0.244    0.808   -0.027   -0.027
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_mood_mean    0.774    0.150    5.150    0.000    0.774    0.784
##    .IUS_B1W_change    0.988    0.139    7.120    0.000    0.988    0.998
## 
## R-Square:
##                    Estimate
##     C_W1_mood_mean    0.216
##     IUS_B1W_change    0.002
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.000    0.000   -0.389    0.698   -0.000   -0.006
##     direct            0.010    0.002    4.257    0.000    0.010    0.445
##     total             0.010    0.003    3.961    0.000    0.010    0.438

Psychoeducation group at 1 week: pre mood to 1 week mood via change in IU

Mediation.Mood.psychoed.1W <-
  '#regressions
C_W1_mood_mean ~ c1 * A_PRE_mood_mean  
IUS_B1W_change ~ a1 * A_PRE_mood_mean 
C_W1_mood_mean ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
Mood.IUS.psychoed.1W <- sem(Mediation.Mood.psychoed.1W, data=Psychoed_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(Mood.IUS.psychoed.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 14 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           103
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   C_W1_mood_mean ~                                                      
##     A_PRE_md_ (c1)    0.010    0.002    4.441    0.000    0.010    0.452
##   IUS_B1W_change ~                                                      
##     A_PRE_md_ (a1)    0.004    0.002    1.458    0.145    0.004    0.161
##   C_W1_mood_mean ~                                                      
##     IUS_B1W_c (b1)   -0.165    0.105   -1.566    0.117   -0.165   -0.165
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_mood_mean   -0.380    0.137   -2.763    0.006   -0.380   -0.382
##    .IUS_B1W_change   -0.134    0.154   -0.872    0.383   -0.134   -0.135
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_mood_mean    0.783    0.126    6.224    0.000    0.783    0.792
##    .IUS_B1W_change    0.965    0.137    7.027    0.000    0.965    0.974
## 
## R-Square:
##                    Estimate
##     C_W1_mood_mean    0.208
##     IUS_B1W_change    0.026
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.001    0.001   -0.974    0.330   -0.001   -0.027
##     direct            0.010    0.002    4.441    0.000    0.010    0.452
##     total             0.010    0.002    4.031    0.000    0.010    0.426

EC group at 1 week: pre mood to 1 week mood via change in IU

Mediation.Mood.ECs.1W <-
  '#regressions
C_W1_mood_mean ~ c1 * A_PRE_mood_mean  
IUS_B1W_change ~ a1 * A_PRE_mood_mean 
C_W1_mood_mean ~ b1*IUS_B1W_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
Mood.IUS.ECs.1W <- sem(Mediation.Mood.ECs.1W, data=ECs_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(Mood.IUS.ECs.1W, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 28 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                            42
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   C_W1_mood_mean ~                                                      
##     A_PRE_md_ (c1)    0.011    0.004    3.051    0.002    0.011    0.463
##   IUS_B1W_change ~                                                      
##     A_PRE_md_ (a1)    0.007    0.003    1.988    0.047    0.007    0.267
##   C_W1_mood_mean ~                                                      
##     IUS_B1W_c (b1)   -0.073    0.159   -0.461    0.645   -0.073   -0.073
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_mood_mean   -0.445    0.193   -2.300    0.021   -0.445   -0.452
##    .IUS_B1W_change   -0.257    0.214   -1.200    0.230   -0.257   -0.261
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .C_W1_mood_mean    0.771    0.148    5.214    0.000    0.771    0.798
##    .IUS_B1W_change    0.902    0.193    4.670    0.000    0.902    0.929
## 
## R-Square:
##                    Estimate
##     C_W1_mood_mean    0.202
##     IUS_B1W_change    0.071
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.000    0.001   -0.435    0.664   -0.000   -0.020
##     direct            0.011    0.004    3.051    0.002    0.011    0.463
##     total             0.011    0.004    3.135    0.002    0.011    0.443

Full sample at 1 month: Group to change in mood via change in IUS

Mediation.Moodchange.1M <-
  '#regressions
Mood_B1M_change ~ c1 * Group  
IUS_B1M_change ~ a1 * Group 
Mood_B1M_change ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
group.IUS.Mood.1M <- sem(Mediation.Moodchange.1M, data=changeinvariables, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(group.IUS.Mood.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 19 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           259
##   Number of missing patterns                         4
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Mood_B1M_change ~                                                      
##     Group     (c1)     0.025    0.092    0.269    0.788    0.025    0.018
##   IUS_B1M_change ~                                                       
##     Group     (a1)    -0.416    0.076   -5.495    0.000   -0.416   -0.308
##   Mood_B1M_change ~                                                      
##     IUS_B1M_c (b1)    -0.244    0.085   -2.857    0.004   -0.244   -0.244
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Mood_B1M_chang   -0.053    0.209   -0.255    0.798   -0.053   -0.053
##    .IUS_B1M_change    0.914    0.163    5.593    0.000    0.914    0.916
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Mood_B1M_chang    0.935    0.104    9.030    0.000    0.935    0.937
##    .IUS_B1M_change    0.902    0.101    8.898    0.000    0.902    0.905
## 
## R-Square:
##                    Estimate
##     Mood_B1M_chang    0.063
##     IUS_B1M_change    0.095
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1         0.101    0.038    2.655    0.008    0.101    0.075
##     direct            0.025    0.092    0.269    0.788    0.025    0.018
##     total             0.126    0.083    1.524    0.127    0.126    0.094

Intervention group at 1 month: pre mood to 1 month mood via change in IU

Mediation.Mood.intervention.1M <-
  '#regressions
D_M1_mood_mean ~ c1 * A_PRE_mood_mean  
IUS_B1M_change ~ a1 * A_PRE_mood_mean 
D_M1_mood_mean ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
Mood.IUS.intervention.1M <- sem(Mediation.Mood.intervention.1M, data=Intervention_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(Mood.IUS.intervention.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 14 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                            96
##   Number of missing patterns                         3
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   D_M1_mood_mean ~                                                      
##     A_PRE_md_ (c1)    0.010    0.002    4.385    0.000    0.010    0.443
##   IUS_B1M_change ~                                                      
##     A_PRE_md_ (a1)    0.003    0.002    1.578    0.115    0.003    0.140
##   D_M1_mood_mean ~                                                      
##     IUS_B1M_c (b1)   -0.224    0.093   -2.419    0.016   -0.224   -0.225
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_mood_mean   -0.294    0.116   -2.526    0.012   -0.294   -0.297
##    .IUS_B1M_change   -0.095    0.126   -0.758    0.448   -0.095   -0.096
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_mood_mean    0.767    0.141    5.419    0.000    0.767    0.781
##    .IUS_B1M_change    0.968    0.127    7.598    0.000    0.968    0.980
## 
## R-Square:
##                    Estimate
##     D_M1_mood_mean    0.219
##     IUS_B1M_change    0.020
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.001    0.001   -1.228    0.219   -0.001   -0.031
##     direct            0.010    0.002    4.385    0.000    0.010    0.443
##     total             0.010    0.003    3.804    0.000    0.010    0.411

Psychoeducation group at 1 month: pre mood to 1 month mood via change in IU

Mediation.Mood.psychoed.1M <-
  '#regressions
D_M1_mood_mean ~ c1 * A_PRE_mood_mean  
IUS_B1M_change ~ a1 * A_PRE_mood_mean 
D_M1_mood_mean ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
Mood.IUS.psychoed.1M <- sem(Mediation.Mood.psychoed.1M, data=Psychoed_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(Mood.IUS.psychoed.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 15 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           103
##   Number of missing patterns                         4
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   D_M1_mood_mean ~                                                      
##     A_PRE_md_ (c1)    0.010    0.002    4.913    0.000    0.010    0.441
##   IUS_B1M_change ~                                                      
##     A_PRE_md_ (a1)    0.002    0.002    0.935    0.350    0.002    0.103
##   D_M1_mood_mean ~                                                      
##     IUS_B1M_c (b1)   -0.228    0.110   -2.072    0.038   -0.228   -0.228
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_mood_mean   -0.355    0.123   -2.883    0.004   -0.355   -0.357
##    .IUS_B1M_change   -0.088    0.140   -0.628    0.530   -0.088   -0.088
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_mood_mean    0.764    0.092    8.346    0.000    0.764    0.774
##    .IUS_B1M_change    0.978    0.181    5.413    0.000    0.978    0.989
## 
## R-Square:
##                    Estimate
##     D_M1_mood_mean    0.226
##     IUS_B1M_change    0.011
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.001    0.001   -0.738    0.460   -0.001   -0.024
##     direct            0.010    0.002    4.913    0.000    0.010    0.441
##     total             0.009    0.002    4.144    0.000    0.009    0.417

EC group at 1 month: pre mood to 1 month mood via change in IU

Mediation.Mood.EC.1M <-
  '#regressions
D_M1_mood_mean ~ c1 * A_PRE_mood_mean  
IUS_B1M_change ~ a1 * A_PRE_mood_mean 
D_M1_mood_mean ~ b1*IUS_B1M_change
indirect1 := a1 * b1
direct := c1
total := c1 + (a1 * b1)
'
Mood.IUS.EC.1M <- sem(Mediation.Mood.EC.1M, data=ECs_group, std.lv=T, std.ov=T, missing='fiml', se='robust', estimator='mlr', auto.var = T)

summary(Mood.IUS.EC.1M, standardized=T, rsquare=T)
## lavaan 0.6.15 ended normally after 19 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                            42
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   D_M1_mood_mean ~                                                      
##     A_PRE_md_ (c1)    0.016    0.002    7.095    0.000    0.016    0.619
##   IUS_B1M_change ~                                                      
##     A_PRE_md_ (a1)    0.004    0.004    0.887    0.375    0.004    0.145
##   D_M1_mood_mean ~                                                      
##     IUS_B1M_c (b1)   -0.075    0.120   -0.627    0.531   -0.075   -0.074
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_mood_mean   -0.634    0.145   -4.379    0.000   -0.634   -0.634
##    .IUS_B1M_change   -0.140    0.248   -0.563    0.573   -0.140   -0.142
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .D_M1_mood_mean    0.625    0.120    5.189    0.000    0.625    0.625
##    .IUS_B1M_change    0.956    0.169    5.647    0.000    0.956    0.979
## 
## R-Square:
##                    Estimate
##     D_M1_mood_mean    0.375
##     IUS_B1M_change    0.021
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect1        -0.000    0.001   -0.511    0.609   -0.000   -0.011
##     direct            0.016    0.002    7.095    0.000    0.016    0.619
##     total             0.015    0.002    6.437    0.000    0.015    0.608

Exploratory analyses

E1: Growth mindsets moderating the association between group and PHQ changes across time

# 1 week
moderation_GM_PHQ_1W <- lm(PHQ_B1W_change ~ Group*A_PRE_GM, data = changeinvariables)
summary(moderation_GM_PHQ_1W)
## 
## Call:
## lm(formula = PHQ_B1W_change ~ Group * A_PRE_GM, data = changeinvariables)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -18.1562  -2.2737   0.4147   2.7263  12.4817 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                   -2.2237     1.4201  -1.566   0.1187  
## GroupB_Controls                0.5795     1.7734   0.327   0.7441  
## GroupC_Intervention            1.8281     1.7812   1.026   0.3058  
## A_PRE_GM                       0.7632     0.4597   1.660   0.0982 .
## GroupB_Controls:A_PRE_GM      -0.5337     0.5529  -0.965   0.3354  
## GroupC_Intervention:A_PRE_GM  -1.1252     0.5673  -1.983   0.0485 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.481 on 245 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.02936,    Adjusted R-squared:  0.009554 
## F-statistic: 1.482 on 5 and 245 DF,  p-value: 0.1961
anova(moderation_GM_PHQ_1W)
## Analysis of Variance Table
## 
## Response: PHQ_B1W_change
##                 Df Sum Sq Mean Sq F value Pr(>F)
## Group            2   58.5  29.234  1.4560 0.2352
## A_PRE_GM         1    6.3   6.310  0.3143 0.5756
## Group:A_PRE_GM   2   84.0  42.016  2.0926 0.1256
## Residuals      245 4919.1  20.078
# 1 month
moderation_GM_PHQ_1M <- lm(PHQ_B1M_change ~ Group*A_PRE_GM, data = changeinvariables)
summary(moderation_GM_PHQ_1M)
## 
## Call:
## lm(formula = PHQ_B1M_change ~ Group * A_PRE_GM, data = changeinvariables)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -16.9147  -2.8178  -0.2693   2.9100  19.5368 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)
## (Intercept)                    0.3893     1.8426   0.211    0.833
## GroupB_Controls               -3.2169     2.3213  -1.386    0.167
## GroupC_Intervention           -2.5702     2.2870  -1.124    0.262
## A_PRE_GM                       0.1475     0.6019   0.245    0.807
## GroupB_Controls:A_PRE_GM       0.4009     0.7291   0.550    0.583
## GroupC_Intervention:A_PRE_GM  -0.2152     0.7397  -0.291    0.771
## 
## Residual standard error: 5.538 on 222 degrees of freedom
##   (31 observations deleted due to missingness)
## Multiple R-squared:  0.04929,    Adjusted R-squared:  0.02788 
## F-statistic: 2.302 on 5 and 222 DF,  p-value: 0.04579
anova(moderation_GM_PHQ_1M) %>% 
  report()
## The ANOVA suggests that:
## 
##   - The main effect of Group is statistically significant and small (F(2, 222) =
## 4.82, p = 0.009; Eta2 (partial) = 0.04, 95% CI [6.17e-03, 1.00])
##   - The main effect of A_PRE_GM is statistically not significant and very small
## (F(1, 222) = 0.77, p = 0.383; Eta2 (partial) = 3.43e-03, 95% CI [0.00, 1.00])
##   - The interaction between Group and A_PRE_GM is statistically not significant
## and very small (F(2, 222) = 0.55, p = 0.579; Eta2 (partial) = 4.92e-03, 95% CI
## [0.00, 1.00])
## 
## Effect sizes were labelled following Field's (2013) recommendations.

E1: Growth mindsets moderating the association between group and GAD changes across time

# 1 week
moderation_GM_GAD_1W <- lm(GAD_B1W_change ~ Group*A_PRE_GM, data = changeinvariables)
summary(moderation_GM_GAD_1W)
## 
## Call:
## lm(formula = GAD_B1W_change ~ Group * A_PRE_GM, data = changeinvariables)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -18.697  -1.974   0.186   2.062  14.731 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                   -1.4596     1.3623  -1.071   0.2850  
## GroupB_Controls                2.3146     1.7013   1.360   0.1749  
## GroupC_Intervention            1.3013     1.7088   0.762   0.4471  
## A_PRE_GM                       0.6368     0.4410   1.444   0.1500  
## GroupB_Controls:A_PRE_GM      -1.1092     0.5304  -2.091   0.0375 *
## GroupC_Intervention:A_PRE_GM  -0.9231     0.5443  -1.696   0.0911 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.299 on 245 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.03314,    Adjusted R-squared:  0.01341 
## F-statistic:  1.68 on 5 and 245 DF,  p-value: 0.1401
anova(moderation_GM_GAD_1W)
## Analysis of Variance Table
## 
## Response: GAD_B1W_change
##                 Df Sum Sq Mean Sq F value Pr(>F)
## Group            2   54.3  27.131  1.4683 0.2323
## A_PRE_GM         1   17.3  17.305  0.9366 0.3341
## Group:A_PRE_GM   2   83.6  41.801  2.2623 0.1063
## Residuals      245 4527.0  18.478
# 1 month
moderation_GM_GAD_1M <- lm(GAD_B1M_change ~ Group*A_PRE_GM, data = changeinvariables)
summary(moderation_GM_GAD_1M)
## 
## Call:
## lm(formula = GAD_B1M_change ~ Group * A_PRE_GM, data = changeinvariables)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -16.3797  -2.6023   0.1837   2.5306  17.2648 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)
## (Intercept)                    0.3786     1.6842   0.225    0.822
## GroupB_Controls               -1.5825     2.1219  -0.746    0.457
## GroupC_Intervention           -1.2153     2.0904  -0.581    0.562
## A_PRE_GM                       0.3566     0.5502   0.648    0.518
## GroupB_Controls:A_PRE_GM      -0.2399     0.6668  -0.360    0.719
## GroupC_Intervention:A_PRE_GM  -0.7035     0.6761  -1.041    0.299
## 
## Residual standard error: 5.062 on 221 degrees of freedom
##   (32 observations deleted due to missingness)
## Multiple R-squared:  0.05464,    Adjusted R-squared:  0.03325 
## F-statistic: 2.554 on 5 and 221 DF,  p-value: 0.02854
anova(moderation_GM_GAD_1M)
## Analysis of Variance Table
## 
## Response: GAD_B1M_change
##                 Df Sum Sq Mean Sq F value   Pr(>F)   
## Group            2  294.1 147.030  5.7385 0.003718 **
## A_PRE_GM         1    0.1   0.092  0.0036 0.952337   
## Group:A_PRE_GM   2   33.1  16.547  0.6458 0.525220   
## Residuals      221 5662.3  25.621                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

E1: Growth mindsets moderating the association between group and mood changes across time

# post
moderation_GM_mood_BP <- lm(Mood_BP_change ~ Group*A_PRE_GM, data = changeinvariables)
summary(moderation_GM_mood_BP)
## 
## Call:
## lm(formula = Mood_BP_change ~ Group * A_PRE_GM, data = changeinvariables)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -72.57 -19.14  -3.97  15.23 171.32 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)   
## (Intercept)                    -8.380     10.096  -0.830  0.40732   
## GroupB_Controls                31.642     12.618   2.508  0.01278 * 
## GroupC_Intervention            38.846     12.577   3.089  0.00223 **
## A_PRE_GM                        3.051      3.289   0.928  0.35455   
## GroupB_Controls:A_PRE_GM       -4.098      3.954  -1.036  0.30097   
## GroupC_Intervention:A_PRE_GM   -3.409      4.037  -0.845  0.39913   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 32.17 on 252 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.1039, Adjusted R-squared:  0.08617 
## F-statistic: 5.847 on 5 and 252 DF,  p-value: 3.945e-05
anova(moderation_GM_mood_BP)
## Analysis of Variance Table
## 
## Response: Mood_BP_change
##                 Df Sum Sq Mean Sq F value    Pr(>F)    
## Group            2  29097 14548.3 14.0609 1.625e-06 ***
## A_PRE_GM         1      0     0.0  0.0000    0.9988    
## Group:A_PRE_GM   2   1150   575.1  0.5558    0.5743    
## Residuals      252 260736  1034.7                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# 1 week
moderation_GM_mood_1W <- lm(Mood_B1W_change ~ Group*A_PRE_GM, data = changeinvariables)
summary(moderation_GM_mood_1W)
## 
## Call:
## lm(formula = Mood_B1W_change ~ Group * A_PRE_GM, data = changeinvariables)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -185.320  -23.963    2.028   25.016  185.316 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)
## (Intercept)                  -15.2285    15.0894  -1.009    0.314
## GroupB_Controls               15.5416    18.8441   0.825    0.410
## GroupC_Intervention           16.4329    18.9320   0.868    0.386
## A_PRE_GM                       0.1816     4.8849   0.037    0.970
## GroupB_Controls:A_PRE_GM      -2.3073     5.8749  -0.393    0.695
## GroupC_Intervention:A_PRE_GM  -2.5278     6.0285  -0.419    0.675
## 
## Residual standard error: 47.61 on 244 degrees of freedom
##   (9 observations deleted due to missingness)
## Multiple R-squared:  0.00881,    Adjusted R-squared:  -0.0115 
## F-statistic: 0.4338 on 5 and 244 DF,  p-value: 0.8248
anova(moderation_GM_mood_1W)
## Analysis of Variance Table
## 
## Response: Mood_B1W_change
##                 Df Sum Sq Mean Sq F value Pr(>F)
## Group            2   2952  1476.0  0.6511 0.5224
## A_PRE_GM         1   1516  1515.6  0.6686 0.4143
## Group:A_PRE_GM   2    449   224.5  0.0990 0.9057
## Residuals      244 553135  2266.9
# 1 month
moderation_GM_mood_1W <- lm(Mood_B1M_change ~ Group*A_PRE_GM, data = changeinvariables)
summary(moderation_GM_mood_1W)
## 
## Call:
## lm(formula = Mood_B1M_change ~ Group * A_PRE_GM, data = changeinvariables)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -150.984  -28.262    4.266   26.821  183.538 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                  -29.7643    16.1860  -1.839   0.0673 .
## GroupB_Controls               27.3570    20.3907   1.342   0.1811  
## GroupC_Intervention           13.0556    20.0891   0.650   0.5164  
## A_PRE_GM                       3.0544     5.2872   0.578   0.5641  
## GroupB_Controls:A_PRE_GM      -4.2805     6.4042  -0.668   0.5046  
## GroupC_Intervention:A_PRE_GM   0.4938     6.4979   0.076   0.9395  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 48.65 on 222 degrees of freedom
##   (31 observations deleted due to missingness)
## Multiple R-squared:  0.02057,    Adjusted R-squared:  -0.001493 
## F-statistic: 0.9323 on 5 and 222 DF,  p-value: 0.4608
anova(moderation_GM_mood_1W)
## Analysis of Variance Table
## 
## Response: Mood_B1M_change
##                 Df Sum Sq Mean Sq F value Pr(>F)
## Group            2   7881  3940.5  1.6652 0.1915
## A_PRE_GM         1    904   904.4  0.3822 0.5371
## Group:A_PRE_GM   2   2246  1122.9  0.4745 0.6228
## Residuals      222 525329  2366.3

E2: Association between IUS and baseline functional impairment

# Total FI scale
PRE_IUS_FI_lm <- lm(A_PRE_IUS_total ~ A_PRE_FI_total, data = Full_data_all)
summary(PRE_IUS_FI_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ A_PRE_FI_total, data = Full_data_all)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -20.1561  -4.1561   0.3806   5.0026  15.3806 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     29.1074     1.2521   23.25   <2e-16 ***
## A_PRE_FI_total   1.2927     0.1148   11.26   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.265 on 257 degrees of freedom
## Multiple R-squared:  0.3304, Adjusted R-squared:  0.3278 
## F-statistic: 126.8 on 1 and 257 DF,  p-value: < 2.2e-16
anova(PRE_IUS_FI_lm)
## Analysis of Variance Table
## 
## Response: A_PRE_IUS_total
##                 Df  Sum Sq Mean Sq F value    Pr(>F)    
## A_PRE_FI_total   1  6692.6  6692.6   126.8 < 2.2e-16 ***
## Residuals      257 13565.1    52.8                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Friends item
PRE_IUS_friends_lm <- lm(A_PRE_IUS_total ~ B_FI_friends, data = Full_data_all)
summary(PRE_IUS_friends_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ B_FI_friends, data = Full_data_all)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -26.7419  -5.1496   0.6416   6.0252  19.2581 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   33.2760     1.3886  23.963  < 2e-16 ***
## B_FI_friends   3.2329     0.4657   6.942 3.16e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.159 on 256 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.1584, Adjusted R-squared:  0.1551 
## F-statistic:  48.2 on 1 and 256 DF,  p-value: 3.163e-11
anova(PRE_IUS_friends_lm)
## Analysis of Variance Table
## 
## Response: A_PRE_IUS_total
##               Df  Sum Sq Mean Sq F value    Pr(>F)    
## B_FI_friends   1  3208.3  3208.3  48.195 3.163e-11 ***
## Residuals    256 17041.8    66.6                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Strangers item
PRE_IUS_strangers_lm <- lm(A_PRE_IUS_total ~ B_FI_strangers, data = Full_data_all)
summary(PRE_IUS_strangers_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ B_FI_strangers, data = Full_data_all)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -27.857  -4.948   1.075   6.143  20.189 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     34.7198     1.7331  20.033  < 2e-16 ***
## B_FI_strangers   2.0457     0.4489   4.557 8.03e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.548 on 256 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.07504,    Adjusted R-squared:  0.07142 
## F-statistic: 20.77 on 1 and 256 DF,  p-value: 8.034e-06
anova(PRE_IUS_strangers_lm)
## Analysis of Variance Table
## 
## Response: A_PRE_IUS_total
##                 Df  Sum Sq Mean Sq F value    Pr(>F)    
## B_FI_strangers   1  1517.6 1517.59  20.768 8.034e-06 ***
## Residuals      256 18707.0   73.07                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Work item
PRE_IUS_work_lm <- lm(A_PRE_IUS_total ~ B_FI_work, data = Full_data_all)
summary(PRE_IUS_work_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ B_FI_work, data = Full_data_all)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -20.9966  -4.3259   0.0034   5.8388  18.9211 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   29.914      1.450  20.627   <2e-16 ***
## B_FI_work      4.082      0.451   9.051   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.705 on 243 degrees of freedom
##   (14 observations deleted due to missingness)
## Multiple R-squared:  0.2521, Adjusted R-squared:  0.249 
## F-statistic: 81.92 on 1 and 243 DF,  p-value: < 2.2e-16
anova(PRE_IUS_work_lm)
## Analysis of Variance Table
## 
## Response: A_PRE_IUS_total
##            Df  Sum Sq Mean Sq F value    Pr(>F)    
## B_FI_work   1  4863.8  4863.8   81.92 < 2.2e-16 ***
## Residuals 243 14427.5    59.4                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Education item
PRE_IUS_education_lm <- lm(A_PRE_IUS_total ~ B_FI_education, data = Full_data_all)
summary(PRE_IUS_education_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ B_FI_education, data = Full_data_all)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -22.9221  -4.9864   0.0136   5.9976  18.0457 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     32.8900     1.3789  23.853  < 2e-16 ***
## B_FI_education   3.0321     0.4192   7.233 5.79e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.153 on 249 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.1736, Adjusted R-squared:  0.1703 
## F-statistic: 52.32 on 1 and 249 DF,  p-value: 5.793e-12
anova(PRE_IUS_education_lm)
## Analysis of Variance Table
## 
## Response: A_PRE_IUS_total
##                 Df  Sum Sq Mean Sq F value    Pr(>F)    
## B_FI_education   1  3478.3  3478.3  52.323 5.793e-12 ***
## Residuals      249 16552.6    66.5                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Hobbies item
PRE_IUS_hobbies_lm <- lm(A_PRE_IUS_total ~ B_FI_hobbies, data = Full_data_all)
summary(PRE_IUS_hobbies_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ B_FI_hobbies, data = Full_data_all)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -23.3848  -5.5183   0.0813   5.4372  17.6152 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   33.2068     1.2818  25.907  < 2e-16 ***
## B_FI_hobbies   3.1780     0.4149   7.659 3.85e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.022 on 256 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.1864, Adjusted R-squared:  0.1832 
## F-statistic: 58.66 on 1 and 256 DF,  p-value: 3.853e-13
anova(PRE_IUS_hobbies_lm)
## Analysis of Variance Table
## 
## Response: A_PRE_IUS_total
##               Df  Sum Sq Mean Sq F value    Pr(>F)    
## B_FI_hobbies   1  3775.2  3775.2  58.662 3.853e-13 ***
## Residuals    256 16474.9    64.4                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

E2: Change in functional impairment over time across groups

# Merging across timepoints
FI_alltimepoints <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_FI_total", "C_W1_FI_total", "D_M1_FI_total")
## Formatting table as needed
FI_alltimepoints_long <- FI_alltimepoints %>%
  pivot_longer(cols = c(A_PRE_FI_total, C_W1_FI_total, D_M1_FI_total),
               names_to = "Time",
               values_to = "FI_Score")
FI_MEM <- lmer(FI_Score ~ Group * Time + (1|ID), data = FI_alltimepoints_long, REML = TRUE)
summary(FI_MEM)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FI_Score ~ Group * Time + (1 | ID)
##    Data: FI_alltimepoints_long
## 
## REML criterion at convergence: 3881
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4491 -0.5504 -0.0242  0.5101  3.7366 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 9.956    3.155   
##  Residual             6.141    2.478   
## Number of obs: 740, groups:  ID, 259
## 
## Fixed effects:
##                                         Estimate Std. Error         df t value
## (Intercept)                             9.860000   0.567386 426.967909  17.378
## GroupB_Controls                         0.168302   0.688316 426.967908   0.245
## GroupC_Intervention                     0.615728   0.691521 426.967908   0.890
## TimeC_W1_FI_total                       0.068035   0.502695 478.593554   0.135
## TimeD_M1_FI_total                      -0.008774   0.518450 483.024020  -0.017
## GroupB_Controls:TimeC_W1_FI_total      -0.259669   0.609119 478.641804  -0.426
## GroupC_Intervention:TimeC_W1_FI_total  -1.041367   0.611891 478.402576  -1.702
## GroupB_Controls:TimeD_M1_FI_total      -0.687018   0.628494 483.127556  -1.093
## GroupC_Intervention:TimeD_M1_FI_total  -1.151707   0.630779 482.776453  -1.826
##                                       Pr(>|t|)    
## (Intercept)                             <2e-16 ***
## GroupB_Controls                         0.8070    
## GroupC_Intervention                     0.3738    
## TimeC_W1_FI_total                       0.8924    
## TimeD_M1_FI_total                       0.9865    
## GroupB_Controls:TimeC_W1_FI_total       0.6701    
## GroupC_Intervention:TimeC_W1_FI_total   0.0894 .  
## GroupB_Controls:TimeD_M1_FI_total       0.2749    
## GroupC_Intervention:TimeD_M1_FI_total   0.0685 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TC_W1_ TD_M1_ GB_C:TC GC_I:TC GB_C:TD
## GrpB_Cntrls -0.824                                                    
## GrpC_Intrvn -0.820  0.676                                             
## TmC_W1_FI_t -0.431  0.355  0.353                                      
## TmD_M1_FI_t -0.417  0.344  0.343  0.470                               
## GB_C:TC_W1_  0.355 -0.431 -0.292 -0.825 -0.388                        
## GC_I:TC_W1_  0.354 -0.292 -0.431 -0.822 -0.386  0.678                 
## GB_C:TD_M1_  0.344 -0.418 -0.283 -0.388 -0.825  0.472   0.318         
## GC_I:TD_M1_  0.343 -0.283 -0.418 -0.386 -0.822  0.319   0.471   0.678
anova  (FI_MEM)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)  
## Group       0.379  0.1896     2 257.42  0.0309 0.96960  
## Time       41.697 20.8486     2 481.96  3.3952 0.03434 *
## Group:Time 32.649  8.1623     4 481.87  1.3292 0.25799  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(FI_MEM)
  FI Score
Predictors Estimates CI p
(Intercept) 9.86 8.75 – 10.97 <0.001
Group [B_Controls] 0.17 -1.18 – 1.52 0.807
Group [C_Intervention] 0.62 -0.74 – 1.97 0.374
Time [C_W1_FI_total] 0.07 -0.92 – 1.05 0.892
Time [D_M1_FI_total] -0.01 -1.03 – 1.01 0.987
Group [B_Controls] × Time
[C_W1_FI_total]
-0.26 -1.46 – 0.94 0.670
Group [C_Intervention] ×
Time [C_W1_FI_total]
-1.04 -2.24 – 0.16 0.089
Group [B_Controls] × Time
[D_M1_FI_total]
-0.69 -1.92 – 0.55 0.275
Group [C_Intervention] ×
Time [D_M1_FI_total]
-1.15 -2.39 – 0.09 0.068
Random Effects
σ2 6.14
τ00 ID 9.96
ICC 0.62
N ID 259
Observations 740
Marginal R2 / Conditional R2 0.009 / 0.622
parameters::standardise_parameters(FI_MEM)
## # Standardization method: refit
## 
## Parameter                             | Std. Coef. |        95% CI
## ------------------------------------------------------------------
## (Intercept)                           |       0.02 | [-0.26, 0.29]
## GroupB_Controls                       |       0.04 | [-0.29, 0.38]
## GroupC_Intervention                   |       0.15 | [-0.18, 0.49]
## TimeC_W1_FI_total                     |       0.02 | [-0.23, 0.26]
## TimeD_M1_FI_total                     |  -2.18e-03 | [-0.26, 0.25]
## GroupB_Controls:TimeC_W1_FI_total     |      -0.06 | [-0.36, 0.23]
## GroupC_Intervention:TimeC_W1_FI_total |      -0.26 | [-0.56, 0.04]
## GroupB_Controls:TimeD_M1_FI_total     |      -0.17 | [-0.48, 0.14]
## GroupC_Intervention:TimeD_M1_FI_total |      -0.29 | [-0.59, 0.02]

Baseline to 1W

# Merging across timepoints
FI_B1W <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_FI_total", "C_W1_FI_total")
## Formatting table as needed
FI_B1W_long <- FI_B1W %>%
  pivot_longer(cols = c(A_PRE_FI_total, C_W1_FI_total),
               names_to = "Time",
               values_to = "FI_Score")
FI_MEM_B1W <- lmer(FI_Score ~ Group * Time + (1|ID), data = FI_B1W_long, REML = TRUE)
summary(FI_MEM_B1W)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FI_Score ~ Group * Time + (1 | ID)
##    Data: FI_B1W_long
## 
## REML criterion at convergence: 2740.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.86590 -0.50210 -0.00798  0.48671  2.80124 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 9.039    3.007   
##  Residual             6.577    2.565   
## Number of obs: 510, groups:  ID, 259
## 
## Fixed effects:
##                                        Estimate Std. Error        df t value
## (Intercept)                             9.86000    0.55886 380.24977  17.643
## GroupB_Controls                         0.16830    0.67797 380.24977   0.248
## GroupC_Intervention                     0.61573    0.68113 380.24977   0.904
## TimeC_W1_FI_total                       0.09842    0.52127 252.70546   0.189
## GroupB_Controls:TimeC_W1_FI_total      -0.30400    0.63140 252.38770  -0.481
## GroupC_Intervention:TimeC_W1_FI_total  -1.05347    0.63439 252.40409  -1.661
##                                       Pr(>|t|)    
## (Intercept)                             <2e-16 ***
## GroupB_Controls                          0.804    
## GroupC_Intervention                      0.367    
## TimeC_W1_FI_total                        0.850    
## GroupB_Controls:TimeC_W1_FI_total        0.631    
## GroupC_Intervention:TimeC_W1_FI_total    0.098 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TC_W1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TmC_W1_FI_t -0.452  0.372  0.370              
## GB_C:TC_W1_  0.373 -0.452 -0.306 -0.826       
## GC_I:TC_W1_  0.371 -0.306 -0.452 -0.822  0.678
anova  (FI_MEM_B1W)
## Type III Analysis of Variance Table with Satterthwaite's method
##             Sum Sq Mean Sq NumDF  DenDF F value Pr(>F)
## Group       0.2043  0.1022     2 256.87  0.0155 0.9846
## Time       14.0165 14.0165     1 252.24  2.1312 0.1456
## Group:Time 23.2052 11.6026     2 252.13  1.7642 0.1734
sjPlot::tab_model(FI_MEM_B1W)
  FI Score
Predictors Estimates CI p
(Intercept) 9.86 8.76 – 10.96 <0.001
Group [B_Controls] 0.17 -1.16 – 1.50 0.804
Group [C_Intervention] 0.62 -0.72 – 1.95 0.366
Time [C_W1_FI_total] 0.10 -0.93 – 1.12 0.850
Group [B_Controls] × Time
[C_W1_FI_total]
-0.30 -1.54 – 0.94 0.630
Group [C_Intervention] ×
Time [C_W1_FI_total]
-1.05 -2.30 – 0.19 0.097
Random Effects
σ2 6.58
τ00 ID 9.04
ICC 0.58
N ID 259
Observations 510
Marginal R2 / Conditional R2 0.006 / 0.581
parameters::standardise_parameters(FI_MEM_B1W)
## # Standardization method: refit
## 
## Parameter                             | Std. Coef. |        95% CI
## ------------------------------------------------------------------
## (Intercept)                           |      -0.03 | [-0.30, 0.25]
## GroupB_Controls                       |       0.04 | [-0.29, 0.38]
## GroupC_Intervention                   |       0.16 | [-0.18, 0.49]
## TimeC_W1_FI_total                     |       0.02 | [-0.23, 0.28]
## GroupB_Controls:TimeC_W1_FI_total     |      -0.08 | [-0.39, 0.24]
## GroupC_Intervention:TimeC_W1_FI_total |      -0.27 | [-0.58, 0.05]
plot_model(FI_MEM_B1W, type = "int")

Baseline to 1M

# Merging across timepoints
FI_B1M <- Full_data_all %>% 
  dplyr::select("ID", "Group", "A_PRE_FI_total", "D_M1_FI_total")
## Formatting table as needed
FI_B1M_long <- FI_B1M %>%
  pivot_longer(cols = c(A_PRE_FI_total, D_M1_FI_total),
               names_to = "Time",
               values_to = "FI_Score")
FI_MEM_B1M <- lmer(FI_Score ~ Group * Time + (1|ID), data = FI_B1M_long, REML = TRUE)
summary(FI_MEM_B1M)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FI_Score ~ Group * Time + (1 | ID)
##    Data: FI_B1M_long
## 
## REML criterion at convergence: 2627.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.39593 -0.49332 -0.00673  0.48809  2.50102 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 10.482   3.238   
##  Residual              5.891   2.427   
## Number of obs: 489, groups:  ID, 259
## 
## Fixed effects:
##                                       Estimate Std. Error       df t value
## (Intercept)                             9.8600     0.5722 351.6690  17.230
## GroupB_Controls                         0.1683     0.6942 351.6690   0.242
## GroupC_Intervention                     0.6157     0.6974 351.6690   0.883
## TimeD_M1_FI_total                      -0.1205     0.5119 237.2371  -0.235
## GroupB_Controls:TimeD_M1_FI_total      -0.5991     0.6203 237.0764  -0.966
## GroupC_Intervention:TimeD_M1_FI_total  -0.9938     0.6226 236.9204  -1.596
##                                       Pr(>|t|)    
## (Intercept)                             <2e-16 ***
## GroupB_Controls                          0.809    
## GroupC_Intervention                      0.378    
## TimeD_M1_FI_total                        0.814    
## GroupB_Controls:TimeD_M1_FI_total        0.335    
## GroupC_Intervention:TimeD_M1_FI_total    0.112    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) GrpB_C GrpC_I TD_M1_ GB_C:T
## GrpB_Cntrls -0.824                            
## GrpC_Intrvn -0.820  0.676                     
## TmD_M1_FI_t -0.402  0.332  0.330              
## GB_C:TD_M1_  0.332 -0.403 -0.272 -0.825       
## GC_I:TD_M1_  0.331 -0.273 -0.403 -0.822  0.678
anova  (FI_MEM_B1M)
## Type III Analysis of Variance Table with Satterthwaite's method
##            Sum Sq Mean Sq NumDF  DenDF F value   Pr(>F)   
## Group       1.403   0.702     2 256.73  0.1191 0.887779   
## Time       44.086  44.086     1 236.88  7.4834 0.006698 **
## Group:Time 15.160   7.580     2 236.79  1.2867 0.278109   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sjPlot::tab_model(FI_MEM_B1M)
  FI Score
Predictors Estimates CI p
(Intercept) 9.86 8.74 – 10.98 <0.001
Group [B_Controls] 0.17 -1.20 – 1.53 0.809
Group [C_Intervention] 0.62 -0.75 – 1.99 0.378
Time [D_M1_FI_total] -0.12 -1.13 – 0.89 0.814
Group [B_Controls] × Time
[D_M1_FI_total]
-0.60 -1.82 – 0.62 0.335
Group [C_Intervention] ×
Time [D_M1_FI_total]
-0.99 -2.22 – 0.23 0.111
Random Effects
σ2 5.89
τ00 ID 10.48
ICC 0.64
N ID 259
Observations 489
Marginal R2 / Conditional R2 0.012 / 0.644
parameters::standardise_parameters(FI_MEM_B1M)
## # Standardization method: refit
## 
## Parameter                             | Std. Coef. |        95% CI
## ------------------------------------------------------------------
## (Intercept)                           |       0.01 | [-0.27, 0.29]
## GroupB_Controls                       |       0.04 | [-0.29, 0.38]
## GroupC_Intervention                   |       0.15 | [-0.19, 0.49]
## TimeD_M1_FI_total                     |      -0.03 | [-0.28, 0.22]
## GroupB_Controls:TimeD_M1_FI_total     |      -0.15 | [-0.45, 0.15]
## GroupC_Intervention:TimeD_M1_FI_total |      -0.25 | [-0.55, 0.06]
plot_model(FI_MEM_B1M, type = "int")

Extra exploratory: IUS and GM association at PRE

PRE_IUS_GM_lm <- lm(A_PRE_IUS_total ~ A_PRE_GM, data = Full_data_all)
summary(PRE_IUS_GM_lm)
## 
## Call:
## lm(formula = A_PRE_IUS_total ~ A_PRE_GM, data = Full_data_all)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -32.939  -5.868   0.918   6.097  18.132 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  38.6537     1.2714  30.402  < 2e-16 ***
## A_PRE_GM      1.2142     0.3875   3.134  0.00193 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.713 on 257 degrees of freedom
## Multiple R-squared:  0.03681,    Adjusted R-squared:  0.03306 
## F-statistic:  9.82 on 1 and 257 DF,  p-value: 0.001926
anova(PRE_IUS_GM_lm) %>%
  report()
## The ANOVA suggests that:
## 
##   - The main effect of A_PRE_GM is statistically significant and small (F(1, 257)
## = 9.82, p = 0.002; Eta2 = 0.04, 95% CI [8.34e-03, 1.00])
## 
## Effect sizes were labelled following Field's (2013) recommendations.