library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.3.6 ✔ purrr 0.3.4
## ✔ tibble 3.1.8 ✔ dplyr 1.0.10
## ✔ tidyr 1.2.1 ✔ stringr 1.4.1
## ✔ readr 2.1.2 ✔ forcats 0.5.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
library(dplyr)
library(ggplot2)
library(scales)
##
## Attaching package: 'scales'
##
## The following object is masked from 'package:purrr':
##
## discard
##
## The following object is masked from 'package:readr':
##
## col_factor
survey <- read.csv("cleaned-ea-survey.csv")
view(survey)
mean(na.omit(survey$AdditionalMaterials) == TRUE)
## [1] 0.6160338
survey %>%
group_by(College) %>%
count(AdditionalMaterials)
## # A tibble: 14 × 3
## # Groups: College [5]
## College AdditionalMaterials n
## <chr> <lgl> <int>
## 1 College of Agriculture and Environmental Sciences FALSE 20
## 2 College of Agriculture and Environmental Sciences TRUE 28
## 3 College of Agriculture and Environmental Sciences NA 32
## 4 College of Biological Sciences FALSE 15
## 5 College of Biological Sciences TRUE 31
## 6 College of Biological Sciences NA 25
## 7 College of Engineering FALSE 9
## 8 College of Engineering TRUE 17
## 9 College of Engineering NA 19
## 10 College of Letters and Science FALSE 47
## 11 College of Letters and Science TRUE 68
## 12 College of Letters and Science NA 70
## 13 <NA> TRUE 2
## 14 <NA> NA 40
temp <- survey %>%
group_by(Improvements) %>%
tally()
view(temp)
survey %>%
group_by(College) %>%
count(AdditionalMaterials)
## # A tibble: 14 × 3
## # Groups: College [5]
## College AdditionalMaterials n
## <chr> <lgl> <int>
## 1 College of Agriculture and Environmental Sciences FALSE 20
## 2 College of Agriculture and Environmental Sciences TRUE 28
## 3 College of Agriculture and Environmental Sciences NA 32
## 4 College of Biological Sciences FALSE 15
## 5 College of Biological Sciences TRUE 31
## 6 College of Biological Sciences NA 25
## 7 College of Engineering FALSE 9
## 8 College of Engineering TRUE 17
## 9 College of Engineering NA 19
## 10 College of Letters and Science FALSE 47
## 11 College of Letters and Science TRUE 68
## 12 College of Letters and Science NA 70
## 13 <NA> TRUE 2
## 14 <NA> NA 40
freq <- c(28/(48), 31/46, 17/26, 68/(47+68))
college <- c("College of Agriculture and Environmental Sciences", "College of Biological Sciences", "College of Engineering", "College of Letters and Science")
materials <- data.frame(college, freq)
ggplot(materials, aes(x = college, y = freq)) +
geom_bar(stat = "identity") +
ylim(0, 1)

selections <- c("Communication around how to opt out", "Communication around when to opt out", "Communication on how to access textbooks", "Equitable Access should include required material that is not currently covered", "Cost (i.e. cost of Equitable Access is too high)")
count <- c(158, 172, 140, 220, 267)
improvements <- data.frame(selections, count)
plot <- ggplot(improvements, aes(x = selections, y = count)) +
geom_bar(stat = "identity")
plot + coord_flip()
