Abaikan bagian ini. Lansung saja loncat ke
1. Tentang Data .
path <- function(){
gsub ( "\\\\", "/", readClipboard () )
}
#Copy path
#Panggil function di console
#Copy r path, paste ke var yang diinginkan
#Export chart
export.chart <- "C:/Users/Fathan/Documents/Obsidian Vault/2. Kuliah/Smt 5/6. Metode Peramalan Deret Waktu/@Proj/STA1341-MPDW/Pertemuan 1/Chart"
# -=( Install & Load Package Function )=-
install_load <- function (package1, ...) {
# convert arguments to vector
packages <- c(package1, ...)
# start loop to determine if each package is installed
for(package in packages){
# if package is installed locally, load
if(package %in% rownames(installed.packages()))
do.call('library', list(package))
# if package is not installed locally, download, then load
else {
install.packages(package)
do.call("library", list(package))
}
}
}
install_load('ggplot2','extrafont')
## Warning: package 'ggplot2' was built under R version 4.2.3
## Registering fonts with R
# font_import(); loadfonts() #Run ini sekali aja
theme1 <- list(
guides(fill="none"), #No Legends
theme(
text = element_text(size = 66),
axis.title = element_text(size=33),
axis.text.y = element_text(vjust = .5, face = "bold"),
plot.title = element_text(hjust = 0.5),
panel.background = element_rect(fill = 'transparent'),
plot.background = element_rect(fill='transparent', color=NA),
panel.grid.major = element_line(colour = "grey90"),
axis.line = element_line(linewidth = 2, colour = "grey90"))
)
# This theme extends the 'theme_minimal' that comes with ggplot2.
# The "Lato" font is used as the base font. This is similar
# to the original font in Cedric's work, Avenir Next Condensed.
install_load('ggtext')
## Warning: package 'ggtext' was built under R version 4.2.3
## theme_set(theme_minimal(base_family = "Lato"))
theme_update(
# Remove title for both x and y axes
axis.title = element_blank(),
# Axes labels are grey
axis.text = element_text(color = "grey40"),
# The size of the axes labels are different for x and y.
axis.text.x = element_text(size = 20, margin = margin(t = 5)),
axis.text.y = element_text(size = 17, margin = margin(r = 5)),
# Also, the ticks have a very light grey color
axis.ticks = element_line(color = "grey91", linewidth = .5),
# The length of the axis ticks is increased.
axis.ticks.length.x = unit(1.3, "lines"),
axis.ticks.length.y = unit(.7, "lines"),
# Remove the grid lines that come with ggplot2 plots by default
panel.grid = element_blank(),
# Customize margin values (top, right, bottom, left)
plot.margin = margin(20, 40, 20, 40),
# Use a light grey color for the background of both the plot and the panel
plot.background = element_rect(fill = "grey98", color = "grey98"),
panel.background = element_rect(fill = "grey98", color = "grey98"),
# Customize title appearence
plot.title = element_text(
color = "grey10",
size = 28,
face = "bold",
margin = margin(t = 15)
),
# Customize subtitle appearence
plot.subtitle = element_markdown(
color = "grey30",
size = 16,
lineheight = 1.35,
margin = margin(t = 15, b = 40)
),
# Title and caption are going to be aligned
plot.title.position = "plot",
plot.caption.position = "plot",
plot.caption = element_text(
color = "grey30",
size = 13,
lineheight = 1.2,
hjust = 0,
margin = margin(t = 40) # Large margin on the top of the caption.
),
# Remove legend
legend.position = "none"
)
Dataset yang saya gunakan merupakan koleksi data harga saham historis periode Juli 2018 hingga Juli 2023 dari beberapa raksasa teknologi paling berpengaruh di dunia: Microsoft, Apple, Amazon, Nvidia, Google, Netflix, dan Meta (sebelumnya dikenal sebagai Facebook). Dataset ini menjadi sumber daya berharga bagi analis keuangan, ilmuwan data, dan penggemar pasar saham yang ingin menganalisis dan memahami tren harga perusahaan-perusahaan terkemuka di industri ini.
Dataset ini memilki data :
Karena tugas kali ini hanya menggunakan satu peubah dan satu kategori
saja. Maka kali ini saya akan menggunakan peubah
Adj Close (Adjusted Close) .Karena Adj Close
Adalah peubah yang paling sesuai untuk dianalisis dibandingkan peubah
lainnya. Untuk pemilihan data sahamnya, saya ingin mengeksplorasi
terlebih dahulu.
install_load('rio')
raw.data <- import("https://raw.githubusercontent.com/Zen-Rofiqy/STA1341-MPDW/main/Data/MAANG%20Stock%20Prices.csv")
## Warning in (function (input = "", file = NULL, text = NULL, cmd = NULL, :
## Stopped early on line 8815. Expected 8 fields but found 1. Consider fill=TRUE
## and comment.char=. First discarded non-empty line: <<=======>>
Melihat tipe data.
str(raw.data)
## 'data.frame': 8812 obs. of 8 variables:
## $ Name : chr "AMZN" "AMZN" "AMZN" "AMZN" ...
## $ Date : chr "7/30/18" "7/31/18" "8/1/18" "8/2/18" ...
## $ Open : chr "91.366501" "89.324501" "89.199997" "89.438499" ...
## $ High : chr "91.474998" "90.091499" "89.921997" "91.828003" ...
## $ Low : chr "88.301003" "86.966003" "88.801003" "89.300003" ...
## $ Close : chr "88.960999" "88.872002" "89.858498" "91.716499" ...
## $ Adj Close: chr "88.960999" "88.872002" "89.858498" "91.716499" ...
## $ Volume : chr "131246000" "114774000" "83062000" "87094000" ...
Cek Data kosong.
sum(is.na(raw.data))
## [1] 0
Tidak ada data kosong.
Semua tipe data masih berupa character. Harus diubah menjadi tipe data yang sesuai.
install_load('dplyr')
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
data <- raw.data %>%
mutate(
Date = as.Date(raw.data[, 2], format = "%m/%d/%y"), #Mengubah menjadi Date
across(3:ncol(raw.data), as.numeric) #Mengubah menjadi Numerik
)
## Warning in mask$eval_all_mutate(quo): NAs introduced by coercion
## Warning in mask$eval_all_mutate(quo): NAs introduced by coercion
## Warning in mask$eval_all_mutate(quo): NAs introduced by coercion
## Warning in mask$eval_all_mutate(quo): NAs introduced by coercion
## Warning in mask$eval_all_mutate(quo): NAs introduced by coercion
## Warning in mask$eval_all_mutate(quo): NAs introduced by coercion
str(data)
## 'data.frame': 8812 obs. of 8 variables:
## $ Name : chr "AMZN" "AMZN" "AMZN" "AMZN" ...
## $ Date : Date, format: "2018-07-30" "2018-07-31" ...
## $ Open : num 91.4 89.3 89.2 89.4 91.9 ...
## $ High : num 91.5 90.1 89.9 91.8 92.1 ...
## $ Low : num 88.3 87 88.8 89.3 91.1 ...
## $ Close : num 89 88.9 89.9 91.7 91.2 ...
## $ Adj Close: num 89 88.9 89.9 91.7 91.2 ...
## $ Volume : num 1.31e+08 1.15e+08 8.31e+07 8.71e+07 6.92e+07 ...
Ternyata ada data kosong. Harus cek ulang.
# Mencari indeks baris dan kolom yang mengandung NA
na.idx <- which(is.na(data), arr.ind = TRUE)
# Menampilkan data raw dengan baris dan kolom yang mengandung NA
install_load('kableExtra','dplyr')
## Warning in !is.null(rmarkdown::metadata$output) && rmarkdown::metadata$output
## %in% : 'length(x) = 2 > 1' in coercion to 'logical(1)'
##
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
## group_rows
kable(raw.data[ # Subsetting
unique(na.idx[, 1]), # Vektor indeks baris yang mengandung NA
unique(na.idx[, 2]) ] # Vektor indeks kolom yang mengandung NA
) %>% kable_styling() # Style Tabel
| Date | Open | High | Low | Close | Adj Close | Volume | |
|---|---|---|---|---|---|---|---|
| 1259 | Date | Open | High | Low | Close | Adj Close | Volume |
| 2518 | Date | Open | High | Low | Close | Adj Close | Volume |
| 3777 | Date | Open | High | Low | Close | Adj Close | Volume |
| 5036 | Date | Open | High | Low | Close | Adj Close | Volume |
| 6295 | Date | Open | High | Low | Close | Adj Close | Volume |
| 7554 | Date | Open | High | Low | Close | Adj Close | Volume |
Ternyata pada baris tersebut ada data karakter text. Sehingga ketika
diubah ke numerik akan menjadi NA. Maka saya akan menghapus
baris tersebut.
data <- data %>%
filter(!row_number() %in% unique(na.idx[, 1]))
install_load('viridis','ggrepel')
## Loading required package: viridisLite
#Plot
cts.maang <-
ggplot(data, aes(x=Date, y=`Adj Close`)) + #Data
geom_line(aes(color=Name), linewidth=1) + #Timeseries
#Color
scale_color_viridis(alpha = 0.75, #Opacity
begin = 0, #Color pallte scale begins
end = 0.9, #Color pallte scale ends
direction = -1, #Flip color scale
discrete = T, #Discrete Value
option = "D") + #Color Palette
theme1 + #THeme
labs(x = "Tahun", y = "Harga Saham (USD)") + #Label X & Y
# Label / legend
geom_text_repel(
data=data[data$Date == max(data$Date),], #Posisi di ujung data
aes(color = Name, label = Name), #Warna garis & label saham
size = 8, #Ukuran text
nudge_x = 80, #Posisi Text (kanan 50)
hjust = 0, #Ujung
segment.size = 1, #Ukuran garis
segment.alpha = .75, #transparasi garis
segment.linetype = "dotted", #Time garis
box.padding = .4, #Biar label saham nggak dempetan
segment.curvature = -0.1, #biar garis mulus
segment.ncp = 8,
segment.angle = 60
) +
#Axis
coord_cartesian(clip = "off"
) +
scale_x_date( #Sumbu x
date_breaks = "1 year", # Menampilkan label setiap tahun
date_labels = "%Y", # Format label tahun
limits = c(as.Date("2018-07-30"), as.Date("2023-12-28"))
#Tampilin lebih dari 20023-07-28 agar label saham bisa masuk
) +
scale_y_continuous( #Sumbu y
labels = scales::dollar_format(prefix = "$") #tambahin dolar
) +
annotate( #Buat nandain batas data
"text", x = as.Date("2023-7-28"), y = 50,
label = "28 Juli", size=6
) +
geom_vline( #Buat garis batas data
xintercept = as.numeric(as.Date("2023-07-28")),
linetype = "dotted", color = "red")
cts.maang
#Export Chart
ggsave("01_Time Series MAANG.png", cts.maang, path = export.chart,
dpi = 300, height = 9, width = 16)
Jika dilihat dari tahun 2019-2022, semua saham cenderung
memiliki pola trend naik. Lalu dari 2021-2023 polanya
cenderung trend turun. Untuk tugas praktikum kali ini, saya hanya akan
menggunakan rentang tahun 2022-2023 dengan tren cenderung
turun. Agar pengerjaannya tidak terlalu sulit, karena masih tahap awal
pembelajaran.
Ada yang menarik perhatian saya. Kenapa dulu Pendiri Amazon, Jeff
Bezos yang pernah menjadi orang terkaya di dunia pada tahun
2017 lalu, harga saham sekarang tidak setinggi yang saya
kira?. Oleh karena itu saya memutuskan untuk menggunakan data saham
Amazon untuk praktikum kali ini.
amzn <- data %>%
select(1, 2, 7) %>% # Memilih kolom 1, 2, dan 7
filter(Name == "AMZN", Date >= as.Date("2022-01-01")) # Filter data saham Amazon tahun 2022 ke atas
rownames(amzn) <- NULL
str(amzn)
## 'data.frame': 394 obs. of 3 variables:
## $ Name : chr "AMZN" "AMZN" "AMZN" "AMZN" ...
## $ Date : Date, format: "2022-01-03" "2022-01-04" ...
## $ Adj Close: num 170 168 164 163 163 ...
kable(amzn) %>% kable_styling()
| Name | Date | Adj Close |
|---|---|---|
| AMZN | 2022-01-03 | 170.4045 |
| AMZN | 2022-01-04 | 167.5220 |
| AMZN | 2022-01-05 | 164.3570 |
| AMZN | 2022-01-06 | 163.2540 |
| AMZN | 2022-01-07 | 162.5540 |
| AMZN | 2022-01-10 | 161.4860 |
| AMZN | 2022-01-11 | 165.3620 |
| AMZN | 2022-01-12 | 165.2070 |
| AMZN | 2022-01-13 | 161.2140 |
| AMZN | 2022-01-14 | 162.1380 |
| AMZN | 2022-01-18 | 158.9175 |
| AMZN | 2022-01-19 | 156.2990 |
| AMZN | 2022-01-20 | 151.6675 |
| AMZN | 2022-01-21 | 142.6430 |
| AMZN | 2022-01-24 | 144.5440 |
| AMZN | 2022-01-25 | 139.9860 |
| AMZN | 2022-01-26 | 138.8725 |
| AMZN | 2022-01-27 | 139.6375 |
| AMZN | 2022-01-28 | 143.9780 |
| AMZN | 2022-01-31 | 149.5735 |
| AMZN | 2022-02-01 | 151.1935 |
| AMZN | 2022-02-02 | 150.6125 |
| AMZN | 2022-02-03 | 138.8455 |
| AMZN | 2022-02-04 | 157.6395 |
| AMZN | 2022-02-07 | 157.9355 |
| AMZN | 2022-02-08 | 161.4135 |
| AMZN | 2022-02-09 | 161.1895 |
| AMZN | 2022-02-10 | 159.0035 |
| AMZN | 2022-02-11 | 153.2935 |
| AMZN | 2022-02-14 | 155.1670 |
| AMZN | 2022-02-15 | 156.5105 |
| AMZN | 2022-02-16 | 158.1005 |
| AMZN | 2022-02-17 | 154.6525 |
| AMZN | 2022-02-18 | 152.6015 |
| AMZN | 2022-02-22 | 150.1975 |
| AMZN | 2022-02-23 | 144.8270 |
| AMZN | 2022-02-24 | 151.3580 |
| AMZN | 2022-02-25 | 153.7885 |
| AMZN | 2022-02-28 | 153.5630 |
| AMZN | 2022-03-01 | 151.1420 |
| AMZN | 2022-03-02 | 152.0525 |
| AMZN | 2022-03-03 | 147.8985 |
| AMZN | 2022-03-04 | 145.6410 |
| AMZN | 2022-03-07 | 137.4530 |
| AMZN | 2022-03-08 | 136.0145 |
| AMZN | 2022-03-09 | 139.2790 |
| AMZN | 2022-03-10 | 146.8175 |
| AMZN | 2022-03-11 | 145.5245 |
| AMZN | 2022-03-14 | 141.8530 |
| AMZN | 2022-03-15 | 147.3665 |
| AMZN | 2022-03-16 | 153.1040 |
| AMZN | 2022-03-17 | 157.2390 |
| AMZN | 2022-03-18 | 161.2505 |
| AMZN | 2022-03-21 | 161.4915 |
| AMZN | 2022-03-22 | 164.8890 |
| AMZN | 2022-03-23 | 163.4080 |
| AMZN | 2022-03-24 | 163.6495 |
| AMZN | 2022-03-25 | 164.7735 |
| AMZN | 2022-03-28 | 168.9905 |
| AMZN | 2022-03-29 | 169.3150 |
| AMZN | 2022-03-30 | 166.3010 |
| AMZN | 2022-03-31 | 162.9975 |
| AMZN | 2022-04-01 | 163.5600 |
| AMZN | 2022-04-04 | 168.3465 |
| AMZN | 2022-04-05 | 164.0550 |
| AMZN | 2022-04-06 | 158.7560 |
| AMZN | 2022-04-07 | 157.7845 |
| AMZN | 2022-04-08 | 154.4605 |
| AMZN | 2022-04-11 | 151.1220 |
| AMZN | 2022-04-12 | 150.7875 |
| AMZN | 2022-04-13 | 155.5410 |
| AMZN | 2022-04-14 | 151.7065 |
| AMZN | 2022-04-18 | 152.7850 |
| AMZN | 2022-04-19 | 158.1155 |
| AMZN | 2022-04-20 | 153.9980 |
| AMZN | 2022-04-21 | 148.2960 |
| AMZN | 2022-04-22 | 144.3500 |
| AMZN | 2022-04-25 | 146.0740 |
| AMZN | 2022-04-26 | 139.3910 |
| AMZN | 2022-04-27 | 138.1670 |
| AMZN | 2022-04-28 | 144.5965 |
| AMZN | 2022-04-29 | 124.2815 |
| AMZN | 2022-05-02 | 124.5000 |
| AMZN | 2022-05-03 | 124.2535 |
| AMZN | 2022-05-04 | 125.9285 |
| AMZN | 2022-05-05 | 116.4070 |
| AMZN | 2022-05-06 | 114.7725 |
| AMZN | 2022-05-09 | 108.7890 |
| AMZN | 2022-05-10 | 108.8590 |
| AMZN | 2022-05-11 | 105.3720 |
| AMZN | 2022-05-12 | 106.9305 |
| AMZN | 2022-05-13 | 113.0550 |
| AMZN | 2022-05-16 | 110.8105 |
| AMZN | 2022-05-17 | 115.3685 |
| AMZN | 2022-05-18 | 107.1125 |
| AMZN | 2022-05-19 | 107.3190 |
| AMZN | 2022-05-20 | 107.5910 |
| AMZN | 2022-05-23 | 107.5570 |
| AMZN | 2022-05-24 | 104.1000 |
| AMZN | 2022-05-25 | 106.7750 |
| AMZN | 2022-05-26 | 111.0775 |
| AMZN | 2022-05-27 | 115.1465 |
| AMZN | 2022-05-31 | 120.2095 |
| AMZN | 2022-06-01 | 121.6840 |
| AMZN | 2022-06-02 | 125.5110 |
| AMZN | 2022-06-03 | 122.3500 |
| AMZN | 2022-06-06 | 124.7900 |
| AMZN | 2022-06-07 | 123.0000 |
| AMZN | 2022-06-08 | 121.1800 |
| AMZN | 2022-06-09 | 116.1500 |
| AMZN | 2022-06-10 | 109.6500 |
| AMZN | 2022-06-13 | 103.6700 |
| AMZN | 2022-06-14 | 102.3100 |
| AMZN | 2022-06-15 | 107.6700 |
| AMZN | 2022-06-16 | 103.6600 |
| AMZN | 2022-06-17 | 106.2200 |
| AMZN | 2022-06-21 | 108.6800 |
| AMZN | 2022-06-22 | 108.9500 |
| AMZN | 2022-06-23 | 112.4400 |
| AMZN | 2022-06-24 | 116.4600 |
| AMZN | 2022-06-27 | 113.2200 |
| AMZN | 2022-06-28 | 107.4000 |
| AMZN | 2022-06-29 | 108.9200 |
| AMZN | 2022-06-30 | 106.2100 |
| AMZN | 2022-07-01 | 109.5600 |
| AMZN | 2022-07-05 | 113.5000 |
| AMZN | 2022-07-06 | 114.3300 |
| AMZN | 2022-07-07 | 116.3300 |
| AMZN | 2022-07-08 | 115.5400 |
| AMZN | 2022-07-11 | 111.7500 |
| AMZN | 2022-07-12 | 109.2200 |
| AMZN | 2022-07-13 | 110.4000 |
| AMZN | 2022-07-14 | 110.6300 |
| AMZN | 2022-07-15 | 113.5500 |
| AMZN | 2022-07-18 | 113.7600 |
| AMZN | 2022-07-19 | 118.2100 |
| AMZN | 2022-07-20 | 122.7700 |
| AMZN | 2022-07-21 | 124.6300 |
| AMZN | 2022-07-22 | 122.4200 |
| AMZN | 2022-07-25 | 121.1400 |
| AMZN | 2022-07-26 | 114.8100 |
| AMZN | 2022-07-27 | 120.9700 |
| AMZN | 2022-07-28 | 122.2800 |
| AMZN | 2022-07-29 | 134.9500 |
| AMZN | 2022-08-01 | 135.3900 |
| AMZN | 2022-08-02 | 134.1600 |
| AMZN | 2022-08-03 | 139.5200 |
| AMZN | 2022-08-04 | 142.5700 |
| AMZN | 2022-08-05 | 140.8000 |
| AMZN | 2022-08-08 | 139.4100 |
| AMZN | 2022-08-09 | 137.8300 |
| AMZN | 2022-08-10 | 142.6900 |
| AMZN | 2022-08-11 | 140.6400 |
| AMZN | 2022-08-12 | 143.5500 |
| AMZN | 2022-08-15 | 143.1800 |
| AMZN | 2022-08-16 | 144.7800 |
| AMZN | 2022-08-17 | 142.1000 |
| AMZN | 2022-08-18 | 142.3000 |
| AMZN | 2022-08-19 | 138.2300 |
| AMZN | 2022-08-22 | 133.2200 |
| AMZN | 2022-08-23 | 133.6200 |
| AMZN | 2022-08-24 | 133.8000 |
| AMZN | 2022-08-25 | 137.2800 |
| AMZN | 2022-08-26 | 130.7500 |
| AMZN | 2022-08-29 | 129.7900 |
| AMZN | 2022-08-30 | 128.7300 |
| AMZN | 2022-08-31 | 126.7700 |
| AMZN | 2022-09-01 | 127.8200 |
| AMZN | 2022-09-02 | 127.5100 |
| AMZN | 2022-09-06 | 126.1100 |
| AMZN | 2022-09-07 | 129.4800 |
| AMZN | 2022-09-08 | 129.8200 |
| AMZN | 2022-09-09 | 133.2700 |
| AMZN | 2022-09-12 | 136.4500 |
| AMZN | 2022-09-13 | 126.8200 |
| AMZN | 2022-09-14 | 128.5500 |
| AMZN | 2022-09-15 | 126.2800 |
| AMZN | 2022-09-16 | 123.5300 |
| AMZN | 2022-09-19 | 124.6600 |
| AMZN | 2022-09-20 | 122.1900 |
| AMZN | 2022-09-21 | 118.5400 |
| AMZN | 2022-09-22 | 117.3100 |
| AMZN | 2022-09-23 | 113.7800 |
| AMZN | 2022-09-26 | 115.1500 |
| AMZN | 2022-09-27 | 114.4100 |
| AMZN | 2022-09-28 | 118.0100 |
| AMZN | 2022-09-29 | 114.8000 |
| AMZN | 2022-09-30 | 113.0000 |
| AMZN | 2022-10-03 | 115.8800 |
| AMZN | 2022-10-04 | 121.0900 |
| AMZN | 2022-10-05 | 120.9500 |
| AMZN | 2022-10-06 | 120.3000 |
| AMZN | 2022-10-07 | 114.5600 |
| AMZN | 2022-10-10 | 113.6700 |
| AMZN | 2022-10-11 | 112.2100 |
| AMZN | 2022-10-12 | 112.9000 |
| AMZN | 2022-10-13 | 112.5300 |
| AMZN | 2022-10-14 | 106.9000 |
| AMZN | 2022-10-17 | 113.7900 |
| AMZN | 2022-10-18 | 116.3600 |
| AMZN | 2022-10-19 | 115.0700 |
| AMZN | 2022-10-20 | 115.2500 |
| AMZN | 2022-10-21 | 119.3200 |
| AMZN | 2022-10-24 | 119.8200 |
| AMZN | 2022-10-25 | 120.6000 |
| AMZN | 2022-10-26 | 115.6600 |
| AMZN | 2022-10-27 | 110.9600 |
| AMZN | 2022-10-28 | 103.4100 |
| AMZN | 2022-10-31 | 102.4400 |
| AMZN | 2022-11-01 | 96.7900 |
| AMZN | 2022-11-02 | 92.1200 |
| AMZN | 2022-11-03 | 89.3000 |
| AMZN | 2022-11-04 | 90.9800 |
| AMZN | 2022-11-07 | 90.5300 |
| AMZN | 2022-11-08 | 89.9800 |
| AMZN | 2022-11-09 | 86.1400 |
| AMZN | 2022-11-10 | 96.6300 |
| AMZN | 2022-11-11 | 100.7900 |
| AMZN | 2022-11-14 | 98.4900 |
| AMZN | 2022-11-15 | 98.9400 |
| AMZN | 2022-11-16 | 97.1200 |
| AMZN | 2022-11-17 | 94.8500 |
| AMZN | 2022-11-18 | 94.1400 |
| AMZN | 2022-11-21 | 92.4600 |
| AMZN | 2022-11-22 | 93.2000 |
| AMZN | 2022-11-23 | 94.1300 |
| AMZN | 2022-11-25 | 93.4100 |
| AMZN | 2022-11-28 | 93.9500 |
| AMZN | 2022-11-29 | 92.4200 |
| AMZN | 2022-11-30 | 96.5400 |
| AMZN | 2022-12-01 | 95.5000 |
| AMZN | 2022-12-02 | 94.1300 |
| AMZN | 2022-12-05 | 91.0100 |
| AMZN | 2022-12-06 | 88.2500 |
| AMZN | 2022-12-07 | 88.4600 |
| AMZN | 2022-12-08 | 90.3500 |
| AMZN | 2022-12-09 | 89.0900 |
| AMZN | 2022-12-12 | 90.5500 |
| AMZN | 2022-12-13 | 92.4900 |
| AMZN | 2022-12-14 | 91.5800 |
| AMZN | 2022-12-15 | 88.4500 |
| AMZN | 2022-12-16 | 87.8600 |
| AMZN | 2022-12-19 | 84.9200 |
| AMZN | 2022-12-20 | 85.1900 |
| AMZN | 2022-12-21 | 86.7700 |
| AMZN | 2022-12-22 | 83.7900 |
| AMZN | 2022-12-23 | 85.2500 |
| AMZN | 2022-12-27 | 83.0400 |
| AMZN | 2022-12-28 | 81.8200 |
| AMZN | 2022-12-29 | 84.1800 |
| AMZN | 2022-12-30 | 84.0000 |
| AMZN | 2023-01-03 | 85.8200 |
| AMZN | 2023-01-04 | 85.1400 |
| AMZN | 2023-01-05 | 83.1200 |
| AMZN | 2023-01-06 | 86.0800 |
| AMZN | 2023-01-09 | 87.3600 |
| AMZN | 2023-01-10 | 89.8700 |
| AMZN | 2023-01-11 | 95.0900 |
| AMZN | 2023-01-12 | 95.2700 |
| AMZN | 2023-01-13 | 98.1200 |
| AMZN | 2023-01-17 | 96.0500 |
| AMZN | 2023-01-18 | 95.4600 |
| AMZN | 2023-01-19 | 93.6800 |
| AMZN | 2023-01-20 | 97.2500 |
| AMZN | 2023-01-23 | 97.5200 |
| AMZN | 2023-01-24 | 96.3200 |
| AMZN | 2023-01-25 | 97.1800 |
| AMZN | 2023-01-26 | 99.2200 |
| AMZN | 2023-01-27 | 102.2400 |
| AMZN | 2023-01-30 | 100.5500 |
| AMZN | 2023-01-31 | 103.1300 |
| AMZN | 2023-02-01 | 105.1500 |
| AMZN | 2023-02-02 | 112.9100 |
| AMZN | 2023-02-03 | 103.3900 |
| AMZN | 2023-02-06 | 102.1800 |
| AMZN | 2023-02-07 | 102.1100 |
| AMZN | 2023-02-08 | 100.0500 |
| AMZN | 2023-02-09 | 98.2400 |
| AMZN | 2023-02-10 | 97.6100 |
| AMZN | 2023-02-13 | 99.5400 |
| AMZN | 2023-02-14 | 99.7000 |
| AMZN | 2023-02-15 | 101.1600 |
| AMZN | 2023-02-16 | 98.1500 |
| AMZN | 2023-02-17 | 97.2000 |
| AMZN | 2023-02-21 | 94.5800 |
| AMZN | 2023-02-22 | 95.7900 |
| AMZN | 2023-02-23 | 95.8200 |
| AMZN | 2023-02-24 | 93.5000 |
| AMZN | 2023-02-27 | 93.7600 |
| AMZN | 2023-02-28 | 94.2300 |
| AMZN | 2023-03-01 | 92.1700 |
| AMZN | 2023-03-02 | 92.1300 |
| AMZN | 2023-03-03 | 94.9000 |
| AMZN | 2023-03-06 | 93.7500 |
| AMZN | 2023-03-07 | 93.5500 |
| AMZN | 2023-03-08 | 93.9200 |
| AMZN | 2023-03-09 | 92.2500 |
| AMZN | 2023-03-10 | 90.7300 |
| AMZN | 2023-03-13 | 92.4300 |
| AMZN | 2023-03-14 | 94.8800 |
| AMZN | 2023-03-15 | 96.2000 |
| AMZN | 2023-03-16 | 100.0400 |
| AMZN | 2023-03-17 | 98.9500 |
| AMZN | 2023-03-20 | 97.7100 |
| AMZN | 2023-03-21 | 100.6100 |
| AMZN | 2023-03-22 | 98.7000 |
| AMZN | 2023-03-23 | 98.7100 |
| AMZN | 2023-03-24 | 98.1300 |
| AMZN | 2023-03-27 | 98.0400 |
| AMZN | 2023-03-28 | 97.2400 |
| AMZN | 2023-03-29 | 100.2500 |
| AMZN | 2023-03-30 | 102.0000 |
| AMZN | 2023-03-31 | 103.2900 |
| AMZN | 2023-04-03 | 102.4100 |
| AMZN | 2023-04-04 | 103.9500 |
| AMZN | 2023-04-05 | 101.1000 |
| AMZN | 2023-04-06 | 102.0600 |
| AMZN | 2023-04-10 | 102.1700 |
| AMZN | 2023-04-11 | 99.9200 |
| AMZN | 2023-04-12 | 97.8300 |
| AMZN | 2023-04-13 | 102.4000 |
| AMZN | 2023-04-14 | 102.5100 |
| AMZN | 2023-04-17 | 102.7400 |
| AMZN | 2023-04-18 | 102.3000 |
| AMZN | 2023-04-19 | 104.3000 |
| AMZN | 2023-04-20 | 103.8100 |
| AMZN | 2023-04-21 | 106.9600 |
| AMZN | 2023-04-24 | 106.2100 |
| AMZN | 2023-04-25 | 102.5700 |
| AMZN | 2023-04-26 | 104.9800 |
| AMZN | 2023-04-27 | 109.8200 |
| AMZN | 2023-04-28 | 105.4500 |
| AMZN | 2023-05-01 | 102.0500 |
| AMZN | 2023-05-02 | 103.6300 |
| AMZN | 2023-05-03 | 103.6500 |
| AMZN | 2023-05-04 | 104.0000 |
| AMZN | 2023-05-05 | 105.6600 |
| AMZN | 2023-05-08 | 105.8300 |
| AMZN | 2023-05-09 | 106.6200 |
| AMZN | 2023-05-10 | 110.1900 |
| AMZN | 2023-05-11 | 112.1800 |
| AMZN | 2023-05-12 | 110.2600 |
| AMZN | 2023-05-15 | 111.2000 |
| AMZN | 2023-05-16 | 113.4000 |
| AMZN | 2023-05-17 | 115.5000 |
| AMZN | 2023-05-18 | 118.1500 |
| AMZN | 2023-05-19 | 116.2500 |
| AMZN | 2023-05-22 | 115.0100 |
| AMZN | 2023-05-23 | 114.9900 |
| AMZN | 2023-05-24 | 116.7500 |
| AMZN | 2023-05-25 | 115.0000 |
| AMZN | 2023-05-26 | 120.1100 |
| AMZN | 2023-05-30 | 121.6600 |
| AMZN | 2023-05-31 | 120.5800 |
| AMZN | 2023-06-01 | 122.7700 |
| AMZN | 2023-06-02 | 124.2500 |
| AMZN | 2023-06-05 | 125.3000 |
| AMZN | 2023-06-06 | 126.6100 |
| AMZN | 2023-06-07 | 121.2300 |
| AMZN | 2023-06-08 | 124.2500 |
| AMZN | 2023-06-09 | 123.4300 |
| AMZN | 2023-06-12 | 126.5700 |
| AMZN | 2023-06-13 | 126.6600 |
| AMZN | 2023-06-14 | 126.4200 |
| AMZN | 2023-06-15 | 127.1100 |
| AMZN | 2023-06-16 | 125.4900 |
| AMZN | 2023-06-20 | 125.7800 |
| AMZN | 2023-06-21 | 124.8300 |
| AMZN | 2023-06-22 | 130.1500 |
| AMZN | 2023-06-23 | 129.3300 |
| AMZN | 2023-06-26 | 127.3300 |
| AMZN | 2023-06-27 | 129.1800 |
| AMZN | 2023-06-28 | 129.0400 |
| AMZN | 2023-06-29 | 127.9000 |
| AMZN | 2023-06-30 | 130.3600 |
| AMZN | 2023-07-03 | 130.2200 |
| AMZN | 2023-07-05 | 130.3800 |
| AMZN | 2023-07-06 | 128.3600 |
| AMZN | 2023-07-07 | 129.7800 |
| AMZN | 2023-07-10 | 127.1300 |
| AMZN | 2023-07-11 | 128.7800 |
| AMZN | 2023-07-12 | 130.8000 |
| AMZN | 2023-07-13 | 134.3000 |
| AMZN | 2023-07-14 | 134.6800 |
| AMZN | 2023-07-17 | 133.5600 |
| AMZN | 2023-07-18 | 132.8300 |
| AMZN | 2023-07-19 | 135.3600 |
| AMZN | 2023-07-20 | 129.9600 |
| AMZN | 2023-07-21 | 130.0000 |
| AMZN | 2023-07-24 | 128.8000 |
| AMZN | 2023-07-25 | 129.1300 |
| AMZN | 2023-07-26 | 128.1500 |
| AMZN | 2023-07-27 | 128.2500 |
| AMZN | 2023-07-28 | 132.2100 |
Mengubah Ajd Close Menjadi Time series
amzn.ts <- ts(amzn[,3])
Ringkasan Data Ajd CLose
summary(amzn.ts)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 81.82 102.01 115.77 119.81 134.88 170.40
Cara manual
ts.plot(amzn.ts, xlab="Time Period", ylab="Harga Saham",
main = "Time Series Amazon", col='orange', lwd=2)
points(amzn.ts, col='orange', lwd=1.5)
# Membuka file PNG untuk menyimpan plot
png("C:/Users/Fathan/Documents/Obsidian Vault/2. Kuliah/Smt 5/6. Metode Peramalan Deret Waktu/@Proj/STA1341-MPDW/Pertemuan 1/Chart/02_Time Series Amazon.png",
height = 9*300, width = 16*300, res=300)
# Plot time series dengan warna dan pengaturan lainnya
ts.plot(amzn.ts, xlab = "Time Period", ylab = "Harga Saham",
main = "Time Series Amazon", col = 'orange', lwd = 2)
points(amzn.ts, col = 'orange', lwd = 1.5)
# Menyimpan plot sebagai file PNG
dev.off() # Menutup file PNG
## png
## 2
Agar lebih menarik, saya coba menggunakan ggplot2. Dengan ggplot2, tipe data tidak perlu dibuah ke Time Series dulu.
cts.amzn <-
ggplot(amzn, aes(x=Date, y=`Adj Close`)) +
geom_line(aes(color=Name), linewidth=0.5) +
scale_color_manual(values = c("cyan4")) +
theme_minimal()
cts.amzn
#Export Chart
ggsave("03_Time Series Amazon_ggplot.png", cts.amzn, path = export.chart,
dpi = 300, height = 5, width = 10)
Terlihat bahwa data berpola trend turun karena terjadi penurunan sekuler jangka panjang (perubahan sistematis selama periode waktu yang panjang) dalam data dan cendrung membentuk pola musiman. Oleh karena itu, metode pemulusan yang cocok adalah Double Moving Average (DMA), Double Exponential Smoothing (DES), dan Holt-Winter atau Holt-Winter Multiplikatif.
#membagi 80% data latih (training) dan 20% data uji (testing)
training <- amzn[1: round(nrow(amzn) *80/100),]
testing <- amzn[round(nrow(amzn) *80/100): nrow(amzn),]
train.ts <- ts(training[,3])
test.ts <- ts(testing[,3])
Eksplorasi data dilakukan pada keseluruhan data, data latih serta data uji menggunakan plot data deret waktu.
Menggunakan ggplot2 .
ctsa.train_test <-
ggplot() +
geom_line(data = training,
aes(x = Date, y = `Adj Close`, col = "Data Latih")) +
geom_line(data = testing,
aes(x = Date, y = `Adj Close`, col = "Data Uji")) +
labs(x = "Periode Waktu", y = "Harga Saham", color = "Legend") +
scale_colour_manual(name="Keterangan:",
breaks = c("Data Latih", "Data Uji"),
values = c("orange", "cyan4")) +
theme_bw() + theme(legend.position = "bottom",
plot.caption = element_text(hjust=0.5, size=12))
ctsa.train_test
#Export Chart
ggsave("04_TSA_train-test.png", ctsa.train_test, path = export.chart,
dpi = 300, height = 5, width = 10)
Metode pemulusan Double Moving Average (DMA) pada dasarnya mirip dengan Single Moving Average (SMA). Namun demikian, metode ini lebih cocok digunakan untuk pola data trend. Proses pemulusan dengan rata rata dalam metode ini dilakukan sebanyak 2 kali.
install_load('TTR')
data.sma <- SMA(train.ts, n=4)
dma <- SMA(data.sma, n = 4)
At <- 2*data.sma - dma
Bt <- 2/(4-1)*(data.sma - dma)
data.dma<- At+Bt
data.ramal2<- c(NA, data.dma)
t = 1:nrow(testing)
f = c()
for (i in t) {
f[i] = At[length(At)] + Bt[length(Bt)]*(i)
}
data.gab2 <- cbind(aktual = c(train.ts,rep(NA, nrow(testing))),
pemulusan1 = c(data.sma,rep(NA, nrow(testing))),
pemulusan2 = c(data.dma, rep(NA, nrow(testing))),
At = c(At, rep(NA, nrow(testing))),
Bt = c(Bt,rep(NA, nrow(testing))),
ramalan = c(data.ramal2, f[-1]))
kable(data.gab2) %>% kable_styling()
| aktual | pemulusan1 | pemulusan2 | At | Bt | ramalan |
|---|---|---|---|---|---|
| 170.4045 | NA | NA | NA | NA | NA |
| 167.5220 | NA | NA | NA | NA | NA |
| 164.3570 | NA | NA | NA | NA | NA |
| 163.2540 | 166.3844 | NA | NA | NA | NA |
| 162.5540 | 164.4217 | NA | NA | NA | NA |
| 161.4860 | 162.9127 | NA | NA | NA | NA |
| 165.3620 | 163.1640 | 161.40280 | 162.10728 | -0.7044792 | NA |
| 165.2070 | 163.6522 | 163.84319 | 163.76681 | 0.0763753 | 161.40280 |
| 161.2140 | 163.3172 | 163.41006 | 163.37294 | 0.0371260 | 163.84319 |
| 162.1380 | 163.4803 | 163.60828 | 163.55707 | 0.0512098 | 163.41006 |
| 158.9175 | 161.8691 | 159.85147 | 160.65853 | -0.8070622 | 163.60828 |
| 156.2990 | 159.6421 | 155.58369 | 157.20706 | -1.6233756 | 159.85147 |
| 151.6675 | 157.2555 | 151.74508 | 153.94924 | -2.2041684 | 155.58369 |
| 142.6430 | 152.3817 | 143.37279 | 146.97637 | -3.6035837 | 151.74508 |
| 144.5440 | 148.7884 | 139.24077 | 143.05982 | -3.8190404 | 143.37279 |
| 139.9860 | 144.7101 | 134.58711 | 138.63631 | -4.0492078 | 139.24077 |
| 138.8725 | 141.5114 | 132.61716 | 136.17484 | -3.5576872 | 134.58711 |
| 139.6375 | 140.7600 | 135.45588 | 137.57753 | -2.1216468 | 132.61716 |
| 143.9780 | 140.6185 | 138.48266 | 139.33699 | -0.8543350 | 135.45588 |
| 149.5735 | 143.0154 | 145.58048 | 144.55444 | 1.0260418 | 138.48266 |
| 151.1935 | 146.0956 | 151.88437 | 149.56887 | 2.3155003 | 145.58048 |
| 150.6125 | 148.8394 | 155.83464 | 153.03653 | 2.7981052 | 151.88437 |
| 138.8455 | 147.5563 | 149.52224 | 148.73585 | 0.7863973 | 155.83464 |
| 157.6395 | 149.5728 | 152.16733 | 151.12950 | 1.0378335 | 149.52224 |
| 157.9355 | 151.2583 | 154.51091 | 153.20985 | 1.3010628 | 152.16733 |
| 161.4135 | 153.9585 | 159.57860 | 157.33056 | 2.2480411 | 154.51091 |
| 161.1895 | 159.5445 | 169.47950 | 165.50550 | 3.9739990 | 159.57860 |
| 159.0035 | 159.8855 | 166.09185 | 163.60931 | 2.4825407 | 169.47950 |
| 153.2935 | 158.7250 | 159.88604 | 159.42162 | 0.4644165 | 166.09185 |
| 155.1670 | 157.1634 | 154.38635 | 155.49716 | -1.1108113 | 159.88604 |
| 156.5105 | 155.9936 | 152.74654 | 154.04538 | -1.2988326 | 154.38635 |
| 158.1005 | 155.7679 | 153.86022 | 154.62328 | -0.7630622 | 152.74654 |
| 154.6525 | 156.1076 | 155.85679 | 155.95712 | -0.1003343 | 153.86022 |
| 152.6015 | 155.4662 | 154.85359 | 155.09865 | -0.2450638 | 155.85679 |
| 150.1975 | 153.8880 | 151.52226 | 152.46856 | -0.9462928 | 154.85359 |
| 144.8270 | 150.5696 | 144.83920 | 147.13137 | -2.2921669 | 151.52226 |
| 151.3580 | 149.7460 | 145.29355 | 147.07453 | -1.7809784 | 144.83920 |
| 153.7885 | 150.0427 | 148.34468 | 149.02390 | -0.6792290 | 145.29355 |
| 153.5630 | 150.8841 | 151.83996 | 151.45763 | 0.3823345 | 148.34468 |
| 151.1420 | 152.4629 | 155.26111 | 154.14181 | 1.1192925 | 151.83996 |
| 152.0525 | 152.6365 | 154.51973 | 153.76644 | 0.7532926 | 155.26111 |
| 147.8985 | 151.1640 | 150.12588 | 150.54113 | -0.4152495 | 154.51973 |
| 145.6410 | 149.1835 | 145.55314 | 147.00528 | -1.4521454 | 150.12588 |
| 137.4530 | 145.7613 | 139.21948 | 141.83619 | -2.6167075 | 145.55314 |
| 136.0145 | 141.7518 | 133.06279 | 136.53838 | -3.4755840 | 139.21948 |
| 139.2790 | 139.5969 | 132.13610 | 135.12041 | -2.9843120 | 133.06279 |
| 146.8175 | 139.8910 | 136.79231 | 138.03178 | -1.2394790 | 132.13610 |
| 145.5245 | 141.9089 | 143.77846 | 143.03063 | 0.7478340 | 136.79231 |
| 141.8530 | 143.3685 | 146.99715 | 145.54569 | 1.4514587 | 143.77846 |
| 147.3665 | 145.3904 | 149.97486 | 148.14106 | 1.8337911 | 146.99715 |
| 153.1040 | 146.9620 | 151.21960 | 149.51656 | 1.7030411 | 149.97486 |
| 157.2390 | 149.8906 | 155.70354 | 153.37837 | 2.3251653 | 151.21960 |
| 161.2505 | 154.7400 | 163.89709 | 160.23425 | 3.6628335 | 155.70354 |
| 161.4915 | 158.2713 | 167.94672 | 164.07653 | 3.8701877 | 163.89709 |
| 164.8890 | 161.2175 | 169.86360 | 166.40516 | 3.4584383 | 167.94672 |
| 163.4080 | 162.7598 | 168.61413 | 166.27238 | 2.3417512 | 169.86360 |
| 163.6495 | 163.3595 | 166.62201 | 165.31701 | 1.3050010 | 168.61413 |
| 164.7735 | 164.1800 | 166.34803 | 165.48082 | 0.8672085 | 166.62201 |
| 168.9905 | 165.2054 | 167.42074 | 166.53459 | 0.8861440 | 166.34803 |
| 169.3150 | 166.6821 | 169.72441 | 168.50750 | 1.2169150 | 167.42074 |
| 166.3010 | 167.3450 | 169.83145 | 168.83687 | 0.9945811 | 169.72441 |
| 162.9975 | 166.9010 | 167.51370 | 167.26862 | 0.2450822 | 169.83145 |
| 163.5600 | 165.5434 | 163.75254 | 164.46887 | -0.7163334 | 167.51370 |
| 168.3465 | 165.3012 | 163.68224 | 164.32984 | -0.6476045 | 163.75254 |
| 164.0550 | 164.7397 | 163.27042 | 163.85815 | -0.5877297 | 163.68224 |
| 158.7560 | 163.6794 | 161.78510 | 162.54281 | -0.7577088 | 163.27042 |
| 157.7845 | 162.2355 | 159.31305 | 160.48203 | -1.1689791 | 161.78510 |
| 154.4605 | 158.7640 | 152.77957 | 155.17334 | -2.3937710 | 159.31305 |
| 151.1220 | 155.5307 | 147.99465 | 151.00909 | -3.0144375 | 152.77957 |
| 150.7875 | 153.5386 | 146.90764 | 149.56003 | -2.6523947 | 147.99465 |
| 155.5410 | 152.9777 | 149.26937 | 150.75272 | -1.4833534 | 146.90764 |
| 151.7065 | 152.2892 | 150.13118 | 150.99441 | -0.8632285 | 149.26937 |
| 152.7850 | 152.7050 | 152.41724 | 152.53235 | -0.1151028 | 150.13118 |
| 158.1155 | 154.5370 | 156.88658 | 155.94675 | 0.9398327 | 152.41724 |
| 153.9980 | 154.1512 | 155.36896 | 154.88187 | 0.4870829 | 156.88658 |
| 148.2960 | 153.2986 | 152.67472 | 152.92428 | -0.2495619 | 155.36896 |
| 144.3500 | 151.1899 | 147.68269 | 149.08557 | -1.4028740 | 152.67472 |
| 146.0740 | 148.1795 | 142.30399 | 144.65419 | -2.3502065 | 147.68269 |
| 139.3910 | 144.5278 | 136.57578 | 139.75657 | -3.1807900 | 142.30399 |
| 138.1670 | 141.9955 | 134.53275 | 137.51785 | -2.9851030 | 136.57578 |
| 144.5965 | 142.0571 | 138.50239 | 139.92428 | -1.4218966 | 134.53275 |
| 124.2815 | 136.6090 | 128.79509 | 131.92066 | -3.1255635 | 138.50239 |
| 124.5000 | 132.8863 | 123.71838 | 127.38553 | -3.6671472 | 128.79509 |
| 124.2535 | 129.4079 | 119.68756 | 123.57569 | -3.8881263 | 123.71838 |
| 125.9285 | 124.7409 | 114.45733 | 118.57075 | -4.1134173 | 119.68756 |
| 116.4070 | 122.7722 | 114.97298 | 118.09269 | -3.1197090 | 114.45733 |
| 114.7725 | 120.3404 | 113.71542 | 116.36540 | -2.6499796 | 114.97298 |
| 108.7890 | 116.4742 | 108.79477 | 111.86656 | -3.0717920 | 113.71542 |
| 108.8590 | 112.2069 | 102.63760 | 106.46531 | -3.8277080 | 108.79477 |
| 105.3720 | 109.4481 | 100.83266 | 104.27885 | -3.4461867 | 102.63760 |
| 106.9305 | 107.4876 | 100.95997 | 103.57103 | -2.6110624 | 100.83266 |
| 113.0550 | 108.5541 | 107.10402 | 107.68406 | -0.5800419 | 100.95997 |
| 110.8105 | 109.0420 | 109.72372 | 109.45103 | 0.2726873 | 107.10402 |
| 115.3685 | 111.5411 | 115.51597 | 113.92603 | 1.5899372 | 109.72372 |
| 107.1125 | 111.5866 | 113.92939 | 112.99228 | 0.9371049 | 115.51597 |
| 107.3190 | 110.1526 | 109.43935 | 109.72466 | -0.2853120 | 113.92939 |
| 107.5910 | 109.3478 | 107.16562 | 108.03847 | -0.8728536 | 109.43935 |
| 107.5570 | 107.3949 | 103.68555 | 105.16928 | -1.4837291 | 107.16562 |
| 104.1000 | 106.6418 | 103.73758 | 104.89925 | -1.1616673 | 103.68555 |
| 106.7750 | 106.5058 | 104.89445 | 105.53897 | -0.6445210 | 103.73758 |
| 111.0775 | 107.3774 | 108.03977 | 107.77481 | 0.2649578 | 104.89445 |
| 115.1465 | 109.2747 | 112.31616 | 111.09959 | 1.2165624 | 108.03977 |
| 120.2095 | 113.3021 | 120.28067 | 117.48925 | 2.7914172 | 112.31616 |
| 121.6840 | 117.0294 | 125.83516 | 122.31284 | 3.5223125 | 120.28067 |
| 125.5110 | 120.6378 | 129.93233 | 126.21450 | 3.7178336 | 125.83516 |
| 122.3500 | 122.4386 | 129.24972 | 126.52528 | 2.7244373 | 129.93233 |
| 124.7900 | 123.5837 | 128.01937 | 126.24512 | 1.7742497 | 129.24972 |
| 123.0000 | 123.9128 | 126.02864 | 125.18228 | 0.8463542 | 128.01937 |
| 121.1800 | 122.8300 | 122.22786 | 122.46872 | -0.2408543 | 126.02864 |
| 116.1500 | 121.2800 | 118.57729 | 119.65838 | -1.0810829 | 122.22786 |
| 109.6500 | 117.4950 | 111.02094 | 113.61056 | -2.5896246 | 118.57729 |
| 103.6700 | 112.6625 | 102.82188 | 106.75813 | -3.9362500 | 111.02094 |
| 102.3100 | 107.9450 | 96.44396 | 101.04437 | -4.6004170 | 102.82188 |
| 107.6700 | 105.8250 | 97.23021 | 100.66812 | -3.4379174 | 96.44396 |
| 103.6600 | 104.3275 | 98.72333 | 100.96500 | -2.2416668 | 97.23021 |
| 106.2200 | 104.9650 | 103.63063 | 104.16438 | -0.5337496 | 98.72333 |
| 108.6800 | 106.5575 | 108.45542 | 107.69625 | 0.7591672 | 103.63063 |
| 108.9500 | 106.8775 | 108.87021 | 108.07313 | 0.7970835 | 108.45542 |
| 112.4400 | 109.0725 | 112.74646 | 111.27687 | 1.4695831 | 108.87021 |
| 116.4600 | 111.6325 | 116.79500 | 114.73000 | 2.0649995 | 112.74646 |
| 113.2200 | 112.7675 | 117.23417 | 115.44750 | 1.7866665 | 116.79500 |
| 107.4000 | 112.3800 | 113.90813 | 113.29688 | 0.6112506 | 117.23417 |
| 108.9200 | 111.5000 | 110.55000 | 110.93000 | -0.3800000 | 113.90813 |
| 106.2100 | 108.9375 | 104.83958 | 106.47875 | -1.6391668 | 110.55000 |
| 109.5600 | 108.0225 | 104.37666 | 105.83500 | -1.4583339 | 104.83958 |
| 113.5000 | 109.5475 | 109.62354 | 109.59312 | 0.0304162 | 104.37666 |
| 114.3300 | 110.9000 | 113.48021 | 112.44813 | 1.0320835 | 109.62354 |
| 116.3300 | 113.4300 | 118.35500 | 116.38500 | 1.9700006 | 113.48021 |
| 115.5400 | 114.9250 | 119.46563 | 117.64938 | 1.8162508 | 118.35500 |
| 111.7500 | 114.4875 | 116.24063 | 115.53938 | 0.7012504 | 119.46563 |
| 109.2200 | 113.2100 | 111.87146 | 112.40688 | -0.5354167 | 116.24063 |
| 110.4000 | 111.7275 | 108.62750 | 109.86750 | -1.2400001 | 111.87146 |
| 110.6300 | 110.5000 | 107.19792 | 108.51875 | -1.3208339 | 108.62750 |
| 113.5500 | 110.9500 | 109.87188 | 110.30313 | -0.4312500 | 107.19792 |
| 113.7600 | 112.0850 | 113.36729 | 112.85438 | 0.5129169 | 109.87188 |
| 118.2100 | 114.0375 | 117.61146 | 116.18188 | 1.4295832 | 113.36729 |
| 122.7700 | 117.0725 | 122.96625 | 120.60875 | 2.3574998 | 117.61146 |
| 124.6300 | 119.8425 | 126.64770 | 123.92562 | 2.7220825 | 122.96625 |
| 122.4200 | 122.0075 | 128.28666 | 125.77500 | 2.5116657 | 126.64770 |
| 121.1400 | 122.7400 | 126.61395 | 125.06437 | 1.5495827 | 128.28666 |
| 114.8100 | 120.7500 | 119.77500 | 120.16500 | -0.3900000 | 126.61395 |
| 120.9700 | 119.8350 | 117.33813 | 118.33687 | -0.9987494 | 119.77500 |
| 122.2800 | 119.8000 | 118.16458 | 118.81875 | -0.6541662 | 117.33813 |
| 134.9500 | 123.2525 | 127.15771 | 125.59562 | 1.5620833 | 118.16458 |
| 135.3900 | 128.3975 | 137.69125 | 133.97375 | 3.7175000 | 127.15771 |
| 134.1600 | 131.6950 | 141.54292 | 137.60375 | 3.9391670 | 137.69125 |
| 139.5200 | 136.0050 | 146.28417 | 142.17250 | 4.1116676 | 141.54292 |
| 142.5700 | 137.9100 | 145.25688 | 142.31813 | 2.9387518 | 146.28417 |
| 140.8000 | 139.2625 | 144.33647 | 142.30688 | 2.0295849 | 145.25688 |
| 139.4100 | 140.5750 | 144.13646 | 142.71188 | 1.4245841 | 144.33647 |
| 137.8300 | 140.1525 | 141.28167 | 140.83000 | 0.4516666 | 144.13646 |
| 142.6900 | 140.1825 | 140.41479 | 140.32188 | 0.0929159 | 141.28167 |
| 140.6400 | 140.1425 | 139.94146 | 140.02188 | -0.0804177 | 140.41479 |
| 143.5500 | 141.1775 | 142.45042 | 141.94125 | 0.5091660 | 139.94146 |
| 143.1800 | 142.5150 | 145.03270 | 144.02562 | 1.0070820 | 142.45042 |
| 144.7800 | 143.0375 | 145.23645 | 144.35687 | 0.8795822 | 145.03270 |
| 142.1000 | 143.4025 | 144.85146 | 144.27188 | 0.5795836 | 145.23645 |
| 142.3000 | 143.0900 | 143.22125 | 143.16875 | 0.0525005 | 144.85146 |
| 138.2300 | 141.8525 | 140.19729 | 140.85938 | -0.6620827 | 143.22125 |
| 133.2200 | 138.9625 | 134.18854 | 136.09813 | -1.9095828 | 140.19729 |
| 133.6200 | 136.8425 | 131.26854 | 133.49812 | -2.2295844 | 134.18854 |
| 133.8000 | 134.7175 | 129.09041 | 131.34125 | -2.2508342 | 131.26854 |
| 137.2800 | 134.4800 | 131.52896 | 132.70937 | -1.1804168 | 129.09041 |
| 130.7500 | 133.8625 | 132.00729 | 132.74937 | -0.7420832 | 131.52896 |
| 129.7900 | 132.9050 | 131.09458 | 131.81875 | -0.7241669 | 132.00729 |
| 128.7300 | 131.6375 | 128.99791 | 130.05375 | -1.0558344 | 131.09458 |
| 126.7700 | 129.0100 | 124.27041 | 126.16625 | -1.8958343 | 128.99791 |
| 127.8200 | 128.2775 | 124.64416 | 126.09750 | -1.4533338 | 124.27041 |
| 127.5100 | 127.7075 | 125.28979 | 126.25688 | -0.9670823 | 124.64416 |
| 126.1100 | 127.0525 | 125.45355 | 126.09313 | -0.6395820 | 125.28979 |
| 129.4800 | 127.7300 | 127.79354 | 127.76813 | 0.0254173 | 125.45355 |
| 129.8200 | 128.2300 | 129.14667 | 128.78000 | 0.3666677 | 127.79354 |
| 133.2700 | 129.6700 | 132.16896 | 131.16938 | 0.9995841 | 129.14667 |
| 136.4500 | 132.2550 | 136.89458 | 135.03875 | 1.8558333 | 132.16896 |
| 126.8200 | 131.5900 | 133.51292 | 132.74375 | 0.7691669 | 136.89458 |
| 128.5500 | 131.2725 | 131.39854 | 131.34813 | 0.0504163 | 133.51292 |
| 126.2800 | 129.5250 | 126.79896 | 127.88937 | -1.0904175 | 131.39854 |
| 123.5300 | 126.2950 | 120.66896 | 122.91937 | -2.2504170 | 126.79896 |
| 124.6600 | 125.7550 | 121.66021 | 123.29813 | -1.6379162 | 120.66896 |
| 122.1900 | 124.1650 | 120.38167 | 121.89500 | -1.5133330 | 121.66021 |
| 118.5400 | 122.2300 | 118.26125 | 119.84875 | -1.5874997 | 120.38167 |
| 117.3100 | 120.6750 | 116.45625 | 118.14375 | -1.6875000 | 118.26125 |
| 113.7800 | 117.9550 | 112.45292 | 114.65375 | -2.2008340 | 116.45625 |
| 115.1500 | 116.1950 | 111.08042 | 113.12625 | -2.0458338 | 112.45292 |
| 114.4100 | 115.1625 | 111.27188 | 112.82813 | -1.5562498 | 111.08042 |
| 118.0100 | 115.3375 | 113.96250 | 114.51250 | -0.5499993 | 111.27188 |
| 114.8000 | 115.5925 | 115.62688 | 115.61313 | 0.0137510 | 113.96250 |
| 113.0000 | 115.0550 | 114.66854 | 114.82313 | -0.1545831 | 115.62688 |
| 115.8800 | 115.4225 | 115.54021 | 115.49312 | 0.0470825 | 114.66854 |
| 121.0900 | 116.1925 | 117.23729 | 116.81937 | 0.4179152 | 115.54021 |
| 120.9500 | 117.7300 | 120.44666 | 119.36000 | 1.0866651 | 117.23729 |
| 120.3000 | 119.5550 | 123.43833 | 121.88500 | 1.5533330 | 120.44666 |
| 114.5600 | 119.2250 | 120.97396 | 120.27437 | 0.6995835 | 123.43833 |
| 113.6700 | 117.3700 | 115.53667 | 116.27000 | -0.7333329 | 120.97396 |
| 112.2100 | 115.1850 | 110.77042 | 112.53625 | -1.7658329 | 115.53667 |
| 112.9000 | 113.3350 | 108.42875 | 110.39125 | -1.9624999 | 110.77042 |
| 112.5300 | 112.8275 | 109.74104 | 110.97562 | -1.2345832 | 108.42875 |
| 106.9000 | 111.1350 | 107.82563 | 109.14938 | -1.3237495 | 109.74104 |
| 113.7900 | 111.5300 | 110.40188 | 110.85313 | -0.4512494 | 107.82563 |
| 116.3600 | 112.3950 | 113.10021 | 112.81813 | 0.2820835 | 110.40188 |
| 115.0700 | 113.0300 | 114.70917 | 114.03750 | 0.6716668 | 113.10021 |
| 115.2500 | 115.1175 | 118.61646 | 117.21688 | 1.3995831 | 114.70917 |
| 119.3200 | 116.5000 | 120.23229 | 118.73937 | 1.4929164 | 118.61646 |
| 119.8200 | 117.3650 | 120.46812 | 119.22687 | 1.2412497 | 120.23229 |
| 120.6000 | 118.7475 | 121.77250 | 120.56250 | 1.2099996 | 120.46812 |
| 115.6600 | 118.8500 | 120.49063 | 119.83438 | 0.6562503 | 121.77250 |
| 110.9600 | 116.7600 | 114.80896 | 115.58938 | -0.7804165 | 120.49063 |
| 103.4100 | 112.6575 | 105.83042 | 108.56125 | -2.7308328 | 114.80896 |
| 102.4400 | 108.1175 | 98.15292 | 102.13875 | -3.9858325 | 105.83042 |
| 96.7900 | 103.4000 | 92.01042 | 96.56625 | -4.5558332 | 98.15292 |
| 92.1200 | 98.6900 | 86.97959 | 91.66375 | -4.6841663 | 92.01042 |
| 89.3000 | 95.1625 | 84.86250 | 88.98250 | -4.1199999 | 86.97959 |
| 90.9800 | 92.2975 | 83.81417 | 87.20750 | -3.3933331 | 84.86250 |
| 90.5300 | 90.7325 | 84.91896 | 87.24438 | -2.3254169 | 83.81417 |
| 89.9800 | 90.1975 | 87.03083 | 88.29750 | -1.2666668 | 84.91896 |
| 86.1400 | 89.4075 | 87.32208 | 88.15625 | -0.8341673 | 87.03083 |
| 96.6300 | 90.8200 | 91.70437 | 91.35062 | 0.3537489 | 87.32208 |
| 100.7900 | 93.3850 | 97.43917 | 95.81750 | 1.6216662 | 91.70437 |
| 98.4900 | 95.5125 | 100.89791 | 98.74375 | 2.1541660 | 97.43917 |
| 98.9400 | 98.7125 | 105.55417 | 102.81750 | 2.7366667 | 100.89791 |
| 97.1200 | 98.8350 | 102.54125 | 101.05875 | 1.4825008 | 105.55417 |
| 94.8500 | 97.3500 | 96.92917 | 97.09750 | -0.1683331 | 102.54125 |
| 94.1400 | 96.2625 | 93.71667 | 94.73500 | -1.0183332 | 96.92917 |
| 92.4600 | 94.6425 | 91.09250 | 92.51250 | -1.4200004 | 93.71667 |
| 93.2000 | 93.6625 | 90.63437 | 91.84562 | -1.2112510 | 91.09250 |
| 94.1300 | 93.4825 | 91.76583 | 92.45250 | -0.6866674 | 90.63437 |
| 93.4100 | 93.3000 | 92.51354 | 92.82812 | -0.3145830 | 91.76583 |
| 93.9500 | 93.6725 | 93.91104 | 93.81562 | 0.0954168 | 92.51354 |
| 92.4200 | 93.4775 | 93.46812 | 93.47187 | -0.0037498 | 93.91104 |
| 96.5400 | 94.0800 | 94.82583 | 94.52750 | 0.2983338 | 93.46812 |
| 95.5000 | 94.6025 | 95.67646 | 95.24687 | 0.4295832 | 94.82583 |
| 94.1300 | 94.6475 | 95.39021 | 95.09312 | 0.2970832 | 95.67646 |
| 91.0100 | 94.2950 | 94.10958 | 94.18375 | -0.0741663 | 95.39021 |
| 88.2500 | 92.2225 | 89.35688 | 90.50313 | -1.1462498 | 94.10958 |
| 88.4600 | 90.4625 | 86.38854 | 88.01812 | -1.6295834 | 89.35688 |
| 90.3500 | 89.5175 | 86.00604 | 87.41062 | -1.4045833 | 86.38854 |
| 89.0900 | 89.0375 | 86.91666 | 87.76500 | -0.8483340 | 86.00604 |
| 90.5500 | 89.6125 | 89.53750 | 89.56750 | -0.0300001 | 86.91666 |
| 92.4900 | 90.6200 | 92.15854 | 91.54312 | 0.6154165 | 89.53750 |
| 91.5800 | 90.9275 | 92.39104 | 91.80563 | 0.5854172 | 92.15854 |
| 88.4500 | 90.7675 | 91.24354 | 91.05313 | 0.1904171 | 92.39104 |
| 87.8600 | 90.0950 | 89.24917 | 89.58750 | -0.3383333 | 91.24354 |
| 84.9200 | 88.2025 | 85.20979 | 86.40687 | -1.1970835 | 89.24917 |
| 85.1900 | 86.6050 | 82.75083 | 84.29250 | -1.5416668 | 85.20979 |
| 86.7700 | 86.1850 | 83.54021 | 84.59812 | -1.0579167 | 82.75083 |
| 83.7900 | 85.1675 | 82.88000 | 83.79500 | -0.9150000 | 83.54021 |
| 85.2500 | 85.2500 | 84.33021 | 84.69813 | -0.3679164 | 82.88000 |
| 83.0400 | 84.7125 | 83.68542 | 84.09625 | -0.4108333 | 84.33021 |
| 81.8200 | 83.4750 | 81.51458 | 82.29875 | -0.7841663 | 83.68542 |
| 84.1800 | 83.5725 | 82.43917 | 82.89250 | -0.4533333 | 81.51458 |
| 84.0000 | 83.2600 | 82.43500 | 82.76500 | -0.3300000 | 82.43917 |
| 85.8200 | 83.9550 | 84.60396 | 84.34437 | 0.2595832 | 82.43500 |
| 85.1400 | 84.7850 | 86.27146 | 85.67687 | 0.5945831 | 84.60396 |
| 83.1200 | 84.5200 | 85.17000 | 84.91000 | 0.2600002 | 86.27146 |
| 86.0800 | 85.0400 | 85.81500 | 85.50500 | 0.3100005 | 85.17000 |
| 87.3600 | 85.4250 | 86.22917 | 85.90750 | 0.3216671 | 85.81500 |
| 89.8700 | 86.6075 | 88.62313 | 87.81688 | 0.8062507 | 86.22917 |
| 95.0900 | 89.6000 | 94.48646 | 92.53187 | 1.9545828 | 88.62313 |
| 95.2700 | 91.8975 | 97.75583 | 95.41250 | 2.3433323 | 94.48646 |
| 98.1200 | 94.5875 | 101.11146 | 98.50187 | 2.6095829 | 97.75583 |
| 96.0500 | 96.1325 | 101.26271 | 99.21062 | 2.0520833 | 101.11146 |
| 95.4600 | 96.2250 | 98.74896 | 97.73938 | 1.0095838 | 101.26271 |
| 93.6800 | 95.8275 | 96.05146 | 95.96188 | 0.0895840 | 98.74896 |
| 97.2500 | 95.6100 | 95.04542 | 95.27125 | -0.2258333 | 96.05146 |
| 97.5200 | 95.9775 | 96.09000 | 96.04500 | 0.0449991 | 95.04542 |
| 96.3200 | 96.1925 | 96.67687 | 96.48312 | 0.1937495 | 96.09000 |
| 97.1800 | 97.0675 | 98.49354 | 97.92312 | 0.5704165 | 96.67687 |
| 99.2200 | 97.5600 | 98.99437 | 98.42062 | 0.5737502 | 98.49354 |
| 102.2400 | 98.7400 | 100.99000 | 100.09000 | 0.9000002 | 98.99437 |
| 100.5500 | 99.7975 | 102.30792 | 101.30375 | 1.0041672 | 100.99000 |
| 103.1300 | 101.2850 | 104.51729 | 103.22437 | 1.2929166 | 102.30792 |
| 105.1500 | 102.7675 | 106.30083 | 104.88750 | 1.4133333 | 104.51729 |
| 112.9100 | 105.4350 | 110.62459 | 108.54875 | 2.0758340 | 106.30083 |
| 103.3900 | 106.1450 | 109.87313 | 108.38188 | 1.4912500 | 110.62459 |
| 102.1800 | 105.9075 | 107.31375 | 106.75125 | 0.5625003 | 109.87313 |
| 102.1100 | 105.1475 | 104.29542 | 104.63625 | -0.3408334 | 107.31375 |
| 100.0500 | 101.9325 | 97.18146 | 99.08188 | -1.9004168 | 104.29542 |
| 98.2400 | 100.6450 | 96.03979 | 97.88188 | -1.8420836 | 97.18146 |
| 97.6100 | 99.5025 | 95.66188 | 97.19813 | -1.5362500 | 96.03979 |
| 99.5400 | 98.8600 | 96.56833 | 97.48500 | -0.9166666 | 95.66188 |
| 99.7000 | 98.7725 | 97.65166 | 98.10000 | -0.4483340 | 96.56833 |
| 101.1600 | 99.5025 | 100.07438 | 99.84563 | 0.2287502 | 97.65166 |
| 98.1500 | 99.6375 | 100.37813 | 100.08188 | 0.2962504 | 100.07438 |
| 97.2000 | 99.0525 | 98.73792 | 98.86375 | -0.1258335 | 100.37813 |
| 94.5800 | 97.7725 | 95.74125 | 96.55375 | -0.8124997 | 98.73792 |
| 95.7900 | 96.4300 | 93.44146 | 94.63688 | -1.1954168 | 95.74125 |
| 95.8200 | 95.8475 | 93.46729 | 94.41937 | -0.9520836 | 93.44146 |
| 93.5000 | 94.9225 | 92.72146 | 93.60188 | -0.8804166 | 93.46729 |
| 93.7600 | 94.7175 | 93.44771 | 93.95563 | -0.5079165 | 92.72146 |
| 94.2300 | 94.3275 | 93.28375 | 93.70125 | -0.4174996 | 93.44771 |
| 92.1700 | 93.4150 | 91.86396 | 92.48438 | -0.6204168 | 93.28375 |
| 92.1300 | 93.0725 | 91.72146 | 92.26187 | -0.5404171 | 91.86396 |
| 94.9000 | 93.3575 | 93.04812 | 93.17187 | -0.1237503 | 91.72146 |
| 93.7500 | 93.2375 | 93.18229 | 93.20437 | -0.0220838 | 93.04812 |
| 93.5500 | 93.5825 | 94.03250 | 93.85250 | 0.1800004 | 93.18229 |
| 93.9200 | 94.0300 | 94.82688 | 94.50813 | 0.3187504 | 94.03250 |
| 92.2500 | 93.3675 | 93.05604 | 93.18063 | -0.1245833 | 94.82688 |
| 90.7300 | 92.6125 | 91.30313 | 91.82688 | -0.5237498 | 93.05604 |
| 92.4300 | 92.3325 | 91.07729 | 91.57937 | -0.5020835 | 91.30313 |
| 94.8800 | 92.5725 | 92.32458 | 92.42375 | -0.0991669 | 91.07729 |
| 96.2000 | 93.5600 | 94.87771 | 94.35062 | 0.5270827 | 92.32458 |
| 100.0400 | 95.8875 | 99.71979 | 98.18687 | 1.5329161 | 94.87771 |
| 98.9500 | 97.5175 | 101.90604 | 100.15062 | 1.7554160 | 99.71979 |
| 97.7100 | 98.2250 | 101.43750 | 100.15250 | 1.2849999 | 101.90604 |
| 100.6100 | 99.3275 | 101.97438 | 100.91563 | 1.0587505 | 101.43750 |
| 98.7000 | 98.9925 | 99.78729 | 99.46937 | 0.3179166 | 101.97438 |
| 98.7100 | 98.9325 | 99.03771 | 98.99562 | 0.0420834 | 99.78729 |
| 98.1300 | 99.0375 | 98.97916 | 99.00250 | -0.0233336 | 99.03771 |
| 98.0400 | 98.3950 | 97.65437 | 97.95062 | -0.2962501 | 98.97916 |
| 97.2400 | 98.0300 | 97.08208 | 97.46125 | -0.3791666 | 97.65437 |
| 100.2500 | 98.4150 | 98.32437 | 98.36062 | -0.0362498 | 97.08208 |
| 102.0000 | 99.3825 | 100.76063 | 100.20938 | 0.5512505 | 98.32437 |
| 103.2900 | 100.6950 | 103.30229 | 102.25938 | 1.0429170 | 100.76063 |
| 102.4100 | 101.9875 | 105.10000 | 103.85500 | 1.2450009 | 103.30229 |
| 103.9500 | 102.9125 | 105.69271 | 104.58063 | 1.1120835 | 105.10000 |
| NA | NA | NA | NA | NA | 105.69271 |
| NA | NA | NA | NA | NA | 106.80479 |
| NA | NA | NA | NA | NA | 107.91688 |
| NA | NA | NA | NA | NA | 109.02896 |
| NA | NA | NA | NA | NA | 110.14104 |
| NA | NA | NA | NA | NA | 111.25313 |
| NA | NA | NA | NA | NA | 112.36521 |
| NA | NA | NA | NA | NA | 113.47729 |
| NA | NA | NA | NA | NA | 114.58938 |
| NA | NA | NA | NA | NA | 115.70146 |
| NA | NA | NA | NA | NA | 116.81354 |
| NA | NA | NA | NA | NA | 117.92563 |
| NA | NA | NA | NA | NA | 119.03771 |
| NA | NA | NA | NA | NA | 120.14979 |
| NA | NA | NA | NA | NA | 121.26188 |
| NA | NA | NA | NA | NA | 122.37396 |
| NA | NA | NA | NA | NA | 123.48604 |
| NA | NA | NA | NA | NA | 124.59813 |
| NA | NA | NA | NA | NA | 125.71021 |
| NA | NA | NA | NA | NA | 126.82229 |
| NA | NA | NA | NA | NA | 127.93438 |
| NA | NA | NA | NA | NA | 129.04646 |
| NA | NA | NA | NA | NA | 130.15855 |
| NA | NA | NA | NA | NA | 131.27063 |
| NA | NA | NA | NA | NA | 132.38271 |
| NA | NA | NA | NA | NA | 133.49480 |
| NA | NA | NA | NA | NA | 134.60688 |
| NA | NA | NA | NA | NA | 135.71896 |
| NA | NA | NA | NA | NA | 136.83105 |
| NA | NA | NA | NA | NA | 137.94313 |
| NA | NA | NA | NA | NA | 139.05521 |
| NA | NA | NA | NA | NA | 140.16730 |
| NA | NA | NA | NA | NA | 141.27938 |
| NA | NA | NA | NA | NA | 142.39146 |
| NA | NA | NA | NA | NA | 143.50355 |
| NA | NA | NA | NA | NA | 144.61563 |
| NA | NA | NA | NA | NA | 145.72771 |
| NA | NA | NA | NA | NA | 146.83980 |
| NA | NA | NA | NA | NA | 147.95188 |
| NA | NA | NA | NA | NA | 149.06396 |
| NA | NA | NA | NA | NA | 150.17605 |
| NA | NA | NA | NA | NA | 151.28813 |
| NA | NA | NA | NA | NA | 152.40021 |
| NA | NA | NA | NA | NA | 153.51230 |
| NA | NA | NA | NA | NA | 154.62438 |
| NA | NA | NA | NA | NA | 155.73646 |
| NA | NA | NA | NA | NA | 156.84855 |
| NA | NA | NA | NA | NA | 157.96063 |
| NA | NA | NA | NA | NA | 159.07272 |
| NA | NA | NA | NA | NA | 160.18480 |
| NA | NA | NA | NA | NA | 161.29688 |
| NA | NA | NA | NA | NA | 162.40897 |
| NA | NA | NA | NA | NA | 163.52105 |
| NA | NA | NA | NA | NA | 164.63313 |
| NA | NA | NA | NA | NA | 165.74522 |
| NA | NA | NA | NA | NA | 166.85730 |
| NA | NA | NA | NA | NA | 167.96938 |
| NA | NA | NA | NA | NA | 169.08147 |
| NA | NA | NA | NA | NA | 170.19355 |
| NA | NA | NA | NA | NA | 171.30563 |
| NA | NA | NA | NA | NA | 172.41772 |
| NA | NA | NA | NA | NA | 173.52980 |
| NA | NA | NA | NA | NA | 174.64188 |
| NA | NA | NA | NA | NA | 175.75397 |
| NA | NA | NA | NA | NA | 176.86605 |
| NA | NA | NA | NA | NA | 177.97813 |
| NA | NA | NA | NA | NA | 179.09022 |
| NA | NA | NA | NA | NA | 180.20230 |
| NA | NA | NA | NA | NA | 181.31438 |
| NA | NA | NA | NA | NA | 182.42647 |
| NA | NA | NA | NA | NA | 183.53855 |
| NA | NA | NA | NA | NA | 184.65063 |
| NA | NA | NA | NA | NA | 185.76272 |
| NA | NA | NA | NA | NA | 186.87480 |
| NA | NA | NA | NA | NA | 187.98689 |
| NA | NA | NA | NA | NA | 189.09897 |
| NA | NA | NA | NA | NA | 190.21105 |
| NA | NA | NA | NA | NA | 191.32314 |
| NA | NA | NA | NA | NA | 192.43522 |
| NA | NA | NA | NA | NA | 193.54730 |
ts.plot(amzn.ts, xlab="Time Period ", ylab="Average Price",
main= "DMA N=4 Data Saham Amazon Periode 2022-2023")
points(amzn.ts)
lines(data.gab2[,3],col="cyan4",lwd=2)
lines(data.gab2[,6],col="orange",lwd=2)
legend("topleft",c("data aktual","data pemulusan","data peramalan"),
lty=8, col=c("black","cyan4","orange"), cex=0.8)
# Membuka file PNG untuk menyimpan plot
png("C:/Users/Fathan/Documents/Obsidian Vault/2. Kuliah/Smt 5/6. Metode Peramalan Deret Waktu/@Proj/STA1341-MPDW/Pertemuan 1/Chart/05_TSA_DMA-n4.png",
height = 9*300, width = 16*300, res=300)
# Plot time series dengan warna dan pengaturan lainnya
ts.plot(amzn.ts, xlab="Time Period ", ylab="Average Price",
main= "DMA N=4 Data Saham Amazon Periode 2022-2023")
points(amzn.ts)
lines(data.gab2[,3],col="cyan4",lwd=2)
lines(data.gab2[,6],col="orange",lwd=2)
legend("topleft",c("data aktual","data pemulusan","data peramalan"),
lty=8, col=c("black","cyan4","orange"), cex=0.8)
# Menyimpan plot sebagai file PNG
dev.off() # Menutup file PNG
## png
## 2
Selanjutnya perhitungan akurasi dilakukan baik pada data latih maupun
data uji. Perhitungan akurasi dilakukan dengan ukuran Sum Squares
Error (SSE), Mean Square Error
(MSE) dan Mean Absolute Percentage Error
(MAPE).
#Menghitung nilai keakuratan data latih
error_train.dma = train.ts - data.ramal2[1:length(train.ts)]
SSE_train.dma = sum(error_train.dma[8:length(train.ts)]^2)
MSE_train.dma = mean(error_train.dma[8:length(train.ts)]^2)
MAPE_train.dma = mean(abs((error_train.dma[8:length(train.ts)]/
train.ts[8:length(train.ts)])*100))
akurasi_train.dma <- matrix(c(SSE_train.dma,
MSE_train.dma, MAPE_train.dma))
row.names(akurasi_train.dma)<- c("SSE", "MSE", "MAPE")
colnames(akurasi_train.dma) <- c("Akurasi m = 4")
kable(akurasi_train.dma) %>% kable_styling()
| Akurasi m = 4 | |
|---|---|
| SSE | 7582.684345 |
| MSE | 24.619105 |
| MAPE | 3.284713 |
Semakin kecil SSE, MSE, dan
MAPE maka semakin akurat sebuah model dalam melakukan
peramalan. Perhitungan akurasi pada data latih menggunakan nilai
MAPE menghasilkan nilai MAPE diantara 10-20
sehingga nilai akurasi ini dapat dikategorikan baik. Selanjutnya,
perhitungan nilai akurasi dilakukan pada data uji.
#Menghitung nilai keakuratan data uji
error_test.dma = test.ts -
data.gab2[nrow(training) : nrow(amzn),6]
SSE_test.dma = sum(error_test.dma^2)
MSE_test.dma = mean(error_test.dma^2)
MAPE_test.dma = mean(abs((error_test.dma/test.ts*100)))
akurasi_test.dma <- matrix(c(SSE_test.dma, MSE_test.dma, MAPE_test.dma))
row.names(akurasi_test.dma)<- c("SSE", "MSE", "MAPE")
colnames(akurasi_test.dma) <- c("Akurasi m = 4")
kable(akurasi_test.dma) %>% kable_styling()
| Akurasi m = 4 | |
|---|---|
| SSE | 91763.86806 |
| MSE | 1147.04835 |
| MAPE | 24.73109 |
Perhitungan akurasi pada data uji menghasilkan nilai
MAPE di antara 20-50 sehingga nilai akurasi ini dapat
dikategorikan sebagai layak (cukup baik).
Metode Exponential Smoothing adalah metode pemulusan dengan melakukan pembobotan menurun secara eksponensial. Nilai yang lebih baru diberi bobot yang lebih besar dari nilai terdahulu. Terdapat satu atau lebih parameter pemulusan yang ditentukan secara eksplisit dan hasil pemilihan parameter tersebut akan menentukan bobot yang akan diberikan pada nilai pengamatan.
Ada dua macam model, yaitu model tunggal dan ganda. Model tunggal
atau Single Exponential Smoothing (SES) merupakan
metode pemulusan yang tepat untuk data dengan pola stasioner atau
konstan. Sedangkan model ganda atau Double Exponential Smoothing
(DES) untuk data berpola tren. Data
harga saham amazon periode 2022-2023 cenderung berpola tren
sehingga menggunakan metode pemulusan DES.
Metode pemulusan DES digunakan untuk data yang memiliki pola tren. Metode DES adalah metode semacam SES, hanya saja dilakukan dua kali, yaitu pertama untuk tahapan ‘level’ dan kedua untuk tahapan ‘tren’. Pemulusan menggunakan metode ini akan menghasilkan peramalan tidak konstan untuk periode berikutnya.
Pemulusan dengan metode DES ini akan menggunakan
fungsi HoltWinters() . Nilai argumen beta
diinisialisasi bersamaan dengan nilai alpha dan nilai
argumen gamma dibuat FALSE.
install_load('forecast')
## Warning: package 'forecast' was built under R version 4.2.3
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
#beta=0.2 dan alpha=0.2
des.1<- HoltWinters(train.ts, gamma = FALSE, beta = 0.2, alpha = 0.2)
plot(des.1, lwd=2)
#ramalan
ramalandes1<- forecast(des.1, h= nrow(testing)) #h = panjang periode
kable(ramalandes1) %>% kable_styling()
| Point Forecast | Lo 80 | Hi 80 | Lo 95 | Hi 95 | |
|---|---|---|---|---|---|
| 316 | 103.8783 | 95.547935 | 112.2087 | 91.1380900 | 116.6186 |
| 317 | 104.5073 | 95.940312 | 113.0742 | 91.4052420 | 117.6093 |
| 318 | 105.1362 | 96.257388 | 114.0150 | 91.5572300 | 118.7152 |
| 319 | 105.7651 | 96.494784 | 115.0355 | 91.5873575 | 119.9429 |
| 320 | 106.3941 | 96.650709 | 116.1374 | 91.4928868 | 121.2952 |
| 321 | 107.0230 | 96.725608 | 117.3204 | 91.2744975 | 122.7715 |
| 322 | 107.6519 | 96.721644 | 118.5822 | 90.9354973 | 124.3684 |
| 323 | 108.2809 | 96.642141 | 119.9196 | 90.4809711 | 126.0808 |
| 324 | 108.9098 | 96.491087 | 121.3285 | 89.9170153 | 127.9026 |
| 325 | 109.5387 | 96.272730 | 122.8047 | 89.2501304 | 129.8273 |
| 326 | 110.1677 | 95.991307 | 124.3440 | 88.4867927 | 131.8486 |
| 327 | 110.7966 | 95.650857 | 125.9424 | 87.6331818 | 133.9600 |
| 328 | 111.4255 | 95.255129 | 127.5960 | 86.6950311 | 136.1560 |
| 329 | 112.0545 | 94.807538 | 129.3014 | 85.6775619 | 138.4314 |
| 330 | 112.6834 | 94.311157 | 131.0557 | 84.5854743 | 140.7813 |
| 331 | 113.3123 | 93.768731 | 132.8560 | 83.4229686 | 143.2017 |
| 332 | 113.9413 | 93.182708 | 134.6998 | 82.1937850 | 145.6888 |
| 333 | 114.5702 | 92.555260 | 136.5852 | 80.9012493 | 148.2392 |
| 334 | 115.1991 | 91.888324 | 138.5100 | 79.5483204 | 150.8500 |
| 335 | 115.8281 | 91.183622 | 140.4725 | 78.1376346 | 153.5185 |
| 336 | 116.4570 | 90.442695 | 142.4713 | 76.6715471 | 156.2425 |
| 337 | 117.0859 | 89.666923 | 144.5050 | 75.1521684 | 159.0197 |
| 338 | 117.7149 | 88.857546 | 146.5722 | 73.5813962 | 161.8484 |
| 339 | 118.3438 | 88.015686 | 148.6719 | 71.9609433 | 164.7267 |
| 340 | 118.9727 | 87.142355 | 150.8031 | 70.2923619 | 167.6531 |
| 341 | 119.6017 | 86.238478 | 152.9649 | 68.5770633 | 170.6263 |
| 342 | 120.2306 | 85.304897 | 155.1563 | 66.8163366 | 173.6449 |
| 343 | 120.8596 | 84.342384 | 157.3767 | 65.0113629 | 176.7077 |
| 344 | 121.4885 | 83.351650 | 159.6253 | 63.1632289 | 179.8137 |
| 345 | 122.1174 | 82.333352 | 161.9015 | 61.2729377 | 182.9619 |
| 346 | 122.7464 | 81.288095 | 164.2046 | 59.3414183 | 186.1513 |
| 347 | 123.3753 | 80.216446 | 166.5341 | 57.3695340 | 189.3810 |
| 348 | 124.0042 | 79.118929 | 168.8895 | 55.3580897 | 192.6504 |
| 349 | 124.6332 | 77.996037 | 171.2703 | 53.3078376 | 195.9585 |
| 350 | 125.2621 | 76.848232 | 173.6760 | 51.2194830 | 199.3047 |
| 351 | 125.8910 | 75.675946 | 176.1061 | 49.0936886 | 202.6884 |
| 352 | 126.5200 | 74.479588 | 178.5603 | 46.9310791 | 206.1088 |
| 353 | 127.1489 | 73.259543 | 181.0382 | 44.7322443 | 209.5655 |
| 354 | 127.7778 | 72.016177 | 183.5395 | 42.4977424 | 213.0579 |
| 355 | 128.4068 | 70.749836 | 186.0637 | 40.2281029 | 216.5854 |
| 356 | 129.0357 | 69.460848 | 188.6105 | 37.9238290 | 220.1476 |
| 357 | 129.6646 | 68.149528 | 191.1797 | 35.5853997 | 223.7439 |
| 358 | 130.2936 | 66.816173 | 193.7710 | 33.2132719 | 227.3739 |
| 359 | 130.9225 | 65.461069 | 196.3839 | 30.8078821 | 231.0371 |
| 360 | 131.5514 | 64.084490 | 199.0184 | 28.3696476 | 234.7332 |
| 361 | 132.1804 | 62.686696 | 201.6740 | 25.8989686 | 238.4618 |
| 362 | 132.8093 | 61.267939 | 204.3507 | 23.3962289 | 242.2224 |
| 363 | 133.4382 | 59.828459 | 207.0480 | 20.8617973 | 246.0147 |
| 364 | 134.0672 | 58.368489 | 209.7658 | 18.2960283 | 249.8383 |
| 365 | 134.6961 | 56.888252 | 212.5040 | 15.6992634 | 253.6929 |
| 366 | 135.3250 | 55.387963 | 215.2621 | 13.0718320 | 257.5782 |
| 367 | 135.9540 | 53.867830 | 218.0401 | 10.4140516 | 261.4939 |
| 368 | 136.5829 | 52.328054 | 220.8378 | 7.7262292 | 265.4396 |
| 369 | 137.2118 | 50.768828 | 223.6549 | 5.0086615 | 269.4150 |
| 370 | 137.8408 | 49.190340 | 226.4912 | 2.2616355 | 273.4199 |
| 371 | 138.4697 | 47.592773 | 229.3466 | -0.5145707 | 277.4540 |
| 372 | 139.0986 | 45.976302 | 232.2210 | -3.3196875 | 281.5170 |
| 373 | 139.7276 | 44.341098 | 235.1141 | -6.1534535 | 285.6086 |
| 374 | 140.3565 | 42.687328 | 238.0257 | -9.0156148 | 289.7286 |
| 375 | 140.9854 | 41.015152 | 240.9557 | -11.9059251 | 293.8768 |
| 376 | 141.6144 | 39.324727 | 243.9040 | -14.8241446 | 298.0529 |
| 377 | 142.2433 | 37.616205 | 246.8704 | -17.7700403 | 302.2567 |
| 378 | 142.8722 | 35.889736 | 249.8548 | -20.7433854 | 306.4879 |
| 379 | 143.5012 | 34.145462 | 252.8569 | -23.7439590 | 310.7463 |
| 380 | 144.1301 | 32.383526 | 255.8767 | -26.7715459 | 315.0318 |
| 381 | 144.7591 | 30.604063 | 258.9140 | -29.8259364 | 319.3440 |
| 382 | 145.3880 | 28.807209 | 261.9688 | -32.9069258 | 323.6829 |
| 383 | 146.0169 | 26.993093 | 265.0407 | -36.0143146 | 328.0482 |
| 384 | 146.6459 | 25.161842 | 268.1299 | -39.1479078 | 332.4396 |
| 385 | 147.2748 | 23.313582 | 271.2360 | -42.3075151 | 336.8571 |
| 386 | 147.9037 | 21.448434 | 274.3590 | -45.4929506 | 341.3004 |
| 387 | 148.5327 | 19.566517 | 277.4988 | -48.7040325 | 345.7693 |
| 388 | 149.1616 | 17.667947 | 280.6552 | -51.9405831 | 350.2638 |
| 389 | 149.7905 | 15.752837 | 283.8282 | -55.2024284 | 354.7835 |
| 390 | 150.4195 | 13.821299 | 287.0176 | -58.4893983 | 359.3283 |
| 391 | 151.0484 | 11.873442 | 290.2233 | -61.8013262 | 363.8981 |
| 392 | 151.6773 | 9.909372 | 293.4453 | -65.1380491 | 368.4927 |
| 393 | 152.3063 | 7.929195 | 296.6833 | -68.4994071 | 373.1119 |
| 394 | 152.9352 | 5.933011 | 299.9374 | -71.8852436 | 377.7556 |
| 395 | 153.5641 | 3.920923 | 303.2073 | -75.2954052 | 382.4237 |
#beta=0.3 dan aplha=0.6
des.2<- HoltWinters(train.ts, gamma = FALSE, beta = 0.3, alpha = 0.6)
plot(des.2, lwd=2)
#ramalan
ramalandes2<- forecast(des.2, h=nrow(testing))
kable(ramalandes2) %>% kable_styling()
| Point Forecast | Lo 80 | Hi 80 | Lo 95 | Hi 95 | |
|---|---|---|---|---|---|
| 316 | 104.6853 | 99.3200698 | 110.0506 | 96.4798745 | 112.8908 |
| 317 | 105.5228 | 98.7184684 | 112.3272 | 95.1164557 | 115.9292 |
| 318 | 106.3603 | 97.8263750 | 114.8943 | 93.3087678 | 119.4119 |
| 319 | 107.1978 | 96.6983780 | 117.6973 | 91.1402965 | 123.2554 |
| 320 | 108.0353 | 95.3706163 | 120.7001 | 88.6663114 | 127.4044 |
| 321 | 108.8729 | 93.8673923 | 123.8783 | 85.9239800 | 131.8217 |
| 322 | 109.7104 | 92.2058056 | 127.2149 | 82.9394535 | 136.4813 |
| 323 | 110.5479 | 90.3984889 | 130.6972 | 79.7320524 | 141.3637 |
| 324 | 111.3854 | 88.4551926 | 134.3156 | 76.3166883 | 146.4541 |
| 325 | 112.2229 | 86.3837226 | 138.0620 | 72.7052996 | 151.7405 |
| 326 | 113.0604 | 84.1905175 | 141.9303 | 68.9077330 | 157.2130 |
| 327 | 113.8979 | 81.8810165 | 145.9148 | 64.9323072 | 162.8635 |
| 328 | 114.7354 | 79.4599049 | 150.0109 | 60.7861878 | 168.6846 |
| 329 | 115.5729 | 76.9312823 | 154.2145 | 56.4756445 | 174.6702 |
| 330 | 116.4104 | 74.2987823 | 158.5220 | 52.0062344 | 180.8146 |
| 331 | 117.2479 | 71.5656598 | 162.9302 | 47.3829355 | 187.1129 |
| 332 | 118.0854 | 68.7348569 | 167.4360 | 42.6102471 | 193.5606 |
| 333 | 118.9229 | 65.8090525 | 172.0368 | 37.6922666 | 200.1536 |
| 334 | 119.7604 | 62.7907022 | 176.7302 | 32.6327494 | 206.8881 |
| 335 | 120.5979 | 59.6820692 | 181.5138 | 27.4351567 | 213.7607 |
| 336 | 121.4354 | 56.4852494 | 186.3856 | 22.1026941 | 220.7682 |
| 337 | 122.2729 | 53.2021925 | 191.3437 | 16.6383430 | 227.9076 |
| 338 | 123.1105 | 49.8347185 | 196.3862 | 11.0448871 | 235.1760 |
| 339 | 123.9480 | 46.3845324 | 201.5114 | 5.3249341 | 242.5710 |
| 340 | 124.7855 | 42.8532365 | 206.7177 | -0.5190659 | 250.0900 |
| 341 | 125.6230 | 39.2423400 | 212.0036 | -6.4848042 | 257.7307 |
| 342 | 126.4605 | 35.5532690 | 217.3677 | -12.5701002 | 265.4911 |
| 343 | 127.2980 | 31.7873733 | 222.8086 | -18.7728896 | 273.3689 |
| 344 | 128.1355 | 27.9459333 | 228.3250 | -25.0912138 | 281.3622 |
| 345 | 128.9730 | 24.0301663 | 233.9158 | -31.5232114 | 289.4692 |
| 346 | 129.8105 | 20.0412313 | 239.5798 | -38.0671098 | 297.6881 |
| 347 | 130.6480 | 15.9802337 | 245.3158 | -44.7212185 | 306.0172 |
| 348 | 131.4855 | 11.8482295 | 251.1228 | -51.4839224 | 314.4549 |
| 349 | 132.3230 | 7.6462288 | 256.9998 | -58.3536767 | 322.9997 |
| 350 | 133.1605 | 3.3751991 | 262.9458 | -65.3290017 | 331.6500 |
| 351 | 133.9980 | -0.9639315 | 268.9600 | -72.4084781 | 340.4045 |
| 352 | 134.8355 | -5.3702719 | 275.0413 | -79.5907431 | 349.2618 |
| 353 | 135.6730 | -9.8429657 | 281.1890 | -86.8744866 | 358.2206 |
| 354 | 136.5105 | -14.3811883 | 287.4023 | -94.2584481 | 367.2795 |
| 355 | 137.3481 | -18.9841460 | 293.6803 | -101.7414131 | 376.4375 |
| 356 | 138.1856 | -23.6510729 | 300.0222 | -109.3222107 | 385.6933 |
| 357 | 139.0231 | -28.3812304 | 306.4274 | -116.9997112 | 395.0458 |
| 358 | 139.8606 | -33.1739049 | 312.8950 | -124.7728231 | 404.4940 |
| 359 | 140.6981 | -38.0284066 | 319.4246 | -132.6404915 | 414.0366 |
| 360 | 141.5356 | -42.9440683 | 326.0152 | -140.6016961 | 423.6729 |
| 361 | 142.3731 | -47.9202439 | 332.6664 | -148.6554487 | 433.4016 |
| 362 | 143.2106 | -52.9563077 | 339.3775 | -156.8007924 | 443.2220 |
| 363 | 144.0481 | -58.0516529 | 346.1479 | -165.0367994 | 453.1330 |
| 364 | 144.8856 | -63.2056913 | 352.9769 | -173.3625695 | 463.1338 |
| 365 | 145.7231 | -68.4178514 | 359.8641 | -181.7772294 | 473.2235 |
| 366 | 146.5606 | -73.6875786 | 366.8088 | -190.2799304 | 483.4012 |
| 367 | 147.3981 | -79.0143337 | 373.8106 | -198.8698481 | 493.6661 |
| 368 | 148.2356 | -84.3975925 | 380.8688 | -207.5461809 | 504.0174 |
| 369 | 149.0731 | -89.8368453 | 387.9831 | -216.3081489 | 514.4544 |
| 370 | 149.9106 | -95.3315955 | 395.1529 | -225.1549930 | 524.9763 |
| 371 | 150.7481 | -100.8813601 | 402.3777 | -234.0859742 | 535.5823 |
| 372 | 151.5857 | -106.4856680 | 409.6570 | -243.1003724 | 546.2717 |
| 373 | 152.4232 | -112.1440606 | 416.9904 | -252.1974858 | 557.0438 |
| 374 | 153.2607 | -117.8560902 | 424.3774 | -261.3766300 | 567.8980 |
| 375 | 154.0982 | -123.6213203 | 431.8177 | -270.6371374 | 578.8335 |
| 376 | 154.9357 | -129.4393250 | 439.3107 | -279.9783566 | 589.8497 |
| 377 | 155.7732 | -135.3096884 | 446.8560 | -289.3996514 | 600.9460 |
| 378 | 156.6107 | -141.2320042 | 454.4534 | -298.9004007 | 612.1218 |
| 379 | 157.4482 | -147.2058757 | 462.1023 | -308.4799975 | 623.3764 |
| 380 | 158.2857 | -153.2309149 | 469.8023 | -318.1378486 | 634.7092 |
| 381 | 159.1232 | -159.3067427 | 477.5532 | -327.8733741 | 646.1198 |
| 382 | 159.9607 | -165.4329881 | 485.3544 | -337.6860067 | 657.6074 |
| 383 | 160.7982 | -171.6092883 | 493.2057 | -347.5751915 | 669.1716 |
| 384 | 161.6357 | -177.8352880 | 501.1067 | -357.5403853 | 680.8118 |
| 385 | 162.4732 | -184.1106398 | 509.0571 | -367.5810564 | 692.5275 |
| 386 | 163.3107 | -190.4350030 | 517.0565 | -377.6966841 | 704.3182 |
| 387 | 164.1482 | -196.8080443 | 525.1045 | -387.8867584 | 716.1832 |
| 388 | 164.9857 | -203.2294368 | 533.2009 | -398.1507795 | 728.1223 |
| 389 | 165.8233 | -209.6988603 | 541.3454 | -408.4882578 | 740.1348 |
| 390 | 166.6608 | -216.2160008 | 549.5375 | -418.8987129 | 752.2202 |
| 391 | 167.4983 | -222.7805505 | 557.7771 | -429.3816740 | 764.3782 |
| 392 | 168.3358 | -229.3922073 | 566.0637 | -439.9366793 | 776.6082 |
| 393 | 169.1733 | -236.0506750 | 574.3972 | -450.5632756 | 788.9098 |
| 394 | 170.0108 | -242.7556627 | 582.7772 | -461.2610183 | 801.2826 |
| 395 | 170.8483 | -249.5068852 | 591.2035 | -472.0294709 | 813.7260 |
# Membuka file PNG untuk menyimpan plot
png("C:/Users/Fathan/Documents/Obsidian Vault/2. Kuliah/Smt 5/6. Metode Peramalan Deret Waktu/@Proj/STA1341-MPDW/Pertemuan 1/Chart/06_TSA_DES-1.png",
height = 9*300, width = 16*300, res=300)
# Plot time series dengan warna dan pengaturan lainnya
plot(des.1, lwd=2)
# Menyimpan plot sebagai file PNG
dev.off() # Menutup file PNG
## png
## 2
# Membuka file PNG untuk menyimpan plot
png("C:/Users/Fathan/Documents/Obsidian Vault/2. Kuliah/Smt 5/6. Metode Peramalan Deret Waktu/@Proj/STA1341-MPDW/Pertemuan 1/Chart/07_TSA_DES-2.png",
height = 9*300, width = 16*300, res=300)
# Plot time series dengan warna dan pengaturan lainnya
plot(des.2, lwd=2)
# Menyimpan plot sebagai file PNG
dev.off() # Menutup file PNG
## png
## 2
Nilai y adalah nilai data deret waktu,
gamma adalah parameter pemulusan untuk komponen musiman,
beta adalah parameter pemulusan untuk tren, dan
alpha adalah parameter pemulusan untuk stasioner, serta
h adalah banyaknya periode yang akan diramalkan.
Selanjutnya jika ingin membandingkan plot data latih dan data uji adalah sebagai berikut.
#Visually evaluate the prediction
plot(amzn.ts)
lines(des.1$fitted[,1], lty=2, col="purple1", lwd=2)
lines(ramalandes1$mean, col="orange", lwd=2)
# Membuka file PNG untuk menyimpan plot
png("C:/Users/Fathan/Documents/Obsidian Vault/2. Kuliah/Smt 5/6. Metode Peramalan Deret Waktu/@Proj/STA1341-MPDW/Pertemuan 1/Chart/08_TSA_DES_Train-Test.png",
height = 9*300, width = 16*300, res=300)
# Plot time series dengan warna dan pengaturan lainnya
plot(amzn.ts)
lines(des.1$fitted[,1], lty=2, col="purple1", lwd=2)
lines(ramalandes1$mean, col="orange", lwd=2)
# Menyimpan plot sebagai file PNG
dev.off() # Menutup file PNG
## png
## 2
Untuk mendapatkan nilai parameter optimum dari DES,
argumen alpha dan beta dapat dibuat
NULL seperti berikut.
#Lamda dan gamma optimum
des.opt<- HoltWinters(train.ts, gamma = FALSE)
des.opt
## Holt-Winters exponential smoothing with trend and without seasonal component.
##
## Call:
## HoltWinters(x = train.ts, gamma = FALSE)
##
## Smoothing parameters:
## alpha: 0.9851685
## beta : 0.0426844
## gamma: FALSE
##
## Coefficients:
## [,1]
## a 103.9307404
## b 0.2793775
plot(des.opt, lwd=2)
#ramalan
ramalandesopt<- forecast(des.opt, h=nrow(testing)) #h = panjang periode
kable(ramalandesopt) %>% kable_styling()
| Point Forecast | Lo 80 | Hi 80 | Lo 95 | Hi 95 | |
|---|---|---|---|---|---|
| 316 | 104.2101 | 99.357915 | 109.0623 | 96.7893134 | 111.6309 |
| 317 | 104.4895 | 97.533425 | 111.4456 | 93.8511035 | 115.1279 |
| 318 | 104.7689 | 96.090993 | 113.4468 | 91.4972014 | 118.0405 |
| 319 | 105.0483 | 94.831442 | 115.2651 | 89.4229907 | 120.6735 |
| 320 | 105.3276 | 93.678469 | 116.9768 | 87.5117763 | 123.1435 |
| 321 | 105.6070 | 92.593625 | 118.6204 | 85.7047568 | 125.5093 |
| 322 | 105.8864 | 91.554532 | 120.2182 | 83.9677084 | 127.8051 |
| 323 | 106.1658 | 90.546932 | 121.7846 | 82.2788245 | 130.0527 |
| 324 | 106.4451 | 89.561156 | 123.3291 | 80.6233159 | 132.2670 |
| 325 | 106.7245 | 88.590338 | 124.8587 | 78.9906838 | 134.4583 |
| 326 | 107.0039 | 87.629432 | 126.3784 | 77.3732125 | 136.6346 |
| 327 | 107.2833 | 86.674630 | 127.8919 | 75.7650746 | 138.8015 |
| 328 | 107.5626 | 85.722989 | 129.4023 | 74.1617719 | 140.9635 |
| 329 | 107.8420 | 84.772199 | 130.9119 | 72.5597703 | 143.1243 |
| 330 | 108.1214 | 83.820417 | 132.4224 | 70.9562520 | 145.2866 |
| 331 | 108.4008 | 82.866156 | 133.9354 | 69.3489427 | 147.4526 |
| 332 | 108.6802 | 81.908204 | 135.4521 | 67.7359881 | 149.6243 |
| 333 | 108.9595 | 80.945564 | 136.9735 | 66.1158634 | 151.8032 |
| 334 | 109.2389 | 79.977410 | 138.5004 | 64.4873055 | 153.9905 |
| 335 | 109.5183 | 79.003053 | 140.0335 | 62.8492623 | 156.1873 |
| 336 | 109.7977 | 78.021918 | 141.5734 | 61.2008526 | 158.3945 |
| 337 | 110.0770 | 77.033521 | 143.1206 | 59.5413359 | 160.6128 |
| 338 | 110.3564 | 76.037453 | 144.6754 | 57.8700877 | 162.8428 |
| 339 | 110.6358 | 75.033369 | 146.2382 | 56.1865806 | 165.0850 |
| 340 | 110.9152 | 74.020978 | 147.8094 | 54.4903680 | 167.3400 |
| 341 | 111.1946 | 73.000032 | 149.3891 | 52.7810720 | 169.6080 |
| 342 | 111.4739 | 71.970321 | 150.9775 | 51.0583729 | 171.8895 |
| 343 | 111.7533 | 70.931671 | 152.5749 | 49.3220003 | 174.1846 |
| 344 | 112.0327 | 69.883931 | 154.1814 | 47.5717262 | 176.4936 |
| 345 | 112.3121 | 68.826975 | 155.7972 | 45.8073593 | 178.8168 |
| 346 | 112.5914 | 67.760701 | 157.4222 | 44.0287395 | 181.1541 |
| 347 | 112.8708 | 66.685020 | 159.0566 | 42.2357340 | 183.5059 |
| 348 | 113.1502 | 65.599861 | 160.7005 | 40.4282337 | 185.8722 |
| 349 | 113.4296 | 64.505167 | 162.3540 | 38.6061498 | 188.2530 |
| 350 | 113.7090 | 63.400891 | 164.0170 | 36.7694117 | 190.6485 |
| 351 | 113.9883 | 62.286997 | 165.6897 | 34.9179645 | 193.0587 |
| 352 | 114.2677 | 61.163458 | 167.3720 | 33.0517669 | 195.4836 |
| 353 | 114.5471 | 60.030256 | 169.0639 | 31.1707896 | 197.9234 |
| 354 | 114.8265 | 58.887377 | 170.7655 | 29.2750142 | 200.3779 |
| 355 | 115.1058 | 57.734817 | 172.4769 | 27.3644312 | 202.8472 |
| 356 | 115.3852 | 56.572573 | 174.1979 | 25.4390398 | 205.3314 |
| 357 | 115.6646 | 55.400651 | 175.9285 | 23.4988460 | 207.8303 |
| 358 | 115.9440 | 54.219058 | 177.6689 | 21.5438624 | 210.3441 |
| 359 | 116.2233 | 53.027807 | 179.4189 | 19.5741072 | 212.8726 |
| 360 | 116.5027 | 51.826912 | 181.1785 | 17.5896037 | 215.4159 |
| 361 | 116.7821 | 50.616392 | 182.9478 | 15.5903793 | 217.9738 |
| 362 | 117.0615 | 49.396267 | 184.7267 | 13.5764654 | 220.5465 |
| 363 | 117.3409 | 48.166560 | 186.5152 | 11.5478970 | 223.1338 |
| 364 | 117.6202 | 46.927295 | 188.3132 | 9.5047117 | 225.7358 |
| 365 | 117.8996 | 45.678499 | 190.1207 | 7.4469500 | 228.3523 |
| 366 | 118.1790 | 44.420200 | 191.9378 | 5.3746548 | 230.9833 |
| 367 | 118.4584 | 43.152428 | 193.7643 | 3.2878707 | 233.6289 |
| 368 | 118.7377 | 41.875212 | 195.6003 | 1.1866443 | 236.2889 |
| 369 | 119.0171 | 40.588585 | 197.4457 | -0.9289764 | 238.9632 |
| 370 | 119.2965 | 39.292578 | 199.3004 | -3.0589418 | 241.6519 |
| 371 | 119.5759 | 37.987224 | 201.1645 | -5.2032016 | 244.3550 |
| 372 | 119.8553 | 36.672557 | 203.0380 | -7.3617041 | 247.0722 |
| 373 | 120.1346 | 35.348612 | 204.9207 | -9.5343970 | 249.8037 |
| 374 | 120.4140 | 34.015423 | 206.8126 | -11.7212273 | 252.5493 |
| 375 | 120.6934 | 32.673025 | 208.7138 | -13.9221413 | 255.3089 |
| 376 | 120.9728 | 31.321454 | 210.6241 | -16.1370849 | 258.0826 |
| 377 | 121.2521 | 29.960744 | 212.5435 | -18.3660038 | 260.8703 |
| 378 | 121.5315 | 28.590933 | 214.4721 | -20.6088430 | 263.6719 |
| 379 | 121.8109 | 27.212055 | 216.4097 | -22.8655477 | 266.4873 |
| 380 | 122.0903 | 25.824148 | 218.3564 | -25.1360627 | 269.3166 |
| 381 | 122.3697 | 24.427246 | 220.3121 | -27.4203329 | 272.1596 |
| 382 | 122.6490 | 23.021387 | 222.2767 | -29.7183030 | 275.0164 |
| 383 | 122.9284 | 21.606605 | 224.2502 | -32.0299178 | 277.8867 |
| 384 | 123.2078 | 20.182938 | 226.2326 | -34.3551223 | 280.7707 |
| 385 | 123.4872 | 18.750421 | 228.2239 | -36.6938615 | 283.6682 |
| 386 | 123.7665 | 17.309090 | 230.2240 | -39.0460805 | 286.5792 |
| 387 | 124.0459 | 15.858981 | 232.2329 | -41.4117247 | 289.5036 |
| 388 | 124.3253 | 14.400129 | 234.2505 | -43.7907396 | 292.4413 |
| 389 | 124.6047 | 12.932570 | 236.2768 | -46.1830711 | 295.3924 |
| 390 | 124.8841 | 11.456339 | 238.3118 | -48.5886652 | 298.3568 |
| 391 | 125.1634 | 9.971471 | 240.3554 | -51.0074683 | 301.3343 |
| 392 | 125.4428 | 8.478001 | 242.4076 | -53.4394270 | 304.3250 |
| 393 | 125.7222 | 6.975964 | 244.4684 | -55.8844882 | 307.3289 |
| 394 | 126.0016 | 5.465394 | 246.5377 | -58.3425994 | 310.3457 |
| 395 | 126.2809 | 3.946325 | 248.6156 | -60.8137082 | 313.3756 |
# Membuka file PNG untuk menyimpan plot
png("C:/Users/Fathan/Documents/Obsidian Vault/2. Kuliah/Smt 5/6. Metode Peramalan Deret Waktu/@Proj/STA1341-MPDW/Pertemuan 1/Chart/09_TSA_DES-Opt.png",
height = 9*300, width = 16*300, res=300)
# Plot time series dengan warna dan pengaturan lainnya
plot(des.opt, lwd=2)
# Menyimpan plot sebagai file PNG
dev.off() # Menutup file PNG
## png
## 2
Selanjutnya akan dilakukan perhitungan akurasi pada data latih maupun
data uji dengan ukuran akurasi SSE, MSE dan
MAPE.
#Akurasi Data Training
ssedes.train1<-des.1$SSE
msedes.train1<-ssedes.train1/length(train.ts)
sisaandes1<-ramalandes1$residuals
head(sisaandes1)
## Time Series:
## Start = 1
## End = 6
## Frequency = 1
## [1] NA NA -0.282516 1.564783 3.383031 4.334296
mapedes.train1 <- sum(abs(sisaandes1[3:length(train.ts)]/
train.ts[3:length(train.ts)])
*100)/length(train.ts)
akurasides.1 <- matrix(c(ssedes.train1,
msedes.train1, mapedes.train1))
row.names(akurasides.1) <- c("SSE", "MSE", "MAPE")
colnames(akurasides.1) <- c("Akurasi lamda=0.2 dan gamma=0.2")
akurasides.1
## Akurasi lamda=0.2 dan gamma=0.2
## SSE 13207.601464
## MSE 41.928894
## MAPE 4.090672
ssedes.train2<-des.2$SSE
msedes.train2<-ssedes.train2/length(train.ts)
sisaandes2<-ramalandes2$residuals
head(sisaandes2)
## Time Series:
## Start = 1
## End = 6
## Frequency = 1
## [1] NA NA -0.282516 1.717341 2.611163 2.130670
mapedes.train2 <- sum(abs(sisaandes2[3:length(train.ts)]/
train.ts[3:length(train.ts)])
*100)/length(train.ts)
akurasides.2 <- matrix(c(ssedes.train2,
msedes.train2, mapedes.train2))
row.names(akurasides.2)<- c("SSE", "MSE", "MAPE")
colnames(akurasides.2) <- c("Akurasi lamda=0.6 dan gamma=0.3")
akurasides.2
## Akurasi lamda=0.6 dan gamma=0.3
## SSE 5469.804193
## MSE 17.364458
## MAPE 2.666762
Hasil akurasi dari data latih skenario 2 dengan
lamda=0.6 dan gamma=0.3 memiliki hasil yang
lebih baik karena memiliki nilai SSE, MSE, dan
MAPE yang lebih kecil. Berdasarkan nilai
MAPE-nya, baik skenario 1 dan
2dapat dikategorikan peramalan sangat baik.
#Akurasi Data Testing
selisihdes1 <- ramalandes1$mean - testing[,3]
selisihdes1
## Time Series:
## Start = 316
## End = 395
## Frequency = 1
## [1] -0.07166725 3.40726591 3.07620007 3.59513423 6.47406839 9.19299856
## [7] 5.25193272 5.77086688 6.16980504 7.23873420 5.86766836 6.98660752
## [13] 4.46554068 5.84447484 10.11340800 8.33233916 4.12127632 9.12021348
## [19] 13.14914164 12.19808181 12.80701097 13.08594713 12.05487729 12.51381345
## [25] 12.35274661 9.41168177 8.05061793 10.59955009 10.28848925 8.71741841
## [31] 7.24635457 5.22528673 7.75422289 9.62315505 10.27209322 9.14102538
## [37] 11.51995954 7.03889270 6.11782386 7.82676002 6.26569918 5.41463034
## [43] 4.99356150 4.31249766 10.32142982 7.93036698 9.37930114 6.86823530
## [49] 7.40716546 8.27610563 8.21503679 10.46397395 10.80290711 12.38183827
## [55] 7.69078043 9.13970659 11.76864075 10.54758391 11.31651807 13.08544323
## [61] 11.25437839 12.02331255 12.49224271 15.14118088 14.35011704 17.62905320
## [67] 16.60798536 15.21691552 12.34584968 12.59479384 14.34372300 15.70265316
## [73] 13.80158832 19.83051648 20.41945764 22.24838880 22.54732096 24.15626612
## [79] 24.68519429 21.35412145
SSEtestingdes1<-sum(selisihdes1^2)
MSEtestingdes1<-SSEtestingdes1/
length(testing[,3])
MAPEtestingdes1<-sum(abs(selisihdes1/
testing[,3])*100)/
length(testing[,3])
selisihdes2<-ramalandes2$mean - testing[,3]
selisihdes2
## Time Series:
## Start = 316
## End = 395
## Frequency = 1
## [1] 0.7353294 4.4228343 4.3003401 5.0278459 8.1153517 11.0428535
## [7] 7.3103593 8.0378651 8.6453749 9.9228757 8.7603815 10.0878923
## [13] 7.7753971 9.3629030 13.8404078 12.2679106 8.2654194 13.4729282
## [19] 17.7104280 16.9679398 17.7854406 18.2729484 17.4504502 18.1179580
## [25] 18.1654628 15.4329696 14.2804775 17.0379813 16.9354921 15.5729929
## [31] 14.3105007 12.4980045 15.2355123 17.3130161 18.1705259 17.2480297
## [37] 19.8355355 15.5630403 14.8505431 16.7680510 15.4155618 14.7730646
## [43] 14.5605674 14.0880752 20.3055790 18.1230878 19.7805936 17.4780994
## [49] 18.2256012 19.3031130 19.4506158 21.9081246 22.4556295 24.2431323
## [55] 19.7606461 21.4181439 24.2556497 23.2431645 24.2206703 26.1981671
## [61] 24.5756739 25.5531797 26.2306815 29.0881913 28.5056992 31.9932070
## [67] 31.1807108 29.9982126 27.3357184 27.7932342 29.7507350 31.3182368
## [73] 29.6257436 35.8632434 36.6607562 38.6982590 39.2057628 41.0232797
## [79] 41.7607795 38.6382783
SSEtestingdes2<-sum(selisihdes2^2)
MSEtestingdes2<-SSEtestingdes2/
length(testing[,3])
MAPEtestingdes2<-sum(abs(selisihdes2/
testing[,3])*100)/
length(testing[,3])
selisihdesopt<-ramalandesopt$mean - testing[,3]
selisihdesopt
## Time Series:
## Start = 316
## End = 395
## Frequency = 1
## [1] 0.2601209 3.3894974 2.7088749 2.8782524 5.4076299 7.7770034
## [7] 3.4863808 3.6557583 3.7051398 4.4245123 2.7038898 3.4732723
## [13] 0.6026488 1.6320262 5.5514027 3.4207772 -1.1398423 3.5095382
## [19] 7.1889097 5.8882932 6.1476657 6.0770451 4.6964186 4.8057981
## [25] 4.2951746 1.0045531 -0.7060674 1.4933081 0.8326905 -1.0879370
## [31] -2.9085575 -5.2791820 -3.0998025 -1.5804270 -1.2810455 -2.7616700
## [37] -0.7322926 -5.5629161 -6.8335416 -5.4741621 -7.3847796 -8.5854051
## [43] -9.3560306 -10.3866512 -4.7272757 -7.4678952 -6.3685177 -9.2291402
## [49] -9.0397667 -8.5203832 -8.9310087 -7.0316283 -7.0422518 -5.8128773
## [55] -10.8534918 -9.7541223 -7.4747448 -9.0453583 -8.6259809 -7.2066124
## [61] -9.3872339 -8.9678564 -8.8484829 -6.5491014 -7.6897219 -4.7603425
## [67] -6.1309670 -7.8715935 -11.0922160 -11.1928285 -9.7934560 -8.7840825
## [73] -11.0347040 -5.3553326 -5.1159481 -3.6365736 -3.6871981 -2.4278096
## [79] -2.2484381 -5.9290676
SSEtestingdesopt<-sum(selisihdesopt^2)
MSEtestingdesopt<-SSEtestingdesopt/
length(testing[,3])
MAPEtestingdesopt<-sum(abs(selisihdesopt/
testing[,3])*100)/
length(testing[,3])
akurasitestingdes <-
matrix(c(SSEtestingdes1, MSEtestingdes1,
MAPEtestingdes1, SSEtestingdes2,
MSEtestingdes2, MAPEtestingdes2,
SSEtestingdesopt, MSEtestingdesopt,
MAPEtestingdesopt), nrow=3,ncol=3)
row.names(akurasitestingdes) <- c("SSE", "MSE", "MAPE")
colnames(akurasitestingdes) <- c("des ske1","des ske2","des opt")
kable(akurasitestingdes) %>% kable_styling()
| des ske1 | des ske2 | des opt | |
|---|---|---|---|
| SSE | 10758.291043 | 37152.67055 | 3163.79939 |
| MSE | 134.478638 | 464.40838 | 39.54749 |
| MAPE | 8.728892 | 16.06336 | 4.57769 |
Hasil akurasi dari data latih DES Opt memiliki hasil
yang lebih baik karena memiliki nilai SSE,
MSE, dan MAPE yang lebih kecil dibandingkan
hasil akurasi pada DES skenario 1 dan 2.
Berdasarkan nilai MAPE-nya, DES Opt dan
DES skenario 1 dapat dikategorikan peramalan sangat baik,
sedangkan DES skenario 2 peramalan baik.
Metode Holt-Winter untuk peramalan data musiman menggunakan tiga persamaan pemulusan yang terdiri atas persamaan untuk level \((L_t)\), trend \((B_t)\), dan komponen seasonal / musiman \((S_t)\) dengan parameter pemulusan berupa \(\alpha\), \(\beta\), dan \(\gamma\). Metode Holt-Winter musiman terbagi menjadi dua, yaitu metode aditif dan metode multiplikatif. Perbedaan persamaan dan contoh datanya adalah sebagai berikut.
Pemulusan data musiman dengan metode Winter dilakukan menggunakan
fungsi HoltWinters() dengan memasukkan argumen tambahan,
yaitu gamma() dan seasonal() . Arguman
seasonal() diinisialisasi menyesuaikan jenis musiman,
aditif atau multiplikatif.
ts.plot(amzn.ts, xlab="Time Period", ylab="Harga Saham",
main = "Time Series Amazon", col='orange', lwd=2)
points(amzn.ts, col='orange', lwd=1.5)
# Tambahkan garis vertikal
abline(v = 100, col = "red", lty = 2)
abline(v = 200, col = "blue", lty = 2)
abline(v = 300, col = "purple", lty = 2)
Nampak bahwa pola frekuensi data nya cenderung diangka 100.
# Membuka file PNG untuk menyimpan plot
png("C:/Users/Fathan/Documents/Obsidian Vault/2. Kuliah/Smt 5/6. Metode Peramalan Deret Waktu/@Proj/STA1341-MPDW/Pertemuan 1/Chart/10_TSA_Frekuensi.png",
height = 9*300, width = 16*300, res=300)
# Plot time series dengan warna dan pengaturan lainnya
ts.plot(amzn.ts, xlab="Time Period", ylab="Harga Saham",
main = "Time Series Amazon", col='orange', lwd=2)
points(amzn.ts, col='orange', lwd=1.5)
# Tambahkan garis vertikal
abline(v = 100, col = "red", lty = 2)
abline(v = 200, col = "blue", lty = 2)
abline(v = 300, col = "purple", lty = 2)
# Menyimpan plot sebagai file PNG
dev.off() # Menutup file PNG
## png
## 2
training.ts<-ts(training[,3], frequency = 100) #Kebentuk puncak berapakali
testing.ts<-ts(testing[,3], frequency = 100)
Perhitungan dengan model aditif dilakukan jika plot data asli menunjukkan fluktuasi musiman yang relatif stabil (konstan).
#Pemulusan dengan winter aditif
winter1 <- HoltWinters(training.ts,
alpha=0.2, beta=0.1, gamma=0.1,
seasonal = "additive")
kable(winter1$fitted) %>% kable_styling()
| xhat | level | trend | season |
|---|---|---|---|
| 125.61952 | 142.61579 | -0.2524484268 | -16.7438230 |
| 126.38595 | 139.45494 | -0.5432889035 | -12.5257070 |
| 128.60878 | 136.66376 | -0.7680778065 | -7.2869065 |
| 127.66012 | 134.21583 | -0.9360633229 | -5.6196515 |
| 129.43456 | 132.08454 | -1.0555856698 | -1.5943949 |
| 124.55647 | 130.24425 | -1.1340568853 | -4.5537138 |
| 125.57788 | 128.66889 | -1.1781864220 | -1.9128233 |
| 122.65648 | 127.33313 | -1.1939440736 | -3.4827093 |
| 119.98428 | 126.20789 | -1.1870736130 | -5.0365393 |
| 114.36454 | 125.25996 | -1.1631591716 | -9.7322598 |
| 107.43806 | 124.45389 | -1.1274499850 | -15.8883798 |
| 101.12663 | 123.76883 | -1.0832112361 | -21.5589914 |
| 99.52035 | 123.19429 | -1.0323438618 | -22.6416039 |
| 104.78111 | 122.71988 | -0.9765508345 | -16.9622214 |
| 100.78943 | 122.32111 | -0.9187730456 | -20.6129079 |
| 103.38363 | 121.97645 | -0.8613615032 | -17.7314559 |
| 105.91147 | 121.68236 | -0.8046341394 | -14.9662544 |
| 106.27419 | 121.43143 | -0.7492636159 | -14.4079824 |
| 109.85487 | 121.21733 | -0.6957474246 | -10.6667150 |
| 113.98930 | 121.03861 | -0.6440447718 | -6.4052705 |
| 110.90250 | 120.88871 | -0.5946307038 | -9.3915760 |
| 105.23746 | 120.75758 | -0.5482806862 | -14.9718375 |
| 106.89194 | 120.64180 | -0.5050298078 | -13.2448340 |
| 104.32899 | 120.54239 | -0.4644686580 | -15.7489305 |
| 107.87256 | 120.45412 | -0.4268484146 | -12.1547141 |
| 111.99157 | 120.36476 | -0.3930996014 | -7.9800920 |
| 112.94941 | 120.27335 | -0.3629309592 | -6.9610100 |
| 115.09328 | 120.18653 | -0.3353190271 | -4.7579399 |
| 114.42641 | 120.09856 | -0.3105845022 | -5.3615659 |
| 110.72435 | 120.01069 | -0.2883126930 | -8.9980269 |
| 108.34185 | 119.92751 | -0.2677997925 | -11.3178584 |
| 109.61239 | 119.83534 | -0.2502368263 | -9.9727174 |
| 109.85388 | 119.74263 | -0.2344845169 | -9.6542648 |
| 112.80926 | 119.66337 | -0.2189621295 | -6.6351413 |
| 113.06637 | 119.59255 | -0.2041473271 | -6.3220324 |
| 117.51440 | 119.52713 | -0.1902747379 | -1.8224579 |
| 122.02900 | 119.47598 | -0.1763627207 | 2.7293875 |
| 123.85446 | 119.44781 | -0.1615428018 | 4.5681950 |
| 121.59738 | 119.44138 | -0.1460321602 | 2.3020361 |
| 120.23863 | 119.45987 | -0.1295798043 | 0.9083421 |
| 113.82866 | 119.51056 | -0.1115524245 | -5.5703464 |
| 119.98668 | 119.59528 | -0.0919257227 | 0.4833341 |
| 121.36611 | 119.70001 | -0.0722593963 | 1.7383596 |
| 134.15465 | 119.81053 | -0.0539816974 | 14.3981026 |
| 134.69865 | 119.91562 | -0.0380748047 | 14.8211097 |
| 133.52929 | 120.01581 | -0.0242478951 | 13.5377222 |
| 138.95120 | 120.11771 | -0.0116335597 | 18.8451222 |
| 142.09329 | 120.21984 | -0.0002574204 | 21.8737152 |
| 140.38274 | 120.31492 | 0.0092768393 | 20.0585462 |
| 138.99744 | 120.40765 | 0.0176220109 | 18.5721722 |
| 128.70267 | 120.50778 | 0.0258732082 | 8.1690173 |
| 135.43007 | 122.35912 | 0.2084197594 | 12.8625238 |
| 141.72979 | 124.01953 | 0.3536184752 | 17.3566447 |
| 142.51324 | 124.15519 | 0.3318225989 | 18.0262292 |
| 146.86372 | 124.69436 | 0.3525578366 | 21.8168012 |
| 145.30575 | 124.31018 | 0.2788832302 | 20.7166932 |
| 146.10901 | 124.48391 | 0.2683681611 | 21.3567341 |
| 147.03329 | 123.95048 | 0.1881880634 | 22.8946221 |
| 150.80835 | 123.19201 | 0.0935224039 | 27.5228222 |
| 148.88925 | 120.76986 | -0.1580447123 | 28.2774402 |
| 142.74624 | 117.47796 | -0.4714297714 | 25.7397106 |
| 137.47302 | 115.18128 | -0.6539547524 | 22.9456961 |
| 137.08344 | 113.79272 | -0.7274151914 | 24.0181286 |
| 141.60742 | 113.10462 | -0.7234839683 | 29.2262801 |
| 134.58308 | 110.20965 | -0.9406323210 | 25.3140611 |
| 127.66222 | 108.31040 | -1.0364941177 | 20.3883151 |
| 126.20894 | 107.48746 | -1.0151386919 | 19.7366106 |
| 122.29763 | 106.58454 | -1.0039174664 | 16.7170055 |
| 119.48126 | 106.68509 | -0.8934699764 | 13.6896320 |
| 120.34288 | 107.39737 | -0.7328950744 | 13.6784015 |
| 125.98768 | 107.81790 | -0.6175526611 | 18.7873305 |
| 122.70986 | 107.89881 | -0.5477063572 | 15.3587575 |
| 125.17059 | 108.77314 | -0.4055035066 | 16.8029545 |
| 132.28422 | 109.98752 | -0.2435151568 | 22.5402196 |
| 129.33871 | 110.57716 | -0.1601996142 | 18.9217516 |
| 123.40384 | 109.91321 | -0.2105737678 | 13.7012006 |
| 120.85329 | 110.73187 | -0.1076505355 | 10.2290665 |
| 124.11118 | 111.70956 | 0.0008836616 | 12.4007305 |
| 117.70334 | 111.59421 | -0.0107399329 | 6.1198664 |
| 118.40492 | 112.97481 | 0.1283933708 | 5.3017200 |
| 126.24906 | 113.86022 | 0.2040950354 | 12.1847475 |
| 104.91712 | 112.52250 | 0.0499138960 | -7.6552925 |
| 108.37058 | 115.05099 | 0.2977714477 | -6.9781796 |
| 110.02730 | 116.43064 | 0.4059598210 | -6.8093076 |
| 113.61269 | 117.86114 | 0.5084139435 | -4.7568676 |
| 105.09029 | 118.52902 | 0.5243602035 | -13.9630942 |
| 107.09851 | 121.63732 | 0.7827544984 | -15.3215682 |
| 103.88083 | 123.96038 | 0.9367843442 | -21.0163337 |
| 107.19534 | 126.72100 | 1.1191677834 | -20.6448261 |
| 107.04386 | 129.57710 | 1.2928609683 | -23.8261001 |
| 113.32158 | 133.67918 | 1.5737837564 | -21.9313836 |
| 123.01898 | 136.77865 | 1.7263520012 | -15.4860245 |
| 122.15410 | 137.96121 | 1.6719724965 | -17.4790760 |
| 126.84269 | 138.11436 | 1.5200903722 | -12.7917570 |
| 117.22443 | 136.99991 | 1.2566364841 | -21.0321164 |
| 117.61311 | 137.25366 | 1.1563478537 | -20.7969019 |
| 118.06666 | 137.46739 | 1.0620857622 | -20.4628164 |
| 117.92793 | 137.42214 | 0.9513526034 | -20.4455604 |
| 113.01618 | 136.16791 | 0.7307939643 | -23.8825240 |
| 116.63726 | 137.05347 | 0.7462704244 | -21.1624725 |
| 120.57782 | 137.74428 | 0.7407251549 | -17.9071849 |
| 124.58915 | 137.38344 | 0.6305686645 | -13.4248626 |
| 128.63112 | 136.14618 | 0.4437856531 | -7.9588486 |
| 128.88757 | 134.72774 | 0.2575632500 | -6.0977409 |
| 131.33973 | 133.17179 | 0.0762119086 | -1.9082798 |
| 126.23125 | 131.10006 | -0.1385826645 | -4.7302320 |
| 126.52137 | 128.84723 | -0.3500075061 | -1.9758539 |
| 121.26849 | 125.38495 | -0.6612348907 | -3.4552275 |
| 115.19273 | 121.15202 | -1.0184045291 | -4.9408816 |
| 106.72018 | 117.58307 | -1.2734591071 | -9.5894231 |
| 97.14008 | 114.32357 | -1.4720627769 | -15.7114248 |
| 88.91951 | 111.84749 | -1.5724643823 | -21.3555219 |
| 86.36784 | 110.35113 | -1.5648544384 | -22.4184318 |
| 91.50498 | 109.70871 | -1.4726111963 | -16.7311103 |
| 86.16572 | 108.04110 | -1.4921108891 | -20.3832618 |
| 88.39147 | 107.31184 | -1.4158253156 | -17.5045465 |
| 89.24010 | 105.44572 | -1.4608547363 | -14.7447723 |
| 89.95587 | 105.46285 | -1.3130567013 | -14.1939177 |
| 94.76034 | 106.31662 | -1.0963741525 | -10.4599044 |
| 98.73678 | 105.96617 | -1.0217809560 | -6.2076142 |
| 94.76115 | 104.98504 | -1.0177165026 | -9.2061759 |
| 88.66972 | 104.43909 | -0.9705393567 | -14.7988340 |
| 90.77509 | 104.70461 | -0.8469337912 | -13.0825894 |
| 88.15257 | 104.53066 | -0.7796355336 | -15.5984496 |
| 91.89930 | 104.61251 | -0.6934870140 | -12.0197188 |
| 95.65227 | 104.17916 | -0.6674731135 | -7.8594175 |
| 95.65875 | 103.20723 | -0.6979185574 | -6.8505623 |
| 96.65767 | 102.05956 | -0.7428935055 | -4.6590018 |
| 94.70561 | 100.77514 | -0.7970469426 | -5.2724787 |
| 89.76223 | 99.52097 | -0.8427591969 | -8.9159753 |
| 88.07895 | 100.03376 | -0.7072038245 | -11.2476065 |
| 90.34228 | 100.81077 | -0.5587828454 | -9.9097081 |
| 90.93432 | 101.00953 | -0.4830284327 | -9.5921753 |
| 93.48424 | 100.54164 | -0.4815148906 | -6.5758821 |
| 92.16053 | 99.01327 | -0.5861996624 | -6.2665420 |
| 95.25995 | 97.68697 | -0.6602103088 | -1.7668098 |
| 98.07502 | 96.04477 | -0.7584092830 | 2.7886672 |
| 97.18148 | 93.48935 | -0.9381098579 | 4.6302376 |
| 92.52205 | 91.22495 | -1.0707393883 | 2.3678455 |
| 90.05687 | 90.14780 | -1.0713804824 | 0.9804516 |
| 82.84829 | 89.38104 | -1.0409177910 | -5.4918396 |
| 89.09358 | 89.46047 | -0.9288835583 | 0.5619994 |
| 89.14278 | 88.28487 | -0.9535552005 | 1.8114704 |
| 99.91047 | 86.48676 | -1.0380108901 | 14.4617302 |
| 96.04865 | 82.50465 | -1.3324203400 | 14.8764173 |
| 91.38669 | 79.31650 | -1.5179933350 | 13.5881795 |
| 93.49987 | 76.27917 | -1.6699270287 | 18.8906267 |
| 93.03620 | 72.95927 | -1.8349244075 | 21.9118522 |
| 87.18218 | 69.12510 | -2.0348483121 | 20.0919268 |
| 82.48090 | 66.01782 | -2.1420919819 | 18.6051769 |
| 71.00664 | 64.21555 | -2.1081100800 | 8.8992035 |
| 76.30118 | 64.70611 | -1.8482428877 | 13.4433186 |
| 80.37322 | 64.76163 | -1.6578665791 | 17.2694612 |
| 80.60376 | 64.05712 | -1.5625310728 | 18.1091702 |
| 83.00773 | 62.99784 | -1.5122061447 | 21.5221028 |
| 81.32396 | 62.10008 | -1.4507607516 | 20.6746329 |
| 81.56251 | 61.85653 | -1.3300398444 | 21.0360137 |
| 83.54006 | 62.18799 | -1.1638898988 | 22.5159595 |
| 88.91775 | 63.33409 | -0.9328911994 | 26.5165537 |
| 89.88970 | 63.67165 | -0.8058462799 | 27.0238999 |
| 88.88023 | 64.51186 | -0.6412402236 | 25.0096107 |
| 87.45858 | 65.30457 | -0.4978447895 | 22.6518543 |
| 90.10305 | 66.40701 | -0.3378164991 | 24.0338535 |
| 94.87600 | 66.78459 | -0.2662774993 | 28.3576867 |
| 91.70493 | 66.99311 | -0.2187974139 | 24.9306140 |
| 88.30857 | 67.93733 | -0.1024960027 | 20.4737368 |
| 89.27635 | 69.43712 | 0.0577326493 | 19.7814955 |
| 88.45018 | 71.07558 | 0.2158057449 | 17.1587955 |
| 88.20848 | 73.44535 | 0.4312021256 | 14.3319316 |
| 91.53446 | 76.68286 | 0.7118324052 | 14.1397712 |
| 99.15666 | 79.19780 | 0.8921432900 | 19.0667157 |
| 97.78379 | 80.88461 | 0.9716101210 | 15.9275689 |
| 101.89930 | 83.32946 | 1.1189344199 | 17.4509079 |
| 110.86317 | 86.65054 | 1.3391484298 | 22.8734817 |
| 106.40499 | 86.49505 | 1.1896850934 | 18.7202549 |
| 102.05782 | 86.83974 | 1.1051852781 | 14.1128935 |
| 99.72479 | 87.95536 | 1.1062289693 | 10.6632033 |
| 102.59360 | 89.12663 | 1.1127331862 | 12.3542361 |
| 97.07070 | 89.36864 | 1.0256611404 | 6.6763997 |
| 97.14314 | 90.50216 | 1.0364470697 | 5.6045266 |
| 104.67039 | 92.01798 | 1.0843843320 | 11.5680230 |
| 86.42940 | 92.10829 | 0.9849764491 | -6.6638623 |
| 90.77355 | 96.03939 | 1.2795884596 | -6.5454261 |
| 93.82189 | 98.79427 | 1.4271175340 | -6.3994911 |
| 97.69860 | 100.89700 | 1.4946796432 | -4.6930826 |
| 90.27075 | 101.76796 | 1.4323076676 | -12.9295170 |
| 91.14136 | 104.30412 | 1.5426926020 | -14.7054488 |
| 88.13201 | 106.78254 | 1.6362653132 | -20.2867999 |
| 91.28598 | 109.49240 | 1.7436251978 | -19.9500534 |
| 90.82153 | 111.73083 | 1.7931057112 | -22.7024089 |
| 94.74580 | 114.20563 | 1.8612751389 | -21.3211106 |
| 101.65797 | 115.55175 | 1.8097591111 | -15.7035426 |
| 98.98851 | 115.45591 | 1.6191997262 | -18.0866045 |
| 103.94927 | 116.25741 | 1.5374295628 | -13.8455725 |
| 95.65516 | 115.75499 | 1.3334441606 | -21.4332710 |
| 96.78479 | 116.66740 | 1.2913409847 | -21.1739503 |
| 97.71408 | 117.38578 | 1.2340451112 | -20.9057491 |
| 97.32398 | 117.52701 | 1.1247635252 | -21.3277950 |
| 94.50525 | 117.33298 | 0.9928839643 | -23.8206181 |
| 97.67754 | 117.91082 | 0.9513790390 | -21.1846536 |
| 100.85030 | 118.30269 | 0.8954281673 | -18.3478109 |
| 104.89848 | 118.26805 | 0.8024220525 | -14.1719947 |
| 110.10029 | 118.09878 | 0.7052524756 | -8.7037382 |
| 110.23307 | 116.57397 | 0.4822465548 | -6.8231462 |
| 112.01593 | 114.55160 | 0.2317850883 | -2.7674581 |
| 106.92994 | 112.50220 | 0.0036664901 | -5.5759313 |
| 107.47819 | 110.85988 | -0.1609323332 | -3.2207634 |
| 103.72511 | 108.94531 | -0.3362960631 | -4.8839060 |
| 101.08069 | 107.48999 | -0.4481983141 | -5.9610999 |
| 95.54081 | 106.43366 | -0.5090121913 | -10.3838378 |
| 89.67642 | 106.26448 | -0.4750283514 | -16.1130313 |
| 86.31553 | 107.90417 | -0.2635568027 | -21.3250821 |
| 88.77818 | 110.77751 | 0.0501325889 | -22.0494588 |
| 97.26126 | 113.73000 | 0.3403690048 | -16.8091090 |
| 95.46534 | 115.10012 | 0.4433438218 | -20.0781195 |
xhat1 <- winter1$fitted[,2]
winter1.opt<- HoltWinters(training.ts,
#Supaya optimum
alpha= NULL, beta = NULL, gamma = NULL,
seasonal = "additive")
winter1.opt
## Holt-Winters exponential smoothing with trend and additive seasonal component.
##
## Call:
## HoltWinters(x = training.ts, alpha = NULL, beta = NULL, gamma = NULL, seasonal = "additive")
##
## Smoothing parameters:
## alpha: 0.7420479
## beta : 0
## gamma: 1
##
## Coefficients:
## [,1]
## a 123.2905107
## b -0.2524484
## s1 -19.2876168
## s2 -13.3250480
## s3 -13.0011951
## s4 -11.7996186
## s5 -7.6141066
## s6 -9.3372915
## s7 -14.0363594
## s8 -13.5577012
## s9 -15.5406209
## s10 -12.7676174
## s11 -8.9054573
## s12 -7.5698796
## s13 -5.2659891
## s14 -5.6504876
## s15 -6.9835867
## s16 -10.3889352
## s17 -10.3480238
## s18 -10.5362762
## s19 -8.2494766
## s20 -6.6613377
## s21 -2.4692209
## s22 1.1909620
## s23 4.2072540
## s24 3.4357758
## s25 1.4805628
## s26 -4.3938540
## s27 -0.7673580
## s28 0.4819545
## s29 11.0149194
## s30 14.3820602
## s31 13.1285641
## s32 17.8904078
## s33 20.4138383
## s34 19.9763015
## s35 19.6945504
## s36 12.9201875
## s37 13.9460345
## s38 15.3000328
## s39 17.0691065
## s40 20.7248327
## s41 21.4997279
## s42 21.6185003
## s43 23.6435010
## s44 24.9310224
## s45 26.7202025
## s46 25.7489695
## s47 24.2574069
## s48 24.3692679
## s49 26.9371993
## s50 25.9592980
## s51 22.3928903
## s52 20.7161039
## s53 19.1691146
## s54 16.7295645
## s55 14.0789406
## s56 18.0148444
## s57 17.3253220
## s58 19.6161246
## s59 19.1119466
## s60 17.5483423
## s61 15.8161747
## s62 11.7598726
## s63 11.0832825
## s64 8.5761005
## s65 6.7699066
## s66 8.9421620
## s67 0.1747336
## s68 -5.7999172
## s69 -6.4391645
## s70 -6.2129900
## s71 -9.1932354
## s72 -13.3565791
## s73 -18.6996793
## s74 -19.2569201
## s75 -20.6121073
## s76 -21.9215303
## s77 -18.3660640
## s78 -17.9259556
## s79 -15.6242748
## s80 -18.6067578
## s81 -19.6737124
## s82 -20.6087935
## s83 -21.8431072
## s84 -21.0930765
## s85 -19.9739418
## s86 -20.1591745
## s87 -15.4525678
## s88 -10.4268448
## s89 -7.5235989
## s90 -2.9873597
## s91 -5.0749462
## s92 -4.1367066
## s93 -5.2059725
## s94 -5.2576193
## s95 -8.9218233
## s96 -12.9852472
## s97 -18.1808502
## s98 -20.3549702
## s99 -18.9450275
## s100 -19.3405137
kable(winter1.opt$fitted) %>% kable_styling()
| xhat | level | trend | season |
|---|---|---|---|
| 125.61952 | 142.61579 | -0.2524484 | -16.7438230 |
| 118.79431 | 131.57247 | -0.2524484 | -12.5257070 |
| 121.07381 | 128.61317 | -0.2524484 | -7.2869065 |
| 121.84726 | 127.71936 | -0.2524484 | -5.6196515 |
| 125.49892 | 127.34576 | -0.2524484 | -1.5943949 |
| 122.29612 | 127.10228 | -0.2524484 | -4.5537138 |
| 124.72454 | 126.88981 | -0.2524484 | -1.9128233 |
| 122.95078 | 126.68594 | -0.2524484 | -3.4827093 |
| 121.18103 | 126.47001 | -0.2524484 | -5.0365393 |
| 116.23210 | 126.21680 | -0.2524484 | -9.7322598 |
| 109.76261 | 125.90344 | -0.2524484 | -15.8883798 |
| 103.75599 | 125.56743 | -0.2524484 | -21.5589914 |
| 102.35712 | 125.25117 | -0.2524484 | -22.6416039 |
| 107.74909 | 124.96376 | -0.2524484 | -16.9622214 |
| 103.78726 | 124.65262 | -0.2524484 | -20.6129079 |
| 106.32183 | 124.30574 | -0.2524484 | -17.7314559 |
| 108.75902 | 123.97773 | -0.2524484 | -14.9662544 |
| 109.00621 | 123.66664 | -0.2524484 | -14.4079824 |
| 112.45332 | 123.37248 | -0.2524484 | -10.6667150 |
| 116.45243 | 123.11015 | -0.2524484 | -6.4052705 |
| 113.21929 | 122.86332 | -0.2524484 | -9.3915760 |
| 107.38711 | 122.61139 | -0.2524484 | -14.9718375 |
| 108.87123 | 122.36851 | -0.2524484 | -13.2448340 |
| 106.15087 | 122.15225 | -0.2524484 | -15.7489305 |
| 109.53652 | 121.94368 | -0.2524484 | -12.1547141 |
| 113.47611 | 121.70865 | -0.2524484 | -7.9800920 |
| 114.26047 | 121.47393 | -0.2524484 | -6.9610100 |
| 116.26269 | 121.27308 | -0.2524484 | -4.7579399 |
| 115.45656 | 121.07058 | -0.2524484 | -5.3615659 |
| 111.62957 | 120.88004 | -0.2524484 | -8.9980269 |
| 109.14665 | 120.71696 | -0.2524484 | -11.3178584 |
| 110.29377 | 120.51894 | -0.2524484 | -9.9727174 |
| 110.43860 | 120.34532 | -0.2524484 | -9.6542648 |
| 113.34730 | 120.23489 | -0.2524484 | -6.6351413 |
| 113.55838 | 120.13286 | -0.2524484 | -6.3220324 |
| 117.95512 | 120.03002 | -0.2524484 | -1.8224579 |
| 122.44365 | 119.96671 | -0.2524484 | 2.7293875 |
| 124.27217 | 119.95643 | -0.2524484 | 4.5681950 |
| 122.01909 | 119.96950 | -0.2524484 | 2.3020361 |
| 120.67044 | 120.01455 | -0.2524484 | 0.9083421 |
| 114.28774 | 120.11053 | -0.2524484 | -5.5703464 |
| 120.47651 | 120.24563 | -0.2524484 | 0.4833341 |
| 121.84528 | 120.35937 | -0.2524484 | 1.7383596 |
| 134.57516 | 120.42950 | -0.2524484 | 14.3981026 |
| 135.02386 | 120.45520 | -0.2524484 | 14.8211097 |
| 133.75972 | 120.47444 | -0.2524484 | 13.5377222 |
| 139.11170 | 120.51903 | -0.2524484 | 18.8451222 |
| 142.19083 | 120.56956 | -0.2524484 | 21.8737152 |
| 140.40458 | 120.59848 | -0.2524484 | 20.0585462 |
| 138.95918 | 120.63946 | -0.2524484 | 18.5721722 |
| 128.63811 | 120.72154 | -0.2524484 | 8.1690173 |
| 139.89999 | 127.28992 | -0.2524484 | 12.8625238 |
| 146.21199 | 129.10779 | -0.2524484 | 17.3566447 |
| 142.49444 | 124.72066 | -0.2524484 | 18.0262292 |
| 146.81584 | 125.25149 | -0.2524484 | 21.8168012 |
| 142.76531 | 122.30107 | -0.2524484 | 20.7166932 |
| 144.64790 | 123.54361 | -0.2524484 | 21.3567341 |
| 144.04268 | 121.40051 | -0.2524484 | 22.8946221 |
| 147.12528 | 119.85491 | -0.2524484 | 27.5228222 |
| 141.02672 | 113.00173 | -0.2524484 | 28.2774402 |
| 132.44358 | 106.95632 | -0.2524484 | 25.7397106 |
| 130.27007 | 107.57683 | -0.2524484 | 22.9456961 |
| 133.70943 | 109.94375 | -0.2524484 | 24.0181286 |
| 141.31467 | 112.34084 | -0.2524484 | 29.2262801 |
| 129.31051 | 104.24890 | -0.2524484 | 25.3140611 |
| 124.48812 | 104.35225 | -0.2524484 | 20.3883151 |
| 126.73164 | 107.24748 | -0.2524484 | 19.7366106 |
| 123.48805 | 107.02349 | -0.2524484 | 16.7170055 |
| 123.42274 | 109.98556 | -0.2524484 | 13.6896320 |
| 126.19201 | 112.76605 | -0.2524484 | 13.6784015 |
| 130.98763 | 112.45275 | -0.2524484 | 18.7873305 |
| 126.18787 | 111.08156 | -0.2524484 | 15.3587575 |
| 130.07484 | 113.52433 | -0.2524484 | 16.8029545 |
| 137.93062 | 115.64285 | -0.2524484 | 22.5402196 |
| 132.96101 | 114.29171 | -0.2524484 | 18.9217516 |
| 122.93109 | 109.48234 | -0.2524484 | 13.7012006 |
| 123.37601 | 113.39939 | -0.2524484 | 10.2290665 |
| 127.45012 | 115.30184 | -0.2524484 | 12.4007305 |
| 118.00789 | 112.14047 | -0.2524484 | 6.1198664 |
| 121.87348 | 116.82421 | -0.2524484 | 5.3017200 |
| 128.73893 | 116.80664 | -0.2524484 | 12.1847475 |
| 101.07835 | 108.98609 | -0.2524484 | -7.6552925 |
| 113.54767 | 120.77830 | -0.2524484 | -6.9781796 |
| 113.63649 | 120.69825 | -0.2524484 | -6.8093076 |
| 116.55958 | 121.56890 | -0.2524484 | -4.7568676 |
| 105.50582 | 119.72136 | -0.2524484 | -13.9630942 |
| 113.17360 | 128.74762 | -0.2524484 | -15.3215682 |
| 108.43325 | 129.70204 | -0.2524484 | -21.0163337 |
| 111.94106 | 132.83833 | -0.2524484 | -20.6448261 |
| 111.43022 | 135.50877 | -0.2524484 | -23.8261001 |
| 120.24050 | 142.42434 | -0.2524484 | -21.9313836 |
| 126.95989 | 142.69837 | -0.2524484 | -15.4860245 |
| 119.77244 | 137.50396 | -0.2524484 | -17.4790760 |
| 120.33943 | 133.38363 | -0.2524484 | -12.7917570 |
| 106.89758 | 128.18215 | -0.2524484 | -21.0321164 |
| 110.82242 | 131.87177 | -0.2524484 | -20.7969019 |
| 112.44572 | 133.16099 | -0.2524484 | -20.4628164 |
| 112.27307 | 132.97108 | -0.2524484 | -20.4455604 |
| 104.59658 | 128.73156 | -0.2524484 | -23.8825240 |
| 113.88614 | 135.30106 | -0.2524484 | -21.1624725 |
| 116.13692 | 136.88434 | -0.2524484 | -20.4949691 |
| 122.12107 | 135.84018 | -0.2524484 | -13.4666681 |
| 122.72677 | 130.48907 | -0.2524484 | -7.5098571 |
| 121.79443 | 127.70864 | -0.2524484 | -5.6617653 |
| 124.14735 | 125.99107 | -0.2524484 | -1.5912783 |
| 118.31406 | 123.10632 | -0.2524484 | -4.5398154 |
| 118.73605 | 120.88444 | -0.2524484 | -1.8959379 |
| 111.13932 | 114.86179 | -0.2524484 | -3.4700132 |
| 103.58456 | 108.87381 | -0.2524484 | -5.0368039 |
| 97.76616 | 107.77205 | -0.2524484 | -9.7534361 |
| 90.62536 | 106.79524 | -0.2524484 | -15.9174273 |
| 85.81826 | 107.65189 | -0.2524484 | -21.5811731 |
| 87.07685 | 109.98305 | -0.2524484 | -22.6537588 |
| 95.39186 | 112.62693 | -0.2524484 | -16.9826226 |
| 87.86857 | 108.76675 | -0.2524484 | -20.6457350 |
| 92.07092 | 110.08109 | -0.2524484 | -17.7577241 |
| 90.18853 | 105.42762 | -0.2524484 | -14.9866384 |
| 95.28011 | 109.95504 | -0.2524484 | -14.4224820 |
| 102.86860 | 113.79120 | -0.2524484 | -10.6701493 |
| 103.63385 | 110.28962 | -0.2524484 | -6.4033187 |
| 96.91027 | 106.55411 | -0.2524484 | -9.3913934 |
| 91.23633 | 106.45729 | -0.2524484 | -14.9685116 |
| 95.40165 | 108.88636 | -0.2524484 | -13.2322545 |
| 91.71157 | 107.69770 | -0.2524484 | -15.7336790 |
| 95.59951 | 108.00062 | -0.2524484 | -12.1486567 |
| 97.74124 | 105.96761 | -0.2524484 | -7.9739307 |
| 95.83993 | 103.03545 | -0.2524484 | -6.9430746 |
| 95.98686 | 100.97988 | -0.2524484 | -4.7405762 |
| 93.62349 | 99.21599 | -0.2524484 | -5.3400431 |
| 88.85108 | 98.07049 | -0.2524484 | -8.9669614 |
| 91.97220 | 103.52359 | -0.2524484 | -11.2989385 |
| 95.69117 | 105.88894 | -0.2524484 | -9.9453155 |
| 94.62068 | 104.47802 | -0.2524484 | -9.6048947 |
| 94.71098 | 101.54628 | -0.2524484 | -6.5828541 |
| 89.97701 | 96.49948 | -0.2524484 | -6.2700226 |
| 93.11218 | 95.12134 | -0.2524484 | -1.7567109 |
| 95.38034 | 92.81922 | -0.2524484 | 2.8135697 |
| 92.30708 | 87.89903 | -0.2524484 | 4.6604963 |
| 88.49575 | 86.34275 | -0.2524484 | 2.4054516 |
| 89.83124 | 89.05422 | -0.2524484 | 1.0294658 |
| 84.41136 | 90.09944 | -0.2524484 | -5.4356284 |
| 93.20203 | 92.84385 | -0.2524484 | 0.6106306 |
| 90.22541 | 88.62736 | -0.2524484 | 1.8504959 |
| 98.68039 | 84.43804 | -0.2524484 | 14.4947933 |
| 88.83819 | 74.17508 | -0.2524484 | 14.9155547 |
| 85.77647 | 72.38794 | -0.2524484 | 13.6409768 |
| 89.35943 | 70.66144 | -0.2524484 | 18.9504448 |
| 89.07867 | 67.35959 | -0.2524484 | 21.9715258 |
| 82.53426 | 62.62616 | -0.2524484 | 20.1605466 |
| 80.27971 | 61.84370 | -0.2524484 | 18.6884631 |
| 74.77309 | 64.48545 | -0.2524484 | 10.5400855 |
| 84.40958 | 71.07981 | -0.2524484 | 13.5822128 |
| 87.54086 | 71.87397 | -0.2524484 | 15.9193390 |
| 87.88603 | 69.83997 | -0.2524484 | 18.2985137 |
| 86.67737 | 66.05090 | -0.2524484 | 20.8789262 |
| 86.33911 | 65.35517 | -0.2524484 | 21.2363861 |
| 86.30732 | 65.86027 | -0.2524484 | 20.6994998 |
| 90.44415 | 68.25150 | -0.2524484 | 22.4450949 |
| 96.42231 | 71.44649 | -0.2524484 | 25.2282642 |
| 96.35021 | 70.33897 | -0.2524484 | 26.2636794 |
| 97.19052 | 71.39980 | -0.2524484 | 26.0431684 |
| 93.90483 | 70.30103 | -0.2524484 | 23.8562487 |
| 95.88931 | 71.20259 | -0.2524484 | 24.9391633 |
| 95.55939 | 69.31073 | -0.2524484 | 26.5011016 |
| 95.49810 | 70.31280 | -0.2524484 | 25.4377445 |
| 92.79077 | 71.56070 | -0.2524484 | 21.4825173 |
| 93.42117 | 73.92711 | -0.2524484 | 19.7465046 |
| 94.04589 | 76.46390 | -0.2524484 | 17.8344414 |
| 94.54239 | 80.05089 | -0.2524484 | 14.7439494 |
| 98.91523 | 85.51043 | -0.2524484 | 13.6572482 |
| 104.61705 | 86.47106 | -0.2524484 | 18.3984318 |
| 101.15838 | 85.11515 | -0.2524484 | 16.2956741 |
| 105.19939 | 87.82468 | -0.2524484 | 17.6271542 |
| 115.19972 | 93.29388 | -0.2524484 | 22.1582894 |
| 101.36327 | 84.27805 | -0.2524484 | 17.3376647 |
| 99.52982 | 84.63166 | -0.2524484 | 15.1506118 |
| 97.01953 | 86.29383 | -0.2524484 | 10.9781569 |
| 99.42721 | 88.29013 | -0.2524484 | 11.3895258 |
| 94.74006 | 87.15672 | -0.2524484 | 7.8357931 |
| 94.16482 | 89.03390 | -0.2524484 | 5.3833669 |
| 102.07156 | 92.77009 | -0.2524484 | 9.5539109 |
| 87.03708 | 90.75784 | -0.2524484 | -3.4683041 |
| 93.81457 | 100.98527 | -0.2524484 | -6.9182509 |
| 97.27858 | 103.94992 | -0.2524484 | -6.4188949 |
| 98.07536 | 103.63916 | -0.2524484 | -5.3113556 |
| 89.80293 | 100.79299 | -0.2524484 | -10.7376130 |
| 89.82875 | 104.98324 | -0.2524484 | -14.9020337 |
| 89.08580 | 109.17658 | -0.2524484 | -19.8383319 |
| 92.31846 | 112.19968 | -0.2524484 | -19.6287683 |
| 91.43013 | 113.01692 | -0.2524484 | -21.3343394 |
| 92.84129 | 114.84211 | -0.2524484 | -21.7483682 |
| 96.63512 | 114.09153 | -0.2524484 | -17.2039572 |
| 91.41998 | 110.49606 | -0.2524484 | -18.8236354 |
| 98.06136 | 112.82596 | -0.2524484 | -14.5121507 |
| 89.46006 | 109.37427 | -0.2524484 | -19.6617676 |
| 91.64333 | 112.15676 | -0.2524484 | -20.2609843 |
| 92.90019 | 113.59371 | -0.2524484 | -20.4410768 |
| 90.77479 | 112.85879 | -0.2524484 | -21.8315540 |
| 90.80960 | 112.57311 | -0.2524484 | -21.5110623 |
| 92.74629 | 113.52308 | -0.2524484 | -20.5243354 |
| 93.83131 | 114.85394 | -0.2524484 | -20.7701831 |
| 100.86765 | 116.35917 | -0.2524484 | -15.2390743 |
| 106.85148 | 115.49257 | -0.2524484 | -8.3886404 |
| 102.95332 | 109.37684 | -0.2524484 | -6.1710729 |
| 102.47483 | 105.23360 | -0.2524484 | -2.5063244 |
| 98.12048 | 103.59736 | -0.2524484 | -5.2244344 |
| 99.62071 | 103.77494 | -0.2524484 | -3.9017874 |
| 97.13045 | 102.84671 | -0.2524484 | -5.4638080 |
| 97.75148 | 103.33597 | -0.2524484 | -5.3320450 |
| 93.03993 | 103.29762 | -0.2524484 | -10.0052390 |
| 90.37749 | 106.16182 | -0.2524484 | -15.5318820 |
| 92.29975 | 113.23525 | -0.2524484 | -20.6830509 |
| 98.28147 | 120.18085 | -0.2524484 | -21.6469313 |
| 105.15577 | 123.64497 | -0.2524484 | -18.2367508 |
| 101.00150 | 121.35503 | -0.2524484 | -20.1010854 |
xhat1.opt <- winter1.opt$fitted[,2]
#Forecast
forecast1 <- predict(winter1, n.ahead = nrow(testing))
forecast1.opt <- predict(winter1.opt, nrow(testing))
#Plot time series
plot(training.ts,main="Winter 0.2;0.1;0.1",type="l",col="black",
xlim=c(1,4.8), ylim=c(60,180), pch=12)
lines(xhat1,type="l",col="orange", lwd=2)
lines(xhat1.opt,type="l",col="cyan4", lwd=2)
lines(forecast1,type="l",col="orange", lwd=2)
lines(forecast1.opt,type="l",col="cyan4", lwd=2)
legend("topleft",c("Actual Data",expression(paste(winter1)),
expression(paste(winter1.opt))),cex=0.5,
col=c("black","orange","cyan4"),lty=1)
Hasil pemulusan pada forecasting model Winter1 opt
terlihat lebih baik dibandingkan model Winter. Hal ini
dapat dilihat dari pola pergerakan hasil
pemulusan Winter1 opt yang lebih mirip dengan data
aktual-nya. Ini dikarenakan Winter1 opt menggunakan
parameter beta , alpha , dan
gamma yang optimum (dengan pemberian value
NULL ) Sehingga lebih mirip dengan data aslinya.
# Membuka file PNG untuk menyimpan plot
png("C:/Users/Fathan/Documents/Obsidian Vault/2. Kuliah/Smt 5/6. Metode Peramalan Deret Waktu/@Proj/STA1341-MPDW/Pertemuan 1/Chart/11_TSA_Winter 0.2;0.1;0.1.png",
height = 9*300, width = 16*300, res=300)
# Plot time series dengan warna dan pengaturan lainnya
#Plot time series
plot(training.ts,main="Winter 0.2;0.1;0.1",type="l",col="black",
xlim=c(1,4.8), ylim=c(60,180), pch=12)
lines(xhat1,type="l",col="orange", lwd=2)
lines(xhat1.opt,type="l",col="cyan4", lwd=2)
lines(forecast1,type="l",col="orange", lwd=2)
lines(forecast1.opt,type="l",col="cyan4", lwd=2)
legend("topleft",c("Actual Data",expression(paste(winter1)),
expression(paste(winter1.opt))),cex=0.5,
col=c("black","orange","cyan4"),lty=1)
# Menyimpan plot sebagai file PNG
dev.off() # Menutup file PNG
## png
## 2
#Akurasi data training
SSE1<-winter1$SSE
MSE1<-winter1$SSE/length(training.ts)
RMSE1<-sqrt(MSE1)
SSE1.opt<-winter1.opt$SSE
MSE1.opt<-winter1.opt$SSE/length(training.ts)
RMSE1.opt<-sqrt(MSE1.opt)
akurasi1.train = data.frame(Model_Winter = c("Winter 1","Winter1 optimal"),
Nilai_SSE=c(SSE1,SSE1.opt),
Nilai_MSE=c(MSE1,MSE1.opt),
Nilai_RMSE=c(RMSE1,RMSE1.opt))
kable(akurasi1.train) %>% kable_styling()
| Model_Winter | Nilai_SSE | Nilai_MSE | Nilai_RMSE |
|---|---|---|---|
| Winter 1 | 9431.981 | 29.94280 | 5.472001 |
| Winter1 optimal | 4127.961 | 13.10464 | 3.620033 |
Akurasi pada model Winter1 optimal dengan data training
lebih baik dibandingkan model Winter1. Ditandai dengan
ketiga nilai SSE, MSE, dan RMSE yang lebih kecil.
#Akurasi Data Testing
forecast1<-data.frame(forecast1)
testing.ts<-data.frame(testing.ts)
selisih1<-forecast1 - testing.ts
SSEtesting1<-sum(selisih1^2)
MSEtesting1<-SSEtesting1/length(testing.ts)
RMSEtesting1<-sqrt(MSEtesting1)
forecast1.opt<-data.frame(forecast1.opt)
selisih1.opt<-forecast1.opt - testing.ts
SSEtesting1.opt<-sum(selisih1.opt^2)
MSEtesting1.opt<-SSEtesting1.opt/length(testing.ts)
RMSEtesting1.opt<-sqrt(MSEtesting1.opt)
akurasi1.test = data.frame(Model_Winter = c("Winter 1","winter1 optimal"),
Nilai_SSE=c(SSEtesting1, SSEtesting1.opt),
Nilai_MSE=c(MSEtesting1, MSEtesting1.opt),
Nilai_RMSE=c(RMSEtesting1,RMSEtesting1.opt))
kable(akurasi1.test) %>% kable_styling()
| Model_Winter | Nilai_SSE | Nilai_MSE | Nilai_RMSE |
|---|---|---|---|
| Winter 1 | 76727.42 | 76727.42 | 276.9971 |
| winter1 optimal | 30622.33 | 30622.33 | 174.9924 |
Sama seperti sebelumnya, Akurasi pada model Winter1
dengan data testing lebih baik dibandingkan model
Winter1 optimal. Ditandai dengan ketiga nilai SSE, MSE, dan
RMSE yang lebih kecil.
Model multiplikatif digunakan cocok digunakan jika plot data asli menunjukkan fluktuasi musiman yang bervariasi.
#Pemulusan dengan winter multiplikatif
winter2 <- HoltWinters(training.ts,
alpha=0.2,beta=0.1,gamma=0.3,
seasonal = "multiplicative")
kable(winter2$fitted) %>% kable_styling()
| xhat | level | trend | season |
|---|---|---|---|
| 124.17101 | 142.61579 | -0.2524484268 | 0.8722119 |
| 125.65077 | 139.36098 | -0.5526852965 | 0.9052108 |
| 128.41627 | 136.48745 | -0.7847697084 | 0.9463061 |
| 127.60349 | 133.96819 | -0.9582180898 | 0.9593528 |
| 129.52540 | 131.77592 | -1.0816240984 | 0.9910563 |
| 124.55353 | 129.88417 | -1.1626366991 | 0.9676201 |
| 125.59289 | 128.26607 | -1.2081821971 | 0.9884698 |
| 122.65158 | 126.89544 | -1.2244273314 | 0.9759735 |
| 119.98548 | 125.74241 | -1.2172874787 | 0.9635443 |
| 114.43345 | 124.77307 | -1.1924931317 | 0.9259825 |
| 107.63534 | 123.95133 | -1.1554178444 | 0.8765385 |
| 101.47487 | 123.25560 | -1.1094491923 | 0.8307660 |
| 99.93028 | 122.67461 | -1.0566032596 | 0.8216734 |
| 105.06937 | 122.19724 | -0.9986795495 | 0.8669193 |
| 101.16289 | 121.79853 | -0.9386825072 | 0.8370265 |
| 103.68514 | 121.45651 | -0.8790162230 | 0.8599046 |
| 106.14293 | 121.16706 | -0.8200593704 | 0.8819740 |
| 106.48741 | 120.92232 | -0.7625278210 | 0.8862150 |
| 109.98249 | 120.71555 | -0.7069524177 | 0.9164551 |
| 114.02541 | 120.54490 | -0.6533215476 | 0.9510711 |
| 110.99715 | 120.40355 | -0.6021248392 | 0.9265095 |
| 105.43061 | 120.28126 | -0.5541415298 | 0.8805909 |
| 107.04689 | 120.17440 | -0.5094126562 | 0.8945548 |
| 104.51572 | 120.08377 | -0.4675347004 | 0.8737586 |
| 107.98989 | 120.00405 | -0.4287531882 | 0.9031120 |
| 112.04438 | 119.92301 | -0.3939821077 | 0.9373822 |
| 112.98875 | 119.83960 | -0.3629250124 | 0.9456972 |
| 115.10747 | 119.76032 | -0.3345597328 | 0.9638412 |
| 114.44736 | 119.67944 | -0.3091918523 | 0.9587595 |
| 110.77853 | 119.59818 | -0.2863991186 | 0.9284794 |
| 108.40667 | 119.52104 | -0.2654730729 | 0.9090282 |
| 109.66385 | 119.43451 | -0.2475786584 | 0.9200996 |
| 109.90644 | 119.34695 | -0.2315770567 | 0.9226890 |
| 112.84365 | 119.27221 | -0.2158934064 | 0.9478174 |
| 113.09926 | 119.20536 | -0.2009885824 | 0.9503790 |
| 117.52410 | 119.14342 | -0.1870838634 | 0.9879600 |
| 122.01418 | 119.09519 | -0.1731987627 | 1.0260018 |
| 123.82945 | 119.06932 | -0.1584654973 | 1.0413637 |
| 121.58814 | 119.06461 | -0.1430905112 | 1.0224234 |
| 120.24028 | 119.08424 | -0.1268181963 | 1.0107842 |
| 113.88371 | 119.13545 | -0.1090157595 | 0.9567934 |
| 119.99370 | 119.22005 | -0.0896533267 | 1.0072467 |
| 121.36404 | 119.32426 | -0.0702678765 | 1.0176937 |
| 134.07128 | 119.43400 | -0.0522671244 | 1.1230469 |
| 134.62465 | 119.53822 | -0.0366183968 | 1.1265511 |
| 133.46895 | 119.63747 | -0.0230309857 | 1.1158264 |
| 138.87266 | 119.73830 | -0.0106446461 | 1.1599045 |
| 142.01643 | 119.83928 | 0.0005174386 | 1.1850523 |
| 140.32209 | 119.93322 | 0.0098601220 | 1.1699057 |
| 138.94233 | 120.02479 | 0.0180301663 | 1.1574398 |
| 127.50511 | 120.12363 | 0.0261113322 | 1.0612184 |
| 133.82223 | 122.09559 | 0.2206969255 | 1.0940671 |
| 139.94927 | 123.93736 | 0.3828035181 | 1.1257166 |
| 141.15978 | 124.44288 | 0.3950753682 | 1.1307441 |
| 145.51855 | 125.26073 | 0.4373524412 | 1.1576832 |
| 144.58573 | 125.29407 | 0.3969517890 | 1.1503266 |
| 145.70368 | 125.72480 | 0.4003294378 | 1.1552312 |
| 146.79587 | 125.50124 | 0.3379406676 | 1.1665355 |
| 150.37550 | 125.06838 | 0.2608600058 | 1.1998438 |
| 148.74984 | 123.30472 | 0.0584085784 | 1.2057884 |
| 143.29589 | 120.78725 | -0.1991794849 | 1.1883090 |
| 138.62997 | 118.95955 | -0.3620310125 | 1.1689112 |
| 138.11685 | 117.77112 | -0.4446714752 | 1.1772014 |
| 141.85613 | 117.18427 | -0.4588891620 | 1.2152981 |
| 135.68270 | 114.89766 | -0.6416612892 | 1.1875324 |
| 129.65458 | 113.26357 | -0.7409042000 | 1.1522530 |
| 128.10450 | 112.36218 | -0.7569524441 | 1.1478360 |
| 124.54047 | 111.37271 | -0.7802048986 | 1.1261203 |
| 121.96848 | 111.17495 | -0.7219600659 | 1.1042570 |
| 122.40536 | 111.45665 | -0.6215935959 | 1.1043920 |
| 126.72288 | 111.50595 | -0.5545043102 | 1.1421471 |
| 123.93798 | 111.43424 | -0.5062247501 | 1.1172829 |
| 125.88792 | 111.98094 | -0.4009330776 | 1.1282301 |
| 131.88427 | 112.88862 | -0.2700717218 | 1.1710707 |
| 129.59370 | 113.39830 | -0.1920965403 | 1.1447580 |
| 124.43624 | 112.72161 | -0.2405557461 | 1.1062862 |
| 122.17404 | 113.22476 | -0.1661850693 | 1.0806260 |
| 124.77901 | 113.81850 | -0.0901928277 | 1.0971676 |
| 119.06921 | 113.50063 | -0.1129606632 | 1.0501073 |
| 119.48646 | 114.45247 | -0.0064802558 | 1.0440423 |
| 126.08928 | 114.96389 | 0.0453096595 | 1.0963409 |
| 107.37193 | 113.63202 | -0.0924081156 | 0.9456782 |
| 110.04306 | 115.64140 | 0.1177704239 | 0.9506207 |
| 111.10582 | 116.54538 | 0.1963914946 | 0.9517229 |
| 114.02064 | 117.59164 | 0.2813781279 | 0.9673176 |
| 105.98405 | 117.95352 | 0.2894286099 | 0.8963245 |
| 107.58632 | 120.92634 | 0.5577678567 | 0.8856000 |
| 104.17942 | 123.11321 | 0.7206784901 | 0.8412836 |
| 107.04168 | 125.93083 | 0.9303717519 | 0.8437701 |
| 106.50445 | 128.95616 | 1.1398676201 | 0.8186603 |
| 112.57368 | 133.65930 | 1.4961949415 | 0.8329198 |
| 122.59025 | 137.16681 | 1.6973263953 | 0.8828071 |
| 121.36687 | 138.34528 | 1.6454408787 | 0.8669637 |
| 126.41165 | 138.42044 | 1.4884131222 | 0.9035286 |
| 116.02545 | 137.08843 | 1.2063711638 | 0.8389719 |
| 116.44807 | 137.38525 | 1.1154157250 | 0.8407763 |
| 116.95710 | 137.65667 | 1.0310158241 | 0.8433128 |
| 116.86209 | 137.63775 | 0.9260228389 | 0.8433813 |
| 111.75805 | 136.20136 | 0.6897811053 | 0.8164009 |
| 115.70638 | 137.38892 | 0.7395593923 | 0.8376721 |
| 118.13689 | 138.28454 | 0.7551650761 | 0.8496630 |
| 123.25755 | 138.31780 | 0.6829743292 | 0.8867401 |
| 128.27913 | 137.19471 | 0.5023677749 | 0.9316039 |
| 129.08518 | 135.77370 | 0.3100300548 | 0.9485718 |
| 132.04846 | 134.13022 | 0.1146798972 | 0.9836385 |
| 126.98797 | 131.91713 | -0.1180978902 | 0.9634970 |
| 127.40985 | 129.44760 | -0.3532406181 | 0.9869513 |
| 122.15239 | 125.76089 | -0.6865873230 | 0.9766386 |
| 116.06114 | 121.23616 | -1.0704014941 | 0.9658420 |
| 107.79276 | 117.34519 | -1.3524587524 | 0.9293062 |
| 98.64295 | 113.62478 | -1.5892538928 | 0.8804614 |
| 90.86828 | 110.55382 | -1.7374250525 | 0.8350606 |
| 88.14299 | 108.44078 | -1.7749857324 | 0.8263473 |
| 92.12803 | 107.35244 | -1.7063217968 | 0.8720437 |
| 87.17379 | 105.27961 | -1.7429720959 | 0.8419608 |
| 88.67814 | 104.20323 | -1.6763131362 | 0.8649255 |
| 88.88279 | 101.94001 | -1.7350035258 | 0.8870095 |
| 89.45997 | 101.95182 | -1.5603220691 | 0.8911110 |
| 93.63509 | 102.93440 | -1.3060320258 | 0.9213479 |
| 97.00869 | 102.68224 | -1.2006448716 | 0.9559239 |
| 93.76981 | 101.88567 | -1.1602375397 | 0.9309448 |
| 88.76809 | 101.44517 | -1.0882635696 | 0.8845240 |
| 90.53172 | 101.73209 | -0.9507454180 | 0.8982984 |
| 88.34125 | 101.58470 | -0.8704095586 | 0.8771471 |
| 91.42014 | 101.65342 | -0.7764970787 | 0.9062543 |
| 94.53044 | 101.26972 | -0.7372176482 | 0.9402973 |
| 94.55550 | 100.44732 | -0.7457350124 | 0.9483851 |
| 95.36356 | 99.46002 | -0.7698917347 | 0.9662928 |
| 93.78740 | 98.39756 | -0.7991492284 | 0.9609521 |
| 89.77367 | 97.31381 | -0.8276084440 | 0.9304301 |
| 88.56967 | 97.94066 | -0.6821632625 | 0.9106626 |
| 90.54576 | 98.78054 | -0.5299591154 | 0.9215800 |
| 91.09874 | 99.02842 | -0.4521745417 | 0.9241449 |
| 93.12320 | 98.55704 | -0.4540949357 | 0.9492395 |
| 91.85850 | 97.07619 | -0.5567707852 | 0.9517100 |
| 94.16266 | 95.80523 | -0.6281895945 | 0.9893422 |
| 96.28018 | 94.40629 | -0.7052643688 | 1.0275253 |
| 95.38685 | 92.30152 | -0.8452157731 | 1.0429774 |
| 91.74995 | 90.52879 | -0.9379665381 | 1.0240999 |
| 89.93057 | 89.73535 | -0.9235139668 | 1.0125967 |
| 84.59840 | 89.13762 | -0.8909357052 | 0.9586581 |
| 89.05236 | 89.05022 | -0.8105818019 | 1.0092104 |
| 88.87193 | 88.00335 | -0.8342113464 | 1.0195343 |
| 96.15128 | 86.39389 | -0.9117355272 | 1.1248111 |
| 92.98424 | 83.53316 | -1.1066354740 | 1.1280864 |
| 89.49756 | 81.32479 | -1.2168086407 | 1.1172115 |
| 90.30340 | 79.08623 | -1.3189837699 | 1.1612010 |
| 89.54423 | 76.89687 | -1.4060213023 | 1.1861601 |
| 85.33058 | 74.39416 | -1.5156900113 | 1.1708613 |
| 81.90071 | 72.27882 | -1.5756558329 | 1.1583742 |
| 75.23052 | 71.09669 | -1.5363026385 | 1.0815137 |
| 77.57334 | 71.18209 | -1.3741320964 | 1.1112392 |
| 78.96834 | 71.29219 | -1.2257093836 | 1.1270487 |
| 79.52430 | 71.16167 | -1.1161904002 | 1.1353237 |
| 80.29302 | 70.67890 | -1.0528479882 | 1.1532037 |
| 80.17738 | 70.62969 | -0.9524844882 | 1.1506975 |
| 80.49627 | 70.92560 | -0.8276451251 | 1.1483397 |
| 82.28806 | 71.73053 | -0.6643879292 | 1.1579081 |
| 85.66773 | 73.27736 | -0.4432661244 | 1.1762038 |
| 87.16445 | 74.46685 | -0.2799905902 | 1.1749312 |
| 88.77907 | 76.05174 | -0.0935022038 | 1.1687880 |
| 89.51872 | 77.20242 | 0.0309160612 | 1.1590684 |
| 92.14875 | 78.25852 | 0.1334342244 | 1.1754874 |
| 93.95170 | 78.65248 | 0.1594871807 | 1.1920994 |
| 93.51034 | 79.36533 | 0.2148231491 | 1.1750461 |
| 92.64994 | 80.26262 | 0.2830699200 | 1.1502781 |
| 93.34939 | 81.18380 | 0.3468815420 | 1.1449602 |
| 93.61774 | 82.19981 | 0.4137940477 | 1.1332001 |
| 93.88831 | 83.60236 | 0.5126690356 | 1.1161895 |
| 95.96802 | 85.61149 | 0.6623154358 | 1.1123657 |
| 100.85048 | 87.09763 | 0.7446980620 | 1.1480852 |
| 100.58709 | 88.23943 | 0.7844079647 | 1.1298894 |
| 103.75015 | 89.83151 | 0.8651754499 | 1.1439243 |
| 110.19019 | 92.29817 | 1.0253234287 | 1.1807337 |
| 106.00639 | 92.17163 | 0.9101375844 | 1.1388524 |
| 103.97737 | 92.40979 | 0.8429402140 | 1.1150061 |
| 102.09556 | 92.91778 | 0.8094450543 | 1.0892840 |
| 103.02070 | 93.35165 | 0.7718871379 | 1.0945265 |
| 99.74255 | 93.24997 | 0.6845305258 | 1.0618308 |
| 98.85651 | 93.53283 | 0.6443631604 | 1.0496863 |
| 102.59961 | 94.30742 | 0.6573860124 | 1.0803962 |
| 91.82950 | 94.42804 | 0.6037091585 | 0.9663035 |
| 93.68474 | 96.96292 | 0.7968265384 | 0.9583161 |
| 95.59610 | 98.69164 | 0.8900163402 | 0.9599769 |
| 97.62346 | 99.91581 | 0.9234317521 | 0.9681098 |
| 93.00480 | 100.21050 | 0.8605574864 | 0.9201922 |
| 92.30313 | 101.67641 | 0.9210927719 | 0.8996625 |
| 89.56664 | 103.37933 | 0.9992748122 | 0.8580939 |
| 91.51554 | 105.29537 | 1.0909513748 | 0.8602190 |
| 91.28716 | 106.90815 | 1.1431349793 | 0.8448502 |
| 93.20006 | 108.74794 | 1.2128005004 | 0.8475758 |
| 97.46813 | 109.71768 | 1.1884944011 | 0.8788341 |
| 94.71630 | 109.69136 | 1.0670123364 | 0.8551616 |
| 98.58461 | 110.80133 | 1.0713085610 | 0.8812218 |
| 92.99942 | 110.77539 | 0.9615833316 | 0.8323066 |
| 94.17858 | 111.86927 | 0.9748136188 | 0.8345903 |
| 95.04934 | 112.78212 | 0.9686169117 | 0.8355932 |
| 94.12969 | 113.08071 | 0.9016143372 | 0.8258271 |
| 93.45653 | 113.15898 | 0.8192801123 | 0.8199504 |
| 96.06190 | 113.72788 | 0.7942413271 | 0.8388065 |
| 97.10466 | 114.24031 | 0.7660607713 | 0.8443415 |
| 100.83261 | 114.79209 | 0.7446320326 | 0.8727321 |
| 106.30369 | 115.35508 | 0.7264682303 | 0.9157673 |
| 107.21784 | 114.47553 | 0.5658665284 | 0.9319935 |
| 109.14695 | 113.00107 | 0.3618342200 | 0.9628101 |
| 105.34646 | 111.58957 | 0.1845002414 | 0.9424946 |
| 105.50049 | 110.36367 | 0.0434605146 | 0.9555587 |
| 102.30345 | 108.98587 | -0.0986656570 | 0.9395360 |
| 101.12520 | 107.99880 | -0.1875063382 | 0.9379834 |
| 96.85860 | 107.15346 | -0.2532899987 | 0.9060660 |
| 92.46849 | 106.98435 | -0.2448712522 | 0.8663008 |
| 90.20316 | 108.53597 | -0.0652221966 | 0.8315897 |
| 92.86691 | 111.30793 | 0.2184957266 | 0.8326898 |
| 99.43080 | 114.02990 | 0.4688431796 | 0.8684008 |
| 98.18161 | 115.18488 | 0.5374568066 | 0.8484240 |
xhat2 <- winter2$fitted[,2]
winter2.opt<- HoltWinters(training.ts, alpha= NULL, beta = NULL, gamma = NULL, seasonal = "multiplicative")
kable(winter2.opt$fitted) %>% kable_styling()
| xhat | level | trend | season |
|---|---|---|---|
| 124.17101 | 142.61579 | -0.2524484 | 0.8722119 |
| 118.11312 | 130.73379 | -0.2524484 | 0.9052108 |
| 120.83384 | 127.94247 | -0.2524484 | 0.9463061 |
| 121.76725 | 127.17891 | -0.2524484 | 0.9593528 |
| 125.47445 | 126.85923 | -0.2524484 | 0.9910563 |
| 122.29063 | 126.63535 | -0.2524484 | 0.9676201 |
| 124.72313 | 126.43043 | -0.2524484 | 0.9884698 |
| 122.95114 | 126.23039 | -0.2524484 | 0.9759735 |
| 121.17946 | 126.01673 | -0.2524484 | 0.9635443 |
| 116.22216 | 125.76471 | -0.2524484 | 0.9259825 |
| 109.74213 | 125.45190 | -0.2524484 | 0.8765385 |
| 103.73408 | 125.11802 | -0.2524484 | 0.8307660 |
| 102.34220 | 124.80582 | -0.2524484 | 0.8216734 |
| 107.73255 | 124.52302 | -0.2524484 | 0.8669193 |
| 103.75966 | 124.21467 | -0.2524484 | 0.8370265 |
| 106.29929 | 123.86999 | -0.2524484 | 0.8599046 |
| 108.74181 | 123.54611 | -0.2524484 | 0.8819740 |
| 108.99286 | 123.23937 | -0.2524484 | 0.8862150 |
| 112.44630 | 122.94946 | -0.2524484 | 0.9164551 |
| 116.44842 | 122.69169 | -0.2524484 | 0.9510711 |
| 113.21596 | 122.44867 | -0.2524484 | 0.9265095 |
| 107.38556 | 122.19961 | -0.2524484 | 0.8805909 |
| 108.87395 | 121.95986 | -0.2524484 | 0.8945548 |
| 106.15716 | 121.74729 | -0.2524484 | 0.8737586 |
| 109.53777 | 121.54169 | -0.2524484 | 0.9031120 |
| 113.47561 | 121.30831 | -0.2524484 | 0.9373822 |
| 114.26251 | 121.07602 | -0.2524484 | 0.9456972 |
| 116.26470 | 120.87886 | -0.2524484 | 0.9638412 |
| 115.46000 | 120.67889 | -0.2524484 | 0.9587595 |
| 111.63910 | 120.49109 | -0.2524484 | 0.9284794 |
| 109.15495 | 120.33117 | -0.2524484 | 0.9090282 |
| 110.30312 | 120.13416 | -0.2524484 | 0.9200996 |
| 110.45587 | 119.96329 | -0.2524484 | 0.9226890 |
| 113.36331 | 119.85704 | -0.2524484 | 0.9478174 |
| 113.57479 | 119.75718 | -0.2524484 | 0.9503790 |
| 117.96564 | 119.65570 | -0.2524484 | 0.9879600 |
| 122.44554 | 119.59487 | -0.2524484 | 1.0260018 |
| 124.27109 | 119.58740 | -0.2524484 | 1.0413637 |
| 122.02572 | 119.60195 | -0.2524484 | 1.0224234 |
| 120.68338 | 119.64825 | -0.2524484 | 1.0107842 |
| 114.33042 | 119.74576 | -0.2524484 | 0.9567934 |
| 120.49609 | 119.88162 | -0.2524484 | 1.0072467 |
| 121.85989 | 119.99367 | -0.2524484 | 1.0176937 |
| 134.55065 | 120.06102 | -0.2524484 | 1.1230469 |
| 134.99642 | 120.08405 | -0.2524484 | 1.1265511 |
| 133.73158 | 120.10225 | -0.2524484 | 1.1158264 |
| 139.06653 | 120.14725 | -0.2524484 | 1.1599045 |
| 142.14137 | 120.19768 | -0.2524484 | 1.1850523 |
| 140.35708 | 120.22544 | -0.2524484 | 1.1699057 |
| 138.90879 | 120.26629 | -0.2524484 | 1.1574398 |
| 127.44899 | 120.34931 | -0.2524484 | 1.0612184 |
| 139.40884 | 127.67502 | -0.2524484 | 1.0940671 |
| 145.77294 | 129.74591 | -0.2524484 | 1.1257166 |
| 142.14430 | 125.96109 | -0.2524484 | 1.1307441 |
| 146.35346 | 126.67171 | -0.2524484 | 1.1576832 |
| 142.69021 | 124.29566 | -0.2524484 | 1.1503266 |
| 144.63279 | 125.45059 | -0.2524484 | 1.1552312 |
| 143.77225 | 123.49967 | -0.2524484 | 1.1665355 |
| 146.40140 | 122.26950 | -0.2524484 | 1.1998438 |
| 140.46067 | 116.74110 | -0.2524484 | 1.2057884 |
| 132.59655 | 111.83668 | -0.2524484 | 1.1883090 |
| 130.91688 | 112.25144 | -0.2524484 | 1.1689112 |
| 133.79756 | 113.90978 | -0.2524484 | 1.1772014 |
| 140.60586 | 115.94905 | -0.2524484 | 1.2152981 |
| 129.63286 | 109.41398 | -0.2524484 | 1.1875324 |
| 125.60893 | 109.26404 | -0.2524484 | 1.1522530 |
| 127.24625 | 111.10997 | -0.2524484 | 1.1478360 |
| 124.19265 | 110.53609 | -0.2524484 | 1.1261203 |
| 124.25823 | 112.77900 | -0.2524484 | 1.1042570 |
| 126.51406 | 114.80784 | -0.2524484 | 1.1043920 |
| 130.22705 | 114.27196 | -0.2524484 | 1.1421471 |
| 126.54385 | 113.51280 | -0.2524484 | 1.1172829 |
| 130.06180 | 115.53194 | -0.2524484 | 1.1282301 |
| 137.28455 | 117.48239 | -0.2524484 | 1.1710707 |
| 133.27893 | 116.67787 | -0.2524484 | 1.1447580 |
| 123.68504 | 112.05447 | -0.2524484 | 1.1062862 |
| 124.22480 | 115.20878 | -0.2524484 | 1.0806260 |
| 127.46589 | 116.42968 | -0.2524484 | 1.0971676 |
| 118.81514 | 113.39816 | -0.2524484 | 1.0501073 |
| 122.36717 | 117.45763 | -0.2524484 | 1.0440423 |
| 128.07593 | 117.07372 | -0.2524484 | 1.0963409 |
| 103.86438 | 110.08303 | -0.2524484 | 0.9456782 |
| 114.63789 | 120.84512 | -0.2524484 | 0.9506207 |
| 113.86518 | 119.89355 | -0.2524484 | 0.9517229 |
| 116.49839 | 120.68694 | -0.2524484 | 0.9673176 |
| 106.22298 | 118.76197 | -0.2524484 | 0.8963245 |
| 113.75051 | 128.69702 | -0.2524484 | 0.8856000 |
| 108.61828 | 129.36263 | -0.2524484 | 0.8412836 |
| 112.13081 | 133.14507 | -0.2524484 | 0.8437701 |
| 111.40527 | 136.33486 | -0.2524484 | 0.8186603 |
| 120.76883 | 145.24700 | -0.2524484 | 0.8329198 |
| 127.92812 | 145.16306 | -0.2524484 | 0.8828071 |
| 119.60998 | 138.21669 | -0.2524484 | 0.8669637 |
| 120.34935 | 133.45173 | -0.2524484 | 0.9035286 |
| 106.73392 | 127.47235 | -0.2524484 | 0.8389719 |
| 111.00262 | 132.27642 | -0.2524484 | 0.8407763 |
| 112.59893 | 133.77222 | -0.2524484 | 0.8433128 |
| 112.34176 | 133.45645 | -0.2524484 | 0.8433813 |
| 104.46094 | 128.20545 | -0.2524484 | 0.8164009 |
| 114.38664 | 136.80545 | -0.2524484 | 0.8376721 |
| 117.35788 | 138.37799 | -0.2524484 | 0.8496464 |
| 122.20652 | 136.03950 | -0.2524484 | 0.8999866 |
| 122.44740 | 129.79900 | -0.2524484 | 0.9452000 |
| 121.56087 | 126.98332 | -0.2524484 | 0.9592049 |
| 123.96195 | 125.32487 | -0.2524484 | 0.9911214 |
| 118.24852 | 122.44461 | -0.2524484 | 0.9677259 |
| 118.49975 | 120.11999 | -0.2524484 | 0.9885892 |
| 110.98465 | 113.95913 | -0.2524484 | 0.9760609 |
| 103.52552 | 107.69475 | -0.2524484 | 0.9635453 |
| 98.43399 | 106.56954 | -0.2524484 | 0.9258529 |
| 91.74662 | 104.94151 | -0.2524484 | 0.8763726 |
| 87.02447 | 105.01912 | -0.2524484 | 0.8306503 |
| 87.61413 | 106.88891 | -0.2524484 | 0.8216152 |
| 94.96521 | 109.81010 | -0.2524484 | 0.8668058 |
| 88.15437 | 105.59376 | -0.2524484 | 0.8368452 |
| 91.80423 | 107.03135 | -0.2524484 | 0.8597600 |
| 89.44070 | 101.67512 | -0.2524484 | 0.8818610 |
| 95.24711 | 107.73828 | -0.2524484 | 0.8861365 |
| 102.71423 | 112.33162 | -0.2524484 | 0.9164435 |
| 102.96134 | 108.50832 | -0.2524484 | 0.9510924 |
| 97.03220 | 104.98038 | -0.2524484 | 0.9265169 |
| 92.06760 | 104.80135 | -0.2524484 | 0.8806176 |
| 95.49760 | 106.99661 | -0.2524484 | 0.8946400 |
| 92.03119 | 105.56858 | -0.2524484 | 0.8738565 |
| 95.23194 | 105.69628 | -0.2524484 | 0.9031533 |
| 96.97543 | 103.70090 | -0.2524484 | 0.9374276 |
| 95.38107 | 101.09698 | -0.2524484 | 0.9458230 |
| 95.41080 | 99.23009 | -0.2524484 | 0.9639631 |
| 93.54275 | 97.80367 | -0.2524484 | 0.9589091 |
| 89.51773 | 96.64416 | -0.2524484 | 0.9286870 |
| 92.73068 | 102.24955 | -0.2524484 | 0.9091502 |
| 95.80536 | 104.35685 | -0.2524484 | 0.9202816 |
| 94.55530 | 102.69408 | -0.2524484 | 0.9230163 |
| 94.07123 | 99.46605 | -0.2524484 | 0.9481687 |
| 89.56329 | 94.45742 | -0.2524484 | 0.9507278 |
| 91.97599 | 93.30597 | -0.2524484 | 0.9884203 |
| 93.96248 | 91.77912 | -0.2524484 | 1.0266131 |
| 91.27998 | 87.84985 | -0.2524484 | 1.0420398 |
| 88.81311 | 87.05471 | -0.2524484 | 1.0231658 |
| 90.37392 | 89.58623 | -0.2524484 | 1.0116433 |
| 86.19724 | 90.25737 | -0.2524484 | 0.9576948 |
| 92.31986 | 91.82721 | -0.2524484 | 1.0081366 |
| 89.51967 | 88.14762 | -0.2524484 | 1.0184821 |
| 94.56078 | 84.39651 | -0.2524484 | 1.1237962 |
| 87.28810 | 77.68429 | -0.2524484 | 1.1272894 |
| 85.78324 | 77.07580 | -0.2524484 | 1.1166298 |
| 87.27486 | 75.44048 | -0.2524484 | 1.1607546 |
| 87.26022 | 73.83664 | -0.2524484 | 1.1858556 |
| 82.62438 | 70.82722 | -0.2524484 | 1.1707354 |
| 80.84327 | 70.04250 | -0.2524484 | 1.1583781 |
| 77.47747 | 72.02157 | -0.2524484 | 1.0795377 |
| 83.79915 | 76.44978 | -0.2524484 | 1.0997649 |
| 86.38455 | 77.62085 | -0.2524484 | 1.1165352 |
| 86.41265 | 76.50489 | -0.2524484 | 1.1332443 |
| 84.95388 | 74.00157 | -0.2524484 | 1.1519307 |
| 85.69506 | 74.50646 | -0.2524484 | 1.1540799 |
| 86.43291 | 75.37163 | -0.2524484 | 1.1506104 |
| 89.82485 | 77.43333 | -0.2524484 | 1.1638225 |
| 95.23873 | 80.68560 | -0.2524484 | 1.1840731 |
| 95.53572 | 80.45361 | -0.2524484 | 1.1912013 |
| 97.16862 | 81.88183 | -0.2524484 | 1.1903633 |
| 94.73136 | 80.90139 | -0.2524484 | 1.1746139 |
| 95.75586 | 81.12950 | -0.2524484 | 1.1839683 |
| 94.72347 | 79.51877 | -0.2524484 | 1.1950027 |
| 95.80272 | 80.90422 | -0.2524484 | 1.1878564 |
| 94.44677 | 81.77173 | -0.2524484 | 1.1585819 |
| 94.63861 | 82.77183 | -0.2524484 | 1.1468652 |
| 95.18425 | 84.23606 | -0.2524484 | 1.1333670 |
| 96.05882 | 86.74217 | -0.2524484 | 1.1106385 |
| 99.92920 | 90.80122 | -0.2524484 | 1.1035954 |
| 103.49487 | 90.98455 | -0.2524484 | 1.1406643 |
| 101.39100 | 90.48430 | -0.2524484 | 1.1236720 |
| 105.01091 | 92.82341 | -0.2524484 | 1.1343828 |
| 114.27131 | 97.96541 | -0.2524484 | 1.1694591 |
| 102.14498 | 90.50478 | -0.2524484 | 1.1317710 |
| 100.44866 | 90.27631 | -0.2524484 | 1.1158004 |
| 98.61740 | 91.17732 | -0.2524484 | 1.0846031 |
| 99.88845 | 91.94813 | -0.2524484 | 1.0893474 |
| 95.80624 | 90.52338 | -0.2524484 | 1.0613189 |
| 95.32657 | 91.58755 | -0.2524484 | 1.0437014 |
| 101.44765 | 94.46254 | -0.2524484 | 1.0768236 |
| 89.98855 | 92.95279 | -0.2524484 | 0.9707467 |
| 96.19447 | 101.61558 | -0.2524484 | 0.9490085 |
| 97.99497 | 102.95946 | -0.2524484 | 0.9541215 |
| 98.07836 | 102.06154 | -0.2524484 | 0.9633556 |
| 90.54374 | 98.99585 | -0.2524484 | 0.9169599 |
| 91.33696 | 103.17570 | -0.2524484 | 0.8874278 |
| 90.45795 | 106.83678 | -0.2524484 | 0.8486984 |
| 92.73866 | 109.36112 | -0.2524484 | 0.8499660 |
| 91.52768 | 110.03956 | -0.2524484 | 0.8336833 |
| 93.35664 | 112.29822 | -0.2524484 | 0.8332009 |
| 96.34154 | 110.94245 | -0.2524484 | 0.8703725 |
| 91.58586 | 106.94144 | -0.2524484 | 0.8584377 |
| 97.57888 | 109.67982 | -0.2524484 | 0.8917228 |
| 89.79126 | 106.10100 | -0.2524484 | 0.8482993 |
| 92.01717 | 109.28115 | -0.2524484 | 0.8439720 |
| 93.19250 | 110.77533 | -0.2524484 | 0.8431964 |
| 91.22344 | 109.65696 | -0.2524484 | 0.8338179 |
| 90.40756 | 108.94606 | -0.2524484 | 0.8317651 |
| 92.77051 | 110.57728 | -0.2524484 | 0.8408852 |
| 94.74939 | 112.26826 | -0.2524484 | 0.8458573 |
| 100.41560 | 113.34438 | -0.2524484 | 0.8879113 |
| 105.72180 | 112.76422 | -0.2524484 | 0.9396510 |
| 101.99060 | 106.92878 | -0.2524484 | 0.9560752 |
| 101.40437 | 103.20784 | -0.2524484 | 0.9849351 |
| 98.28803 | 102.33058 | -0.2524484 | 0.9628706 |
| 99.46860 | 102.40958 | -0.2524484 | 0.9736824 |
| 97.27075 | 101.55357 | -0.2524484 | 0.9602140 |
| 97.79943 | 101.99435 | -0.2524484 | 0.9612503 |
| 93.78490 | 101.93578 | -0.2524484 | 0.9223233 |
| 91.51810 | 104.58539 | -0.2524484 | 0.8771736 |
| 93.39647 | 112.04468 | -0.2524484 | 0.8354469 |
| 99.02291 | 119.77010 | -0.2524484 | 0.8285212 |
| 105.67177 | 123.50751 | -0.2524484 | 0.8573423 |
| 100.92907 | 120.30773 | -0.2524484 | 0.8406883 |
xhat2.opt <- winter2.opt$fitted[,2]
#Forecast
forecast2 <- predict(winter2, n.ahead = nrow(testing))
forecast2.opt <- predict(winter2.opt, n.ahead = nrow(testing))
#Plot time series
plot(training.ts, main="Winter 0.2;0.1;0.1",
type="l",col="black", xlim=c(1,4.8), ylim=c(60,180), pch=12)
lines(xhat2,type="l",col="orange", lwd=2)
lines(xhat2.opt,type="l",col="cyan4", lwd=2)
lines(forecast2,type="l",col="orange", lwd=2)
lines(forecast2.opt,type="l",col="cyan4", lwd=2)
legend("topleft",c("Actual Data", expression(paste(winter2)),
expression(paste(winter2.opt))),
cex=0.5, col=c("black","orange","cyan4"),lty=1)
Hasil pemulusan pada forecasting model Winter2 opt
terlihat lebih baik dibandingkan model Winter. Hal ini
dapat dilihat dari pola pergerakan hasil
pemulusan Winter2 opt yang lebih mirip dengan data
aktual-nya. Ini dikarenakan Winter2 opt menggunakan
parameter beta , alpha , dan
gamma yang optimum (dengan pemberian value
NULL ) Sehingga lebih mirip dengan data aslinya.
# Membuka file PNG untuk menyimpan plot
png("C:/Users/Fathan/Documents/Obsidian Vault/2. Kuliah/Smt 5/6. Metode Peramalan Deret Waktu/@Proj/STA1341-MPDW/Pertemuan 1/Chart/12_TSA_Winter 0.2;0.1;0.1.png",
height = 9*300, width = 16*300, res=300)
# Plot time series dengan warna dan pengaturan lainnya
#Plot time series
plot(training.ts, main="Winter 0.2;0.1;0.1",
type="l",col="black", xlim=c(1,4.8), ylim=c(60,180), pch=12)
lines(xhat2,type="l",col="orange", lwd=2)
lines(xhat2.opt,type="l",col="cyan4", lwd=2)
lines(forecast2,type="l",col="orange", lwd=2)
lines(forecast2.opt,type="l",col="cyan4", lwd=2)
legend("topleft",c("Actual Data", expression(paste(winter2)),
expression(paste(winter2.opt))),
cex=0.5, col=c("black","orange","cyan4"),lty=1)
# Menyimpan plot sebagai file PNG
dev.off() # Menutup file PNG
## png
## 2
#Akurasi data training
SSE2<-winter2$SSE
MSE2<-winter2$SSE/length(training.ts)
RMSE2<-sqrt(MSE2)
SSE2.opt<-winter2.opt$SSE
MSE2.opt<-winter2.opt$SSE/length(training.ts)
RMSE2.opt<-sqrt(MSE2.opt)
akurasi2.train = data.frame(Model_Winter = c("Winter 2","winter2 optimal"),
Nilai_SSE=c(SSE2,SSE2.opt),
Nilai_MSE=c(MSE2,MSE2.opt),
Nilai_RMSE=c(RMSE2,RMSE2.opt))
kable(akurasi2.train) %>% kable_styling()
| Model_Winter | Nilai_SSE | Nilai_MSE | Nilai_RMSE |
|---|---|---|---|
| Winter 2 | 7343.858 | 23.31384 | 4.828440 |
| winter2 optimal | 3299.752 | 10.47540 | 3.236573 |
Akurasi pada model Winter2 optimal dengan data training
lebih baik dibandingkan model Winter2. Ditandai dengan
ketiga nilai SSE, MSE, dan RMSE yang lebih kecil.
#Akurasi Data Testing
forecast2<-data.frame(forecast2)
testing.ts<-data.frame(testing.ts)
selisih2<-forecast2-testing.ts
SSEtesting2<-sum(selisih2^2)
MSEtesting2<-SSEtesting2/length(testing.ts)
RMSEtesting2<-sqrt(MSEtesting2)
forecast2.opt<-data.frame(forecast2.opt)
selisih2.opt<-forecast2.opt-testing.ts
SSEtesting2.opt<-sum(selisih2.opt^2)
MSEtesting2.opt<-SSEtesting2.opt/length(testing.ts)
RMSEtesting2.opt<-sqrt(MSEtesting2.opt)
akurasi2.test = data.frame(Model_Winter = c("Winter 2","winter2 optimal"),
Nilai_SSE=c(SSEtesting2, SSEtesting2.opt),
Nilai_MSE=c(MSEtesting2, MSEtesting2.opt),
Nilai_RMSE=c(RMSEtesting1,RMSEtesting1.opt))
kable(akurasi2.test) %>% kable_styling()
| Model_Winter | Nilai_SSE | Nilai_MSE | Nilai_RMSE |
|---|---|---|---|
| Winter 2 | 99159.71 | 99159.71 | 276.9971 |
| winter2 optimal | 26956.06 | 26956.06 | 174.9924 |
Sama seperti sebelumnya, Akurasi pada model Winter2
dengan data testing lebih baik dibandingkan model
Winter2 optimal. Ditandai dengan ketiga nilai SSE, MSE, dan
RMSE yang lebih kecil.
banding.dma_des <- data.frame(
cbind(rbind(SSE_test.dma, MSE_test.dma, MAPE_test.dma),
rbind(SSEtestingdesopt, MSEtestingdesopt, MAPEtestingdesopt)))
row.names(banding.dma_des) <- c("SSE", "MSE", "MAPE")
colnames(banding.dma_des) <- c("DMA","DES")
kable(banding.dma_des) %>% kable_styling()
| DMA | DES | |
|---|---|---|
| SSE | 91763.86806 | 3163.79939 |
| MSE | 1147.04835 | 39.54749 |
| MAPE | 24.73109 | 4.57769 |
banding.wa_wm <-
cbind.data.frame( t( akurasi1.test[2,-1]),
t( akurasi2.test[2,-1]) )
row.names(banding.wa_wm) <- c("SSE", "MSE", "RMSE")
colnames(banding.wa_wm) <- c("Winter Aditif","Winter Multiplikatif")
kable(banding.wa_wm) %>% kable_styling()
| Winter Aditif | Winter Multiplikatif | |
|---|---|---|
| SSE | 30622.3302 | 26956.0560 |
| MSE | 30622.3302 | 26956.0560 |
| RMSE | 174.9924 | 174.9924 |
Metode DMA dan DES dapat
dibandingkan hasilnya dengan menggunakan ukuran akurasi yang sama, yaitu
SSE, MSE, dan MAPE. Didapatkan
hasil bahwa metode DES lebih baik dibandingkan metode
DMA dilihat dari SSE, MSE,
dan MAPE yang lebih kecil nilainya.
Lalu metode Winter Aditif dan Winter
Multifplikatif dapat dibandingkan hasilnya dengan menggunakan
ukuran akurasi yang sama, yaitu SSE, MSE, dan
RMSE. Didapatkan hasil bahwa metode Winter
Multifplikatif lebih baik dibandingkan metode Winter
Aditif dilihat dari SSE, MSE, dan
RMSE yang lebih kecil nilainya.
Jika kita bandingkan keempatnya serta melihat nilai SSE
dan MSE nya. Maka kita akan melihat bahwa metode
DES adalah metode pemulusan terbaik untuk data deret
waktu saham amazon periode 2022-2023. Hal ini juga dapat ditinjau
langsung dari plot pemulusan yang sudah dibuat.
Legend/Label Time Series : https://r-graph-gallery.com/web-line-chart-with-labels-at-end-of-line.html
Color : https://bookdown.org/hneth/ds4psy/ds4psy_files/figure-html/apx-color-sample-1.png
Asisten praktikum : https://github.com/rizkynurhambali/Praktikum-MPDW-2324